

TRAINING COURSE ON NEUTRON DOSIMETRY, RADIOBIOLOGY AND INSTRUMENTATION: **Neutron Sources**

Stefano AGOSTEO, POLIMI

Wed. 24/06/2015, 9:00 - 10:00 am

NEUTRON SOURCES

- Spontaneous fission;
- Isotopic sources based on (α,n) and (γ,n) reactions;
- Accelerator-based;
- Reactor-based (fission);
- Photoneutrons.

SPONTANEOUS FISSION: ²⁵²Cf

- ²⁵²Cf spontaneous fission.
- T_{1/2} = 2.65 y;
- Mean number of neutrons per fission: 3.8;
- α-decay is predominant (32 times more than spontaneous fission);
- Neutron yield: 0.116 s⁻¹ Bq⁻¹ (activity sf+ α) \rightarrow 2.30×10⁶ s⁻¹ µg⁻¹;
- Generated from plutonium or curium neutron irradiation (Oak Ridge National Labs and Research Institute of Atomic Research, Russia);
- Average annual production: about 0.5 g (0.27 g in 2003);
- Very small sources (a few µg) → point source approximation @ low distance.

SPONTANEOUS FISSION: ²⁵²Cf

• Fission spectrum (bare source):

$$\frac{dN}{dE} = \sqrt{\mathsf{E}} \times e^{-E/T}$$

• where T = 1.3 MeV for ²⁵²Cf spontaneous fission.

From G. Knoll, Radfiation Detection and Measurements, Wiley

Figure 4. Equilethargic representation of the neutron
 spectrum from a ²⁵² Cf spontaneous fission source (ISO
 8529-1). The area subtended by the curve is proportional to the neutron fluence

SPONTANEOUS FISSION: ²⁵²Cf

 ISO standard: ²⁵²Cf neutrons moderated in a D₂O sphere 30 cm in diameter (stainless steel container+ Cd).

FIG. 4-1. Bare and moderated Cf-252 spectra. From IAEA Tech. Report Series n. 318

Fig. 1 Comparison of the measured scatter-free neutron spectra for D_2O -Cf source between KAERI and JAEA

From Kowatari et al, J. Nucl. Sci. Tech. 5 (2008) 217-220.

(α,n) ISOTOPIC SOURCES

- Mixture of an α-emitter and a target material;
- The maximum neutron yield is obtained with beryllium as a target:
 - $\alpha + {}^9\text{Be} \rightarrow {}^{12}\text{C} + n$

Q-value = +5.71 MeV

From G. Knoll, Radfiation Detection and Measurements, Wiley

⁹Be(α,n) ISOTOPIC SOURCES

				Neutron yield		
Source	Half-life	Eα (MeV)	Calculated (s ⁻¹ Bq ⁻¹)	Experimental (s ⁻¹ Bq ⁻¹)	Calculated (s ⁻¹ Ci ⁻¹)	Gamma dose @ 1 m for 10 ⁶ neutrons per second (mGy)
²³⁹ Pu-Be	24000 y	5.14	6.5×10 ⁻⁵	5.7×10 ⁻⁵	2.41×10 ⁶	<0.01
²¹⁰ Po-Be	138 d	5.30	7.3×10 ⁻⁵	6.9×10 ⁻⁵	2.55×10 ⁶	<0.001
²³⁸ Pu-Be	87.4 y	5.48	7.6×10 ⁻⁵	-	2.92×10 ⁶	<0.01
²⁴¹ Am-Be	433 y	5.48	8.2×10 ⁻⁵	7.0×10 ⁻⁵	3.03×10 ⁶	0.01
²⁴⁴ Cm-Be	18 y	5.79	1.0×10 ⁻⁴	-	3.70×10 ⁶	<0.01
²⁴² Cm-Be	162 d	6.10	1.18×10 ⁻⁴	1.06×10 ⁻⁴		<0.01
²²⁶ Ra-Be + daughters	1602 y	Multiple	5.02×10 ⁻⁴	-	1.86×10 ⁷	0.5
²²⁷ Ac-Be + daughters	21.6 y	Multiple	7.02×10 ⁻⁴	-	2.59×10 ⁷	0.07

⁹Be(α,n) ISOTOPIC SOURCES: spectra

- The energy continuum below 3.5 MeV is due to:
 - broad levels in ¹²C above 9.6 MeV;
 - mainly to ⁹Be(α,α')⁹Be*→⁸Be+n involving levels @ 1.67, 2.43 and 3.06 MeV of ⁹Be.

