

Pileup, simulations and test beams

Erik Fröjdh^{1,2}

- 1. Mid Sweden University
- 2. CERN

ARDENT WORKSHOP 2015 – Prague, CZ

Outline

- Summary of research activities
- List of publications
- Pileup in hybrid pixel detectors
- Simulations of the Dosepix frontend
- High flux measurements with Dosepix
 - Count rate linearity
 - Spectral response
- Conclusions

Research activities and conferences

An overview of since the last workshop

- Developing a read out software for Dosepix
- Dosepix characterization at the ANKA Synchrotron
 - Results presented at the Medipix meeting
 - Article ready for submission
- Short secondment in Prague
- Timepix3 beam time at LANSCE Los Alamos with IEAP/CTU
 - Results partially presented by B. Bergmann
- Invited talk at the IEEE NSS Conference in Seattle
 - Characterization of CZT sensors bonded to Medipix3RX
- Invited seminar at IRA in Lausanne
- Presentations at Medipix meetings
- Argon ion test beam at SPS
- Timepix3 presentation at the Spectral X-ray Imaging Workshop at CERN

List of publications

Peer reviewed

- E. Frojdh et al. "Timepix3: first measurements and characterization of a hybrid-pixel detector working in event driven mode". In: *Journal of Instrumentation* 10.01 (Jan. 2015), pp. C01039– C01039. DOI: 10.1088/1748-0221/10/01/ C01039.
- [2] S. George, C. Severino, E. Fröjdh, F. Murtas, and M. Silari. "Measurement of an accelerator based mixed field with a Timepix detector". In: *Journal of Instrumentation* 10.03 (Mar. 2015), P03005– P03005. DOI: 10.1088/1748-0221/10/03/ P03005.
- [3] E. N. Gimenez et al. "Medipix3RX: Characterizing the Medipix3 Redesign With Synchrotron Radiation". In: *IEEE Transactions on Nuclear Science* 62.3 (June 2015), pp. 1413–1421. DOI: 10.1109/ TNS.2015.2425227.
- [4] B. Norlin, S. Reza, D. Krapohl, E. Fröjdh, and G. Thungström. "Readout cross-talk for alphaparticle measurements in a pixelated sensor system". In: *Journal of Instrumentation* 10.05 (May 2015), pp. C05025–C05025. DOI: 10.1088/1748– 0221/10/05/C05025.
- [5] E. Frojdh et al. "Count rate linearity and spectral response of the Medipix3RX chip coupled to a 300µm silicon sensor under high flux conditions". In: *Journal of Instrumentation* 9.04 (Apr. 2014), pp. C04028-C04028. DOI: 10.1088 / 1748-0221/9/04/C04028.
- [6] M. D. Gaspari et al. "Design of the analog front-end for the Timepix3 and Smallpix hybrid pixel detectors in 130 nm CMOS technology". In: *Journal of Instrumentation* 9.01 (Jan. 2014), pp. C01037-C01037. DOI: 10.1088/1748-0221/ 9/01/C01037.

- [7] A. Schübel, D. Krapohl, E. Fröjdh, C. Fröjdh, and G. Thungström. "A Geant4 based framework for pixel detector simulation". In: *Journal of Instrumentation* 9.12 (Dec. 2014), pp. C12018–C12018.
 DOI: 10.1088/1748-0221/9/12/C12018.
- [8] R. Ballabriga et al. "The Medipix3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging". In: *Journal* of Instrumentation 8.02 (Feb. 2013), pp. C02016– C02016. DOI: 10.1088/1748-0221/8/02/ C02016.
- [9] C. Fröjdh, B. Norlin, and E. Fröjdh. "Spectral Xray imaging with single photon processing detectors". In: *Journal of Instrumentation* 8.02 (Feb. 2013), pp. C02010–C02010. DOI: 10.1088 / 1748-0221/8/02/C02010.
- 10] E. Frojdh et al. "Probing Defects in a Small Pixellated CdTe Sensor Using an Inclined Mono Energetic X-Ray Micro Beam". In: *IEEE Transactions* on Nuclear Science 60.4 (Aug. 2013), pp. 2864– 2869. DOI: 10.1109/TNS.2013.2257851.
- D. Krapohl et al. "Investigation of charge collection in a CdTe-Timepix detector". In: *Journal of Instrumentation* 8.05 (May 2013), pp. C05003-C05003. DOI: 10.1088/1748-0221/8/05/C05003.
- [12] E. Fröjdh et al. "Depth of interaction and bias voltage depenence of the spectral response in a pixellated CdTe detector operating in time-over-threshold mode subjected to monochromatic X-rays". In: *Journal of Instrumentation* 7.03 (Mar. 2012), pp. C03002–C03002. DOI: 10.1088 / 1748-0221/7/03/C03002.

- D. Maneuski et al. "Imaging and spectroscopic performance studies of pixellated CdTe Timepix detector". In: *Journal of Instrumentation* 7.01 (Jan. 2012), pp. C01038–C01038. DOI: 10.1088/1748– 0221/7/01/C01038.
- [14] S. Reza et al. "Smart dosimetry by pattern recognition using a single photon counting detector system in time over threshold mode". In: *Journal* of Instrumentation 7.01 (Jan. 2012), pp. C01027-C01027. DOI: 10.1088/1748-0221/7/01/ C01027.
- [15] A. Fröjdh, E. Fröjdh, G. Thungström, C. Fröjdh, and B. Norlin. "Processing and characterization of a MEDIPIX2-compatible silicon sensor with 220µm pixel size". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 633 (May 2011), S78-S80. DOI: 10. 1016/j.nima.2010.06.128.
- [16] E. Fröjdh, B. Norlin, G. Thungström, and C. Fröjdh. "X-ray absorption and charge transport in a pixellated CdTe detector with single photon processing readout". In: *Journal of Instrumentation* 6.02 (Feb. 2011), P02012–P02012. DOI: 10. 1088/1748-0221/6/02/P02012.
- [17] E. Fröjdh, A. Fröjdh, B. Norlin, and C. Fröjdh. "Spectral response of a silicon detector with 220μm pixel size bonded to MEDIPIX2". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 633 (May 2011), S125– S127. DOI: 10.1016/j.nima.2010.06.143.

