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THE ABSORBED DOSE

• Energy imparted ε:

dm

d
D




 QRR outin

• R is radiant energy, Q is the change of the rest mass energy of a nucleus.

• Unit joule (J)

• Absorbed dose D:

• Unit gray (Gy)

Rin

Rout
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THE KERMA

• where dEtr is the sum of initial kinetic energies of all the charged ionizing particles 
liberated by uncharged ionizing particles in a material of mass dm (ICRU33);

• Unit: gray (Gy)

dm

dE
K tr

Kerma
Dose

Energy is deposited locally at the  interaction point:

no secondary particle transport!
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PARTICLE FLUENCE

• The spectral distribution of particle radiance is defined as:

)E,,r(v n
dt dE d da

Nd
p

4

E







 v=particle velocity;

 n=particle density (number of particles N per unit volume).

• The particle fluence averaged over a region of volume V can be estimated as:

V
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 nds  is a “track-length density”;

 Tℓ sum of track lengths.

• The surface fluence at a boundary crossing is, for one particle of weight w:

θcosS

w
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w
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PARTICLE FLUENCE

• The reaction rate is defined as:

  dENR EETOT 

• the longest Tl is the 

higher the particle 

contribution to the 

fluence is, 

• since the particle comes 

across a higher number 

of nuclei along its path 

inside the target.

• Cross section is defined for an infinitely thin target

Tl
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RP QUANTITIES – ICRP 26

• ICRP 26 (1997) accounted for the different qualities of ionizing 

radiation through the quality factor Q;

• The dose equivalent H was defined as:

DQNH 
 D is the absorbed dose;

 N included any factor which could modify the risk from radiation 

dose.

• ICRP 26 did not specify any factor N and the dose equivalent was later 

changed to (e.g. ICRU 51):

QDH 
• The unit of dose equivalent is the sievert (Sv) (1 Sv = 1 J kg-1)
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QUALITY FACTOR

• A dependence of Q on LET (L) was given by ICRP;

• The quality factor Q at a point in tissue is:


L

LdLDLQ
D

Q )(
1

• ICRP 60 (1991) specified the following Q(L) relation in water (overkilling effect 

accounted for):
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QUALITY FACTOR

• When the D(L) relation cannot be assessed,       were recommended as 

the ratio of the maximum value of H in depth in tissue and D at the 

corresponding maximum depth.

Q

Radiation

X, , electrons 1

Neutrons, protons, single charged particles 

with mass > 1 amu

10

Alphas, multiple charged particles 20

Q
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QUANTITIES BASED ON THE DOSE EQUIVALENT

 Dose equivalent rate:

 Units: J kg-1 s-1;  special unit: Sv s-1;

dt

dH
H 

 Mean absorbed dose in a specified tissue or organ:

 mT mass of the organ or tissue;

 D absorbed dose in the mass element dm



TmT

T Ddm
m

D
1

 Mean quality factor:

 Q quality factor in the mass element dm

  

TT m L

L

TTmTT

T dLdmDLQ
Dm

QDdm
Dm

Q )(
11
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QUANTITIES BASED ON THE DOSE EQUIVALENT

 Effective dose equivalent :

 wT tissue weighting factors









T

T

T

TTTE

w

QDwH

1

ICRP 103
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OPERATIONAL QUANTITIES

• The operational quantities defined by ICRU 51 are:

 the ambient dose equivalent, H*(d);

 the directional dose equivalent, H’(d,);

 the personal dose equivalent Hp(d).

• Their values are “taken as sufficiently precise 
assessments of effective dose or skin dose, 
respectively, especially if their values are below the 
protection limits”(ICRP 103).

• They should give a reasonable conservative 
estimate of the RP quantities.

• Area monitoring: H*(d) and H’(d,);

• Individual monitoring: Hp(d).

• ICRU sphere:

 Tissue-equivalent;

 Mass composition: oxygen 76.2%, 11.1% 
carbon, 10.1% hydrogen; 2.6% nitrogen.