⁹Be(α,n) ISOTOPIC SOURCES: spectra

From G. Knoll, Radfiation Detection and Measurements, Wiley

Figure 3. Equilethargic representation of the neutron spectrum from a ²⁴¹Am-Be(α ,n) source (ISO 8529-1). The area subtended by the curve is proportional to the neutron fluence From CONRAD

⁹Be(α,n) ISOTOPIC SOURCES: spectra

From IAEA-TECDOC-465 (1988)

- The following issues can modify the neutron spectrum and yield from an ideal distribution:
 - elastic and inelastic neutron scattering in the source;
 - neutron-induced fission within the αemitter;
 - ⁹Be(n,2n) reaction;
 - ${}^{10}\text{Be}(\gamma,n)$ reaction;
 - α-particle slowing-down inside the source mixture;
 - daughter equilibrium of α-emitters.

ALTERNATIVE (α, n) ISOTOPIC SOURCES

Target	Reaction	Q-value (MeV)	Neutron yield (s ⁻¹ Bq ⁻¹)	° [Λ Λ
Natural B	¹⁰ Β(α,n)	+1.07	1.3×10 ⁻⁵	
	¹¹ B(α,n)	+0.158	-	1
F	¹⁹ F(α,n)	-1.93	4.1×10 ⁻⁵	
¹³ C (isotopically separated)	¹³ C(α,n)	+2.2	1.1×10 ⁻⁵	
Natural Li	⁷ Li(α,n)	-2.79	2.6×10 ⁻⁶	
Be	⁹ Be(α,n)	+5.71	7.0×10 ⁻⁵	
	·			$= \begin{pmatrix} & & & & \\ & & & & \\ & & & & \\ & & & &$

Neutron energy (MeV) From G. Knoll, Radfiation Detection and Measurements, Wiley

(γ,n) ISOTOPIC SOURCES

- The following reactions are of practical significance for neutron producton:
 - $\gamma + {}^{9}\text{Be} \rightarrow {}^{8}\text{Be} + n$

Q-value = -1.666 MeV;

• $\gamma + {}^{2}H \rightarrow {}^{1}H + n$

Q-value = -2.226 MeV.

• The corresponding neutron energy is given by:

$$E_n(\theta) = \frac{M(E_{\gamma} + Q)}{m + M} + \frac{E_{\gamma}\sqrt{(2mM)(m + M)(E_{\gamma} + Q)}}{(m + M)^2}\cos\theta$$

- where:
 - θ is the angle between the gamma and the neutron directions;
 - E_{γ} is the photon energy ($E_{\gamma} << mc^2$);
 - M is the target nucleus mass ×c^{2;}
 - m is the neutron mass $\times c^2$.
- For monoenergetic photons the neutron energy spread by varying θ between 0° and π is only a few percent. Therefore neutrons are nearly monoenergetic.

(y,n) ISOTOPIC SOURCES

Source	T1/2	Eγ	Neutron yield	Neutron energy
		(MeV)	(s ⁻¹ Bq ⁻¹)	(keV)
²⁴ Na-Be	15.0 h	2.7541	3.4x10⁻⁵	967
²⁴ Na-D	15.0 h	2.7541	3.3x10⁻⁵	263
⁷² Ga-Be	14.1 h	1.8611		174
		2.2016	6.5x10⁻ ⁶	476
		2.5077	(from all gammas)	748
¹²⁴ Sb-Be	60.2 d	1.6910	2.1x10⁻⁵	23

