Evaluation of satellite orientation and direction of energetic radiation in LEO orbit

Stefan Gohl - ESR 16

Institute of Experimental and Applied Physics, Czech Technical University in Prague

4th Annual Meeting of ARDENT, Prague, June 22 - 26, 2015

collaborating collegues: C. Granja, IEAP, CTