

Technical Presentation

Jayasimha V. Bagalkote (ESR 5) Seibersdorf Laboratories Supervisor : Dr. Peter Beck

4th Annual ARDENT Workshop 22 – 26 Jun 2015, Prague

Artists's impression of JUICE mission Courtesy: ESA

CONTENT

- 1. e²RAD energetic electrons radiation assessment study for JUICE mission
- 2. ECI European Components Initiative
 - Project Overview
 - Test candidates selected for testing
 - Results TID-Testing
 - Results SEGR-Testing
- 3. REDI Radiation Evaluation of Digital Isolators
 - Project Overview
 - Test candidates selected for testing
- 4. Summary and Conclusions

What is JUICE?

JUpiter ICy moons Explorer (JUICE) - ESA mission

Timeline:

- In 2022 launch
- In 2030 Jupiter, Ganymede, Callisto, Europa

Studies:

- Jupiter's atmosphere, magnetosphere, interaction with the 3 moons and lo
- Surfaces and interiors of the 3 moons, potential to host life

Artists's impression of JUICE mission Courtesy: ESA

e²RAD Project

e²⁻RAD: energetic electrons radiation assessment study for JUICE mission

Objectives: To investigate shieldingperformance of 2-layered Shielding set-ups with different Geometries and relative composition of High-Z and Low-Z materials.

- High-Z : Tantalum, Lead
- Low-Z material : Aluminum
- Major Dose contribution: trapped electrons
- Energy range: 5 MeV 50 MeV

Fig 2:Box-shielding configuration

Fig 3: Plane-shielding configuration

Jayasimha V. Bagalkote

e²RAD Project: Excerpt from Results

Figure : Comparison of experimental data and numerical data obtained with Monte Carlo codes FLUKA and GRAS. Y-axis shows the relative values (normalized to value for pure Aluminium shielding) of dose recorded in an Ionization chamber that is located directly behind a plane shielding. X-axis shows percentage of Lead content.

ECI Objectives

- To select and test European Commercial Off The Shelf (COTS) EEE components regarding Radiation Hardness Assurance according ESA standards
- To assess whether the tested components pass test requirements specified for space

ECI Candidates for Testing

Part	Description	Manufacturer	RHA-Test	
STS2D6E6	p-channel Power MosFET,	STM	TID	
51552020	V _{DS} : -60 V, I _D : -3 A	5110	SEGR	so-s
SPD04P10P G	SIPMOS	Infineon	TID	
SPD04P10P G	V _{DS} : -100 V, I _D : -4 A	mineon	SEGR	3
TS331LT	Comparator	STM	TID	
TS3011ILT	Comparator	STM	TID	SOT 33 6/5 70 5
AS1976-T	Comparator	AMS	TID	333
LM2904DT	Op-Amp	STM	TID	
		<u>O TWI</u>		

ECI TID Testing: Experiment conditions

- Co-60 TID radiation facility, Seibersdorf EN/ISO IEC 17025 Accredited Test Lab
- Sample size: 5 biased, 5 unbiased, 2 control devices
- Test standard: ESA/SSC Basic Specification 22900
- Annealing: 24 hours room temperature, 168 hours 100°C

Electrical Parameter	Symbol	Unit
Drain-source Breakdown Voltage	V _{BR(DSS)}	V
Gate Threshold Voltage	V_{GS}	V
Static Drain-Source On-Resistance	R _{DS(on)}	Ω
Inverse Diode Forward Voltage	V_{SD}	V
Reverse Gate-Source Leak Current	I _{GSS(R)}	А
Forward Gate-Source Leak Current	I _{GSS(F)}	А
Forward Transconductance*	g _{fs}	S

Co-60 TID Radiation Exposure Facility EN/ISO IEC 17045 Test Lab, Seibersdorf

ECI TID Test Circuit (biased, unbiased), PCB Set-Up

SPD04P10G

Biased

V_{DD}: 50V V_{in}: -20V Resistors: R1: 2kΩ, R2: 10 kΩ

Unbiased

All terminals grounded; pin to ground resistance typically < 4 Ω

STS3PF6

PCB: biased / unbiased TID test (SPD04P10G)