From IAEA-TECDOC-465 (1988)

From G. Knoll, Radfiation Detection and Measurements, Wiley

- Main reactions: •
 - ⁴⁵Sc(p,n)⁴⁵Ti Q=-2.844 MeV E_{th}=2.908 MeV
 - ⁷Li(p,n)⁷Be

 - ³H(d,n)⁴He •

Q=-1.644 MeV E_{th}=1.879 MeV

- ²H(d,n)³He Q=+3.269 MeV
 - Q=+17.589 MeV
- For threshold reactions (approximation for $M_2c^2 >> Q$):

$$E_{th} = -Q\left(\frac{M_3 + M_4}{M_3 + M_4 - M_1}\right) \cong -Q\frac{M_1 + M_2}{M_2}$$

$$M_3$$

$$M_1$$

I4

⁷Li(p,n)

•

- thin targets (usually LiF deposited on C);
- ⁷Li(p,n)⁷Be* opens at 2.37 MeV (⁷Be excitation level @ 0.43 MeV).
- for a given proton energy, the neutron energy is angular dependent;
- quasi-monoenergetic neutrons up to projectile energies of a few MeV;
- for higher energies other (p,xn) channels open and a broad continuum appears at low energies .

- ²H(d,n)
 - Gas target;
 - 2.45 MeV neutrons near the Coulomb barrier energy .
- ³H(d,n)
 - tritium adsorbed on titanium
 - 14.08 MeV neutrons near the Coulomb barrier energy;

- Example: monoenergetic neutrons @ PTB, ISO beams
 - ⁴⁵Sc(p,n)⁴⁵Ti: 24.5 keV;
 - ⁷Li(p,n)⁷Be: 144, 250, 565 keV;
 - T(p,n)³He: 1.2, 2.5 MeV;
 - D(d,n)³He: 5.0, 8.0 MeV;
 - T(d,n)⁴He: 14.8, 19.0 MeV.
 - Free-scattering room.

ACCELERATOR-BASED SOURCES: thick targets

- Continuous spectra and intense fields.
 - the beam power (W=ΔV×I) is deposited in the target which has to be cooled;
 - liquid targets may be employed (e.g. liquid Li targets, melting temperature 180.54 °C);
 - alternatively materials with a higher melting temperature should be employed (e.g. beryllium, melting temperature 1287 °C).

ACCELERATOR-BASED SOURCES: spallation

	Table 2.2 Past, existing, and future spallation source and their respective parameters								
	United	United	United						
Country	States	States	States	U.K.	Switzerland	China	Europe	Japan	Japan
Neutron source	IPNS	LANSCE	SNS	ISIS	SINQ	CSNS	ESS	KENS	JSNS
Organization	Argonne National Laboratory	Los Alamos National Laboratory	Oak Ridge National Laboratory	Rutherford Appleton Laboratory	Paul Scherrer Institute	Institute of High Energy Physics	Undecided	High Energy Accelerator Research Organization	Japan Atomic Energy Agency
Proton energy (MeV)/ Current (µA)	450/15	800/70	1000/1400	800/200	590/1500	1600	1333/7500	500/9	3000/333
Proton beam power	7 kW	56 kW	1.4 MW	160 kW	1 MW	100 kW	5 MW	4.5 kW	1 MW
Repetition rate (Hz)	30	20	60	50/10 (2 targets)	Continuous	25	16 (long pulse)	20	25
Target material	Depleted Uranium	Tungsten	Mercury	Tantalum	Zircaloy	Tungsten	Mercury	Tungsten	Mercury
Moderator	S-CH ₄ /L- CH ₄	$L\text{-}H_2/H_2O$	$L\text{-}H_2/H_2O$	$\begin{array}{c} L\text{-}H_2/L\text{-}CH_4/\\ H_2O \end{array}$	$L\text{-}D_2/D_2O$	H ₂ OL- CH ₄ L- H ₂	L-H ₂	$S-CH_4/H_2O$	L-H ₂
Number of instruments	12	7	24 (beam ports)	22 (TS1) 7 (TS2)	15		20 (beam ports)	15	23 (beam ports)
Existing neutron imaging instrument					NEUTRA [30] and ICON [31]				
Facility operating since or planned to operate in	1981 (closed 2008)	1983	2006	1985 (TS1) 2008 (TS2)	1996	2014	Under planning	1980 (closed 2005)	2008