Pulse Pileup in Hybrid Pixel Detectors

- Pileup when discussing accelerators (LHC) means several events in the same bunch crossing
 - The different events have to disentangled
- Pileup for hybrid pixel detectors is different and can be divided in two categories:
 - **Digital pileup**, the detector is not read out between events
 - Analog pileup, pulses from two or more particles overlap and are processed as a single pulse

Digital pileup

- The data from the first interaction is not read out in time and a second interaction is added to the first one
- Most common scenario for Timepix in TOT mode

Analogue pileup

- Pileup in the analogue front end.
- Several pulses are threated as one large pulse
- Wrong amplitude because of overlap either at the tail or during the undershoot
- Most common in Medipix3RX/Dosepix during high flux applications such as X-ray imaging or tube characterization

Dosepix

- 220 x 220 µm² pixels size
- 16 x 16 pixels
- 4 rows of pixels with 55 x 55µm² sensitive area
- Energy binning mode
 - 12 bit ToT measurement
 @100MHz
 - 16 digital thresholds for event-by-event energy binning
 - 16x16bit counters
- Photon counting mode (8 bits)
- Integral ToT (24 bits)

Dosepix

dpxctrl

- New read out software for Dosepix
- Python based
 - Linux and Windows
- High level interface
 - Data taking in PC, Binned TOT, Single hit TOT
 - Equalization
 - Calibration
- Access to low level functions
- Easy integration in measurement procedures
 - Script based or interactive
- Utilizes numpy data structures
- Compatible with DPSim fileformat
- Open source and available for Dosepix users
 - <u>https://bitbucket.org/erikfrojdh/dpxctrl</u>

Measurement Setup

- Dosepix detector with 300 um silicon sensor
- IBA Testboard + dpxctrl software
- Monochromatic photons 8.5 40 keV at the ANKA synchrotron in Karlsruhe
- Intensity controlled using aluminum filters
- Energy calibration
- Count rate linearity
 - Dead time fit
- Spectral response
- Simulations

Beam profile

Energy Calibration

TOT

Energy Resolution

	<u>lkrum</u>	<u>n 15</u>	<u>lkrum 60</u>	
Energy	keV	%	keV	%
8.5	1.43	16.8	2.17	25.5
10	1.66	16.6	2.17	21.7
15	2.40	16.0	2.35	15.7
20	2.81	14.0	2.91	14.6
25	2.90	11.6	3.17	12.7
30	-		-	
35	3.12	8.92	3.62	10.3
40	3.18	7.95	3.79	9.48

Mean single pixel energy resolution

Energy Response in Binned Mode

Pileup Simulations

- Dosepix circuit is simulated in Virtuoso Analog Design Environment (Winnie Wong)
- Square pulses (5 ns width) arriving randomly in time
- Using preamp output and measuring TOT applying the same data processing as for the measurement data

MID SWEDEN UNIVERSITY

Pileup Measurements at 40 keV

Threshold: 5.5 keV

Summary of Pileup Measurements and Simulations

		Measurement with Detector			Frontend Simulation	
Energy	IKRUM	au	I _{0.9}	I_{photon}	au	I _{0.9}
[keV]	[Code]	$\left[\ \mu s \ ight]$	$[Mcps/mm^2]$	$[Mcps/mm^2]$	$\left[\ \mu s \ ight]$	$[Mcps/mm^2]$
17	15	1.23	1.77	4.99	1.34	1.62
	60	0.50	4.35	12.3	0.82	2.65
	255	-	-	-	0.64	3.40
30	15	1.29	1.69	19.7	1.27	1.71
	60	0.53	4.11	47.8	0.89	2.45
	255	-	-	-	0.71	3.07
40	15	1.3	1.67	38.8	1.40	1.55
	60	0.61	3.57	83.0	0.93	2.34
	255	-	-	-	0.73	2.98

1.2 x 10⁷ counts/mm²/s

Conclusions

- The energy resolution of Dosepix have been measured to 3.18 keV at IKRUM 15 and 3.79keV at IKRUM 60 using monochromatic radiation
- The dead time for 40 keV photons with IKRUM 60 and a 5.5 keV threshold is 0.6 us
- Dosepix can process ~3.6 Mcps/mm² for 40 keV photons and 5.5 keV threshold. This corresponds to ~80M photons/mm²/s using a 300um sensor.
- Pulse pileup is a major issue for single photon processing hybrid pixel detectors working in high flux environments

Future work

- Improving the pileup simulations by feeding in pulses from geant4medipix
- Investigating the effect of pileup on image contrast and measured dose
- Investigate new pixel architectures and sensor configuration for increased high flux performance

ACKNOWLEDGEMENTS:

This research project has been partly supported by the Marie Curie Initial Training Network Fellowship of the European Community's Seventh Framework Programme under Grant Agreement PITN-GA-4 2011-289198-ARDENT".

