





# ESR1 – Eleni Aza

# A new Micro-Pattern Gaseous Detector (MPGD) for neutron spectrometry

4<sup>th</sup> ARDENT Workshop Prague, 22.06.15

# Outline

- 1. Introduction to the Bonner Sphere Spectrometer (BSS)
- 2. Design of a new neutron spectrometer
- 3. Construction & acquisition system
- 4. Neutron spectra measurement
- i. <sup>241</sup>AmBe spectrum
- ii. Spectrum on iron CERF roof
- 5. Future Improvements

## Neutron spectrometry

# The Bonner Sphere Spectrometer (BSS) is the most common instrument in Radiation Protection



#### Advantages

- Isotropic response
- Extended energy range

### Disadvantages

- Long exposure time
- Heavy system
- Low efficiency

# A new MPGD for neutron spectrometry **Designed**, constructed and tested

Employs the same operation principle as the BSS

Regions instead of spheres are defined for different neutron energy ranges



### Triple GEM for the read-out

- Active area  $35 \times 21 \text{ cm}^2$
- Pad size 22 x 13 mm<sup>2</sup> (256 pads)
- Six regions

| Region | Material                                | <b>Detection Method</b> | Particles              | Pads |
|--------|-----------------------------------------|-------------------------|------------------------|------|
| 1      | B <sub>4</sub> C (1 μm)                 | Conversion              | Alpha, <sup>7</sup> Li | 2    |
| 2      | PE (2 cm) +B <sub>4</sub> C (1 $\mu$ m) | Moderation + Conversion | Alpha, <sup>7</sup> Li | 6    |
| 3      | PE (5 cm) +B <sub>4</sub> C (1 $\mu$ m) | Moderation + Conversion | Alpha, <sup>7</sup> Li | 18   |
| 4      | PE (8 cm) +B <sub>4</sub> C (1 $\mu$ m) | Moderation + Conversion | Alpha, <sup>7</sup> Li | 28   |
| 5      | PE (1 mm)                               | Conversion              | Protons                | 12   |
| 6      | PE (2 mm) + Al (1 mm)                   | Conversion              | Protons                | 18   |

# Response matrix of the spectrometer simulated with FLUKA

| Reg1 | B <sub>4</sub> C | Reg4 | $B_4C + 8 cm PE$ |
|------|------------------|------|------------------|
| Reg2 | $B_4C + 2 cm PE$ | Reg5 | PE               |
| Reg3 | $B_4C + 5 cm PE$ | Reg6 | PE+Al            |



# A new MPGD for neutron spectrometry Designed, constructed and tested

### Constructed at the INFN-LNF with F. Murtas

### Inside



# 4 6 3 6 5 1 2

### Outside

### The acquisition system

### 16 CARIOCA chips



2 FPGAs

### Labview-based program



A new MPGD for neutron spectrometry Designed, constructed and tested

<sup>241</sup>AmBe neutron spectrum at the CERN Calibration Laboratory







- Active area  $35 \times 21 \text{ cm}^2$
- 256 pads of  $22 \times 13 \text{ mm}^2$  each

| Reg1 | $B_4C$           | Reg4 | $B_4C + 8 cm PE$ |
|------|------------------|------|------------------|
| Reg2 | $B_4C + 2 cm PE$ | Reg5 | PE               |
| Reg3 | $B_4C + 5 cm PE$ | Reg6 | PE+Al            |



Solution spectra with MAXED and GRAVEL

10/12



Using the Default Spectrum (DS) and Response Function (RF) binning

# Future Improvements

The large polyethylene pieces (Reg3 & 4) need to be shielded from scattered radiation Neutron fluence

Simulation with FLUKA Region 2 irradiated with 1 eV neutrons Neutrons are scattered and detected in neighbouring regions

Shielding Regions with **3 mm flex boron** the neutron fluence in neighbouring regions decreases 10 times



## Conclusions

- A new MPGD for neutron spectrometry was designed, constructed and tested
- It is able to measure quite accurately neutron spectra up to ~50 MeV
- A single and short irradiation is required to obtain results
- Vulnerable to scattered radiation from surrounding material. Geometry improvements are investigated for shielding the device
- Its directional geometry can be used in cases where isotropic response is not adequate

### Photon signal elimination method



## Efficiency to photons ~10<sup>-7</sup> at 870 V