 30 cm in diameter;

 Density = 1 g cm-2;
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AMBIENT DOSE EQUIVALENT

• The ambient dose equivalent H*(d), at a point 
in a radiation field, is the dose equivalent that 
would be produced by the corresponding 
expanded and aligned field, in the ICRU 
sphere, at a depth d on the radius opposing 
the direction of the aligned field(ICRU 51).

 currently recommended d=10 mm, H*(10);

 weakly penetrating radiation:

 skin d=0.07 mm;

 eye d= 3 mm.
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DIRECTIONAL DOSE EQUIVALENT

• The directional dose equivalent H’(d,Ω), at a point 
in a radiation field, is the dose equivalent that 
would be produced by the corresponding expanded 
field, in the ICRU sphere, at a depth d on the 
radius in a specified direction Ω(ICRU 51).

 strongly penetrating radiation, currently 
recommended d=10 mm;

 weekly penetrating radiation:

 skin d=0.07 mm;

 eye d= 3 mm.
Ω



Unidirectional field: Ω, when =0, H’(d,0)=H’(d)=H*(d).
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PERSONAL DOSE EQUIVALENT

• The directional dose equivalent, Hp(d), is the dose 
equivalent in soft tissue, at an appropriate depth 
d, below a specified point in the body(ICRU 51).

 Strongly penetrating radiation d=10 mm;

 weekly penetrating radiation:

 skin d=0.07 mm;

 eye d= 3 mm.

• Hp(d) can measured with a detector worn on the 
surface of the body and covered with an 
appropriate thickness of TE material;

• The calibration of a dosimeter is generally 
performed under simplified conditions and on an 
appropriate phantom:

 ISO phantom: slab phantom (303015 cm3) 
filled with water, PMMA walls 10 mm in 
thickness, excluding the front wall which is 
2.5 mm in thickness.
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ICRP 60 & ICRP 103

• The mean absorbed dose in the region of an organ or tissue T is:






T

T
T

dVzyx

dVzyxzyxD

D
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



• where:

 V is the volume of the tissue region T;

 D is the absorbed dose at a point (x,y,z) in that region;

  is the density at this point.
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EQUIVALENT DOSE

• The equivalent dose in an organ or tissue T is:

• where:

 wR is the radiation weighting factor for radiation R.

• Unit: sievert (Sv)


R

RTRT DwH ,
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RADIATION WEIGHTING FACTORS
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RADIATION WEIGHTING FACTORS - NEUTRONS
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EFFECTIVE DOSE

• The equivalent dose in an organ or tissue T is:

• where:

 wR is the radiation weighting 
factor for radiation R;

 wT is the the tissue weighting 
factor for tissue T.

• Unit: sievert (Sv)

T

T

T

R

RTR

T

T HwDwwE   ,
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NEUTRON INTERACTIONS WITH SOFT TISSUE

• Neutrons below about 20 MeV:

 Thermal neutrons (0<E<0.5 eV);

 Φ total fluence

 Epithermal neutrons (0.5 eV<E<100 keV);

 Fast neutrons (100 keV<E<20 MeV);

 Intermediate-energy neutrons (20 MeV<E<a few GeV)

kT

dE
e

kT

EdEE kTE


 )(

From: K. Drodowicz, IAEA report  1838/PN (1999)
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NEUTRON INTERACTIONS WITH SOFT TISSUE

Element Weight percent

H 10.2

C 12.3

N 3.5

O 72.9

Na 0.08

Mg 0.02

P 0.2

S 0.5

K 0.3

Ca 0.007

• Soft tissue:
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THERMAL NEUTRONS

Element Reaction Q

(MeV)

Cross section

H 1H(n,)2H 2.223 332 mb

C 12C(n,)13C 4.946 3.4 mb

N 14N(n,)15N 10.833 75 mb

N 14N(n,p)14C 0.626 1.81 b

O 16O(n,)17O 4.143 0.178 mb

    2

43

2

21 cMMcMMQ 

n

h

h’

e-

p

n

H

14N
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EPITHERMAL NEUTRONS

• Neutron absorption cross sections depend on 1/v;

• Elastic scattering occurs and recoil nuclei can contribute to the absorbed dose.