IPNS: Intense Pulsed Neutron Source [32]; LANSCE: Los Alamos Neutron Science Center [33]; SNS: Spallation Neutron Source [8, 9]; ISIS: [34, 35]; SINQ: Swiss Spallation Neutron Source [36, 37]; CSNS: Chinese Spallation Neutron Source [10, 11]; ESS: European Spallation Source [38, 39]; KENS: Koh-Energy-ken Neutron Source [40, 41]; JSNS: Japanese Spallation Neutron Source [8, 9]. Consult the websites for these facilities to obtain additional information and current details.

ACCELERATOR-BASED SOURCES: CERF @ CERN

Neutron spectral fluence outside a 80 cm thick concrete shield and a 40 cm thick iron shield

ACCELERATOR-BASED SOURCES: thick targets

Reaction	Example	Neutron yield		
d-t	400 keV deuterons on T (adsorbed on Ti)	4×10 ⁻⁵ neutrons per deuteron		
(d,n)	35 MeV deuterons on liquid Li	2.5×10 ⁻⁵ neutrons per deuteron		
Photoneutrons (bremsstrahlung X- rays)	100 MeV electrons on ²³⁸ U	5×10 ⁻² neutrons per electron		
Spallation	800 MeV protons on ²³⁸ U	30 neutrons per proton		

NEUTRON GENERATORS

- Based on the D-D and on the D-T reaction.
 - Beam + target;
 - Plasma;
 - D-D neutron yield up to about 10⁸ s⁻¹;
 - D-T neutron yield up to about 10¹⁰ s⁻¹.
 - Applications:
 - NAA and PGNAA;
 - homeland security;
 - Illicit material and explosive detection;
 - land mine detection;
 - cargo screening.

Gizmag - the world smallest neutron generator, www.gizmag.com

Neutron Energy Spectrum for Research Reactors

Neutron energy

1011

1010

RESEARCH REACTOR-BASED SOURCES

- Neutron from fission; .
 - 235 U+n \rightarrow X+Y + 2.47 neutrons (mean number)
- The fission spectrum is modified by moderators/filters; ٠
- Watt spectrum with T = 1 MeV for ²³⁵U; ٠

Red U-235, Blue Pu-239

RESEARCH REACTOR-BASED SOURCES

- The TAPIRO reactor (ENEA Rome).
 - Fast reactor;
 - Thermal power 5 kW;
 - Cylindrical core (10.87 cm and 12.58 cm in height and diameter) ²³⁵U enriched (93.5%);
 - 22.2 kg of U contained in the reactor core;
 - Copper reflector

RESEARCH REACTOR-BASED SOURCES

The TRIGA reactor.

- Pool reactor moderated with light water;
- Thermal power 250 kW (LENA, Pavia);
- Intrinsic safe;
- Fuel/moderator: matrix of U and ZrH₂;
- ZrH₂ shows a tetrahedron structure and behaves as an harmonic oscillator with discrete energy levels (N+3/2)hv (3/2hv=0.13 eV);
- The ZrH₂ moderating properties are inhibited below 0.13 eV (neutron thermalization is given by the light-water moderator;
- the density of ZrH₂ excited levels increases with temperature leading to an increase of neutron energy and a decrease of fission probability;
- Therefore reactivity (and power) decreases with temperature.