Co-60 Radiation Exposure Seibersdorf

PCB: biased / unbiased TID test (STS3PF6)

ECI TID Test Results: SPD04P10G

BIASED

UNBIASED

UNBIASED

ECI TID Test Results: STS3PF6

BIASED

Jayasimha V. Bagalkote

ECI TID Test Summary

			SPD04	4P10G	STS3PF6			
Parameters	Symbol	Unit	Biased	Unbiased	Biased	Unbiased		
Drain-source Breakdown Voltage	V _{BR(DSS)}	V	100 krad	100 krad	100 krad	100 krad		
Gate Threshold Voltage	V_{GS}	V	15 krad	100 krad	40 krad	100 krad		
Static Drain-Source On-Resistance	$R_{DS(on)}$	Ω	40 krad	100 krad	5 krad	5 krad		
Inverse Diode Forward Voltage	V_{SD}	V	10 krad	5 krad	10 krad	15 krad		
Reverse Gate-Source Leak Current	I _{GSS(R)}	А	100 krad	100 krad	100 krad	100 krad		
Forward Gate-Source Leak Current	I _{GSS(F)}	А	100 krad	100 krad	100 krad	100 krad		
Forward Transconductance	g _{fs}	S	40 krad	100 krad				

SEGR Test Plan for STS3P6F6 and SPD04P10P

Jayasimha V. Bagalkote

SEGR Test Set-Up at RADEF

Test board mounted inside RADEF's vacuum chamber

Keithley 2612 dual source meter

Sample Size	27 devices per part type, 3 sample devices for each exposure sequence										
Parameters	V_{gs}: 0, 5, 10 V	V _{DS} : −50 V, …, − 100 V (SDP04P10P); −30 V,…, − 60 V (STS3P6F6)									
LET (MeV cm ² mg ⁻¹)	18.5	32.1	60								
Heavy ions, energy	Fe / 523 MeV	Kr / 768 MeV	Xe / 1.2 GeV								
Average Flux (cm ⁻² s ⁻¹)	1.09·10 ⁴	1.18·10 ⁴	7.27·10 ³								
Fluence (cm ⁻²)	3.10⁵										

Jayasimha V. Bagalkote

SEGR Results: Safe Operating Area – SOA (SF=1)

	SPD04P10P G										STS3P6F6										
LET (MeV/mg/cm²)	18.5 32.1				60			18.5			32.1			60							
	V _{GS} (V))	V _{GS} (V)		V _{GS} (V)			V _{GS} (V)			V _{GS} (V)			V _{GS} (V)						
V _{DS} (V)	0	5	10	0	5	10	0	5	10	15	0	5	10	0	5	10	0	5	10	15	20
-100																					
-90																					
-80																					
-70																					
-60																					
-55																					
-50																					
-40																					
-30																					
-25																					
-20																					
-15																					
-10																					

CONTENT

- 1. Project Overview ECI-SL-01 Testing of Commercial Components
- 2. ECI-SL-01 candidates selected for testing
- 3. Results TID-Testing
- 4. Results SEGR-Testing
- 5. Project Overview REDI Radiation Evaluation of Digital Isolators
- 6. REDI candidates selected for testing

Overview: REDI- Radiation Evaluation of Digital Isolators

Objectives

- Identify currently available commercial digital isolators for applications in space missions, specifically the JUICE mission, as replacement for optocouplers
- Perform detailed radiation evaluation (TID and SEE) of the selected digital isolators.