H

C

N

O

H

N

O

C

H

D
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FAST NEUTRONS

Target Nucleus ER,max/En

H 1

C 0.284

N 0.249

O 0.221

















143

43

MMM

MM
QEth

• Elastic scattering occurs and recoil nuclei contribute to the absorbed dose.

• where A is the target nucleus mass (M2 below)

 
  nR E

A

A
E 2

2
1

4
cos




• Inelastic reactions:

2

2

21 cQ
M

MM
QEth 







 
 2M       

M1

M2

M3

M4
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FAST NEUTRONS

Target

Nucleus

Reaction Q

(MeV)

Threshold Energy

(MeV)

C 12C(n,)9Be -5.70122 6.18044

C 12C(n,p)12B -12.58665 13.64462

C 12C(n,2n)11C -18.72201 20.29569

N 14N(n,)11B -0.15816 0.16955

N 14N(n,2n)13N -10.55345 11.31363

O 16O(n,)13C -2.21561 2.35534

O 16O(n,p)16N -9.63815 10.24595

O 16O(n,2n)15O -15.66384 16.65162

• Some inelastic reactions:

12C(n,p)12B



26

SECONDARY RADIATION AT INTERMEDIATE AND HIGH 

ENERGIES

• The main mechanisms for secondary hadron 
production from particles other than ions at 
intermediate energies (from about 50 MeV up to a 
few GeV) will be outlined.

• It should be underlined that for particle momenta 
higher than a few GeV/c, the hadron-nucleus cross 
section tends to its geometric value:

• The interaction length scales with:

mb 45A )(r  r 32
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K. Hagiwara et al., Phys. Rev. D 66 010001 (2002)

• References:
 Ferrari, A. and Sala, P.R. The Physics of High Energy 

Reactions. Proceedigs of the Workshop on Nuclear 
Reaction Data and Nuclear Reactors Physics, Design 
and Safety, International Centre for Theoretical Physics, 
Miramare-Trieste (Italy) 15 April-17 May 1996, Gandini 
A. and Reffo G., Eds.World Scientific, 424-532 (1998).

 ICRU 28.
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INTRANUCLEAR CASCADE

• Intermediate energy reactions can be described 
through the intranuclear cascade model. Its main 
steps are:

 direct hadron-nucleon interactions (10-23 s);

 pre-equilibrium stage;

 nuclear evaporation (10-19 s);

 de-excitation of the residual nucleus.

• Secondary particles can interact with other nuclei 
giving rise to an extra-nuclear cascade.
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INTRANUCLEAR CASCADE

Neutron spectral fluence [EΦ(E)] per primary hadron from 

40 GeV/c protons/pions on a 50 mm thick silver target, at 

emission angles of 30°, 60°, 90° and 120°. Agosteo et al. NIM B 

229 (2005) 24-34.
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PRINCIPLES OF NEUTRON DETECTION (I)

• Neutrons are detected through:

 secondary charged particles

 generated via elastic or inelastic reactions 

with nuclei.
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PRINCIPLES OF NEUTRON DETECTION (II)

• Generally, the interactions exploited for neutron detection can be classified 

according to neutron energy:

• Thermal neutrons: nuclear exoenergetic (Q>0) reactions with high cross 

section values;

• Epithermal neutrons: nuclear exoenergetic (Q>0) reactions and elastic 

reactions;

• Fast neutrons: nuclear reactions both exo- and endoenergetic (threshold 

reactions) and elastic reactions;

• High-energy neutrons (from 20-50 MeV up to a few GeV): inelastic reactions.

• Neutron detectors:

 gas detectors;

 activation detectors; 

 solid state detectors (scintillators (also liquid), semiconductors, 
superheated emulsions, track detectors, TLDs, etc.); 
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THERMAL NEUTRONS

• The nuclear reactions exploited 
mainly for thermal neutron 
detection are:


10B(n,)7Li (Q = 2.79 MeV) ;


3He(n,p)3H (Q = 764 keV) ; 


6Li(n,)3H (Q = 4.78 MeV);


157Gd(n,)

 fission reactions;

 activation.