REACTOR-BASED INTENSE SOURCES

	Table 2.1 Existing medium- and high-flux reactor sources and their respective parameters									
Country	United States	United States	Canada	France	France	Germany	Germany	Australia	Korea	Japan
Neutron source	HFIR	NBSR	NRU	HFR	ORPHEE	BENSC	FRM-II	OPAL	HANARO	JRR-3 M
Organization	Oak Ridge National Laboratory	National Institute of Standards and Technology	Atomic Energy of Canada Limited	Institut Laue- Langevin	Laboratoire Léon Brillouin	Helmholtz- Zentrum Berlin	Technische Universitat Munchen	Australian Nuclear Science and Technology Organization	Korea Atomic Energy Research Institute	Japan Atomic Energy Agency
Power (MW)	85	20	120	58	14	10	20	20	24 (present) 30 (designed)	20
$Flux (n \cdot cm^{-2}$ $\cdot s^{-1})$	1.5×10 ¹⁵	3×10 ¹⁴	3×10^{14}	1.5×10 ¹⁵	3×10^{14}	2×10 ¹⁴	8×10 ¹⁴	3×10 ¹⁴	2×10 ¹⁴	3×10 ¹⁴
Number of cold/hot sources	1/0	1/0	0/0	2/1	1/1	1/0	1/1	1/0	1(planned)/0	1/0
Number of instruments	9(present) + 6 (planned by 2012)	24	5	26	22	22	20 (present) + 10 (under construction)	6	6	24
Existing neutron imaging instrument		BT-2 [14]			[15]	CONRAD [16]	ANTARES [17]		NR-port [18]	TNRF [19] And TNRF-2 [20]
Facility operating since	1967	1970	1957	1972 (refurbished 1993)	1980	1973	2004	2006	1997	1990

HFIR: High-Flux Isotope Reactor [21]; NBSR: National Bureau of Standards Reactor [22]; NRU: National Research Universal Reactor, Chalk River, Canada [23]; HFR: High-Flux Reactor at ILL [1, 2]; ORPHEE: reactor at LLB [24]; BENSC: Berlin Neutron Scattering Centre [25]; FRM-II: Forschungsneutronenquelle Heinz Maier-Leibnitz [5]; OPAL: Open Pool Australian Light-water Reactor [6]; HANARO: High-flux Advanced Application Reactor [4]; JRR-3 M: Japan Research Reactor No. 3 Modified [3]. Consult the web sites for these facilities to obtain additional information and current details. A number of smaller research reactors, primarily at universities, are not listed here.

٠

٠

PHOTONEUTRONS

- Photonucleon emission occurs through an energy transfer of the photon electric field to the nucleus;
- This energy transfer causes a nucleus oscillation of a spherical system composed by protons opposing to another spherical system composed by neutrons;
- Threshold reactions: for photoneutrons the threshold energy is the binding energy of the less bound neutron.

T(y.2.)

Photon Energy (MeV)

30

(y. .)

10 15 20 25

GRAPHS 1-174A. Photoneutron Cross Sections See page 207 for Explanation of Graphs

PHOTONEUTRON YIELD

For an electron beam of energy E impinging on a semi-infinite target (500<E<1000 MeV):

 $Y(s^{-1}kW^{-1}) = 1.21 \times 10^{11}Z^{0.66}$

where Z is the atomic number of the bremsstrahlung target

28

٠

PHOTONEUTRON SPECTRUM

Direct + statistical component.

$$\frac{dN}{dT} = \frac{E}{T^2} e^{-E/T}$$

• where T is the nuclear temperature.

Photoneutron spectral fluence @ 40 cm from the Isocentre of a 15 MV linac (measured with BSS)

PHOTONEUTRON YIELD FROM MEDICAL e⁻ LINACS

Accelerator	Photoneutron yield (forward) per prescribed X ray dose (Gy ⁻¹ sr ⁻¹)
15 MV Varian Clinac DHX-HP	8.43 ×10 ¹⁰
CGR Saturno 43 (15 MV)	6.0x10 ¹⁰
18 MV Saturne 43	1.19×10 ¹¹
Varian Clinac 18C (18 MV)	2.16x10 ¹¹
CGR Saturno 43 (18 MV)	1.6x10 ¹¹
CGR Saturno 43 (25 MV)	3.5x10 ¹¹