De-capsulated digital isolator Courtesy: Silicon Labs

Digital Isolators

- CMOS technology
- Magnetic or Capacitive Coupling
- Polyimide or SiO₂ insulation

Transformer with polyimide insulation

Capacitor with SiO2 insulation

Courtesy: Analog Devices

REDI Candidates Selected for Testing

Manufacturer	Texas Instruments	Texas Instruments	Silicon Labs	Analog Devices	Analog Devices	Maxim Integrated
Investigated Part	ISO15DW	ISO7220MDR	SI8261ACC-C-IP	ADUM1201ARZ	ADUM1100URZ	MAX14850ASE+
Technology	capacitive- coupling bulk CMOS	capacitive- coupling bulk CMOS	capacitive- coupling bulk CMOS	monolithic transformer high speed bulk CMOS	monolithic transformer high speed bulk CMOS	capacitive- coupling BiCMOS
Package Type	SOIC	SOIC	DIP	SOIC	SOIC-8	SOIC
Min Voltage / V	3,15	3,0	5,0	2,7	3,0	3,0
Max Voltage / V	3,6	5,5	30,0	5,5	5,5	5,5
Prop Delay / ns	340	16	40	150	11	7

REDI Test Plan for SL

TID-Testing

- Source: Co-60, electrons (JUICE mission)
- Parameter: Supply currents of i/p and o/p; isolation performance; Input Current; Output voltages at High and Low logic

SEE-Testing

- SET and SEL, Single Event Dielectric Isolation Rapture (SEDIR)
- SEE testing for LETs between 4 55 MeV/mg/cm² (e.g. Ne, Si, Ar, Kr and Xe)

Jayasimha V. Bagalkote

Summary and Conclusions

ECI – Power MOSFETS: SPD04P10P, STS3PF6

- two Power MosFET's
- Tests according ESA and MIL standards
 - TID (biased and unbiased) maximum dose D(Si) = 1kGy (100 krad);
 - SEGR tests performed for LET: 18.5 60 MeV cm² mg⁻¹

REDI – Radiation Evaluation of Digital Isolators

- 3 candidates,
- different manufacturers and technologies
- Experiments for TID in progress
- Test plans for SEE/SEL and SEDIR are under preparation

		SPD04P10P G											STS3P6F6									
LET (MeV/mg/cm²)		18.5			32.1			60				18.5			32.1		60					
		V _{as} (V)		V _{os} (V)			V _{os} (V)			Vas (V)			V _{as} (V)			V _{os} (V)					
V _{DS} (V)	0	5	10	0	5	10	0	5	10	15	0	5	10	0	5	10	0	5	10	15	20	
-100																						
-90																						
-80																						
-70																						
-60																						
-55																						
-50																						
-40																						
-30																						
-25																						
-20																						
-15																						
-10																						

Secondments

- Business and Administration Secondment, IBA Dosimetry
 - 2-week training period (16 27 February 2015), Supervision of Mr. Salih Arican, Senior Product Manager.
 - Business-domain: Radiotherapy solutions, emphasis on Daily Quality Assurance activities.
 - Competition analyses for Daily Quality Assurance solutions, Market assessment, Financial calculations for profitability/viability of Product for a Positioning paper

• Scientific Secondment, R2E Group (Radiation to Electronics) CERN

- Familiarization with Single Event Transient and Single Event Latchup experiments. Supervision: Dr. Markus Brugger, Mr. Salvatore Danzeca
- Digital Isolator Experiments...
- Outcome- Test plan draft for SET and SEL experiments.

Acknowledgements

- **ARDENT**, Marie Curie Early Initial Training Network Fellowship of the European Community's Seventh Framework Programme under contract number (PITN-GA-2011-289198-ARDENT)
- Radiation Hardness Assurance and Space Weather Group at Seibersdorf Laboratories: Dr. Michael Wind, DI. Marcin Latocha and Dr. Peter Beck for guidance in all activities.
- Dr. Markus Stock and Dr. Georg Dietmar for support in experiments at AKH, Vienna.

Work was carried out in projects contracted by **ESA** under contracts: e²RAD: ESA – C# 4000108163/13/NL/SC/fk ECI: ESA C# 4000108163/13/NL/SC/fk REDI: ESA C# 4000112480/14/NL/SW.

Thank you for your attention!