235U
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EPITHERMAL NEUTRONS

• The fast and epithermal neutron component 
can be discriminated from the thermal (slow) 
one by covering a thermal neutron detector 
with a cadmium layer (cadmium cut-off: about 
0.5 eV);

• Neutrons down to a few tens keV can be 
detected with recoil proton detectors (the signal 
must be higher than the electronic noise);

• Activation techniques can be employed by 
using combinations of different materials.
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FAST NEUTRONS

• Still the following reactions can be exploited with a lower 
efficiency:


3He(n,p)3H; 


6Li(n,)3H;

 the energy deposited in the detector is that of the 
impinging neutron + the Q-value.

• Elastic scattering on:

 Hydrogen (ER,max=En);


3He (ER, max=0.75 En);


4He (ER, max=0.64 En).

• Activation reactions (Q<0);

• 238U and 237Np fission;

• Neutron moderation.

• The neutron spectrum is reconstructed by unfolding the 
experimental data.

238U(n,fiss)

237Np(n,fiss)
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DETECTORS BASED ON THE 3He REACTION

 Secondary particles from neutron capture on 3He are generated through:

 n + 3He  1H + 3H (Q = 764 keV);

 σ(0.025 eV) = 5316 b;

 Ep = 573 keV;  EH-3 = 191 keV.

• Gas detectors: proportional counters mainly;

• Gas pressure up to several atm. 3He mixed to Ar for minimizing the wall effect.

n
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 Secondary particles from neutron capture on 10B are generated through 
the following channels:

 n + 10B   + 7Li (ground state) – 6%;

 n + 10B   + (7Li)* (excited state)   + 7Li +  (480 keV) – 94% ;

 for the most probable channel:

 E = 1.47 MeV;  ELi-7 = 0.84 MeV;

 σ(0.025 eV) = 3842 b;

• The most common detector based on the 10B reaction is the BF3

proportional counter;

 Low gas pressure (0.5-1.0 atm), since BF3 loses its proportional 
properties at high pressure;

• Boron-lined proportional counters, boron-loaded scintillators, boron 
converters coupled to track and semiconductor detectors;

• All these detectors may employ 10B enriched materials (up to about 
90%).

DETECTORS BASED ON THE 10B REACTION
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NEUTRON PROPORTIONAL COUNTERS (I)

• Gamma rays can interact in the walls and produce electrons in the gas, but the 

energy loss of electrons is small (≈ 2 keV/cm), so that these pulses are much 

smaller than those due to neutrons;

• A pulse amplitude threshold can thus eliminate most gamma interactions.

Courtesy Marco Silari, CERN
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NEUTRON PROPORTIONAL COUNTERS (II)
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THE WALL EFFECT
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BF3 AND 3He SPECTRA OF DEPOSITED ENERGY
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3He SPECTRUM OF DEPOSITED ENERGY: FAST NEUTRONS 
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DETECTORS BASED ON THE 6Li(n,α) REACTION

 Secondary particles from neutron capture on 6Li are generated through:

 n + 6Li   + 3H (Q = 4.78 MeV);

 σ(0.025 eV) = 938 b;

 E = 2.05 MeV;  EH-3 = 2.73 MeV.

• Scintillators: LiI(Eu), Li containing glass scintillators, optical fibers;

• TLDs: the contribution of photons can be assessed by employing a pair of 

detectors enriched in 7Li and 6Li.
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DETECTORS BASED ON THE 157Gd(n,) REACTION

 Neutron absorption on 157Gd leads to the emission of prompt gamma ray (390 lines) and conversion 

electrons (444 discrete energies):

 σ(0.025 eV) = 255,000 b;

 conversion electrons are more effective for neutron detection, since they are directly ionizing;

 the most significant conversion electron energy is 72 keV (yield per absorbed neutron 0.39)

• Gd converters are employed for neutron detection and imaging (very thin converters, since the 72 keV 

electron range in Gd is 20.7 µm;

• Liquid scintillators: prompt gamma ray background is significant.
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Additional Slides
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Lethargy plots

• Conservative in terms of area for semi-logarithmic plots

• Therefore:

• Histogram:

• Lethargy (definition):
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