PHOTONEUTRON DOSE FROM MEDICAL e⁻ LINACS

Author	Accelerator	Voltage	Distance from isocentre	Dose eq. (mSv Gy ⁻¹)	Detector
This work	Saturne 43	18 MV	50 cm	2.53 (H*(10))	Bonner spheres
This work	Saturne 43	18 MV	100 cm	1.76 (H*(10))	Bonner spheres
LaRiviere (Med. Phys. 12(6) (1985) 806-809)	Clinac 2500	24 MV	100 cm	1.4	Moderated activation
d'Errico et al. (Health. Phys. 80 (2001) 4-11)	Siemens KD2	10 MV	1 cm	1.4	SDD
d'Errico et al.	Siemens KD2	15 MV	1 cm	1.9	SDD
d'Errico et al.	Siemens KD2	18 MV	1 cm	5.5	SDD

PHOTONEUTRON DOSE FROM MEDICAL e⁻ LINACS

Author	Accelerator	Voltage	Distance from the isocentre	Dose eq. (mSv Gy ⁻¹)	Detector
Tosi et al. (Med. Phys. 18(1) (1991) 54-60)	Saturne 43	15 MV	5 cm	1.5 (H*(10))	Moderated activation
Tosi et al.	Saturne 43	15 MV	50 cm	0.6 (H*(10))	Moderated activation
Tosi et al.	Saturno II	21 MV	40 cm	1.8 (H*(10))	Moderated activation
Tosi et al.	Scanditronix MM22	21 MV	25 cm	2.6 (H*(10))	Moderated activation
Tosi et al.	Saturne 43	25 MV	5 cm	7.2 (H*(10))	Moderated activation
Tosi et al.	Saturne 43	25 MV	50 cm	2.6 (H*(10))	Moderated activation

Additional Slides

Lethargy plots

Conservative in terms of area for semi-logarithmic plots

$$\int_{E_1}^{E_2} f(E) dE = \int_{E_1}^{E_2} Ef(E) dE / E = \int_{E_1}^{E_2} Ef(E) d(\ln E) = \ln 10 \int_{E_1}^{E_2} Ef(E) d(\log E)$$

• Therefore:

$$f(E)dE = Ef(E)d(\ln E)$$
 and : $Ef(E) = \frac{f(E)dE}{d(\ln E)}$

• Histogram:

٠

$$E_i f_i(E) = \frac{f_i(E) \times (E_{i+1} - E_i)}{\ln E_{i+1} - \ln E_i} = \frac{f_i(E)\Delta E}{\ln(E_{i+1}/E_i)}$$

Lethargy (definition):

$$u = \ln \frac{E_0}{E} = \ln E_0 - \ln E$$
$$du = -\frac{dE}{E}$$
$$F(u)du = -F(E)dE$$
$$F(u) = EF(E)$$

PARTICLE FLUENCE: COSINE-WEIGHTED BOUNDARY CROSSING

The spectral distribution of particle radiance is defined as:

$$p_{E} = \frac{d^{4}N}{da \, d\Omega \, dE \, dt} = v \, r(\vec{r}, \Omega, E)$$

- ✓ v=particle velocity;
- \checkmark n=particle density (number of particles N per unit volume).
- The particle fluence averaged over a region of volume V can be estimated as:

$$\Phi = \iint_{V,\Omega,E} \iint_{T} v n(\vec{r},\Omega,E) dt dE d\Omega \frac{dV}{V} = \frac{\int \int nv dt dV}{V} = \frac{\int nds dV}{V} = \frac{T_{\ell}}{V}$$

- ✓ nds is a "track-length density";
- \checkmark T_l sum of track lengths.
- The surface fluence at a boundary crossing is, for one particle of weight w:

$$\Phi_{s} = \lim_{\delta \to 0} w \frac{T_{\ell}}{V} = w \frac{\delta/|\cos \theta|}{S\delta} = \frac{w}{S|\cos \theta|}$$

$$\delta \int T_{\ell} \int Infinitely thin region of volume S\delta$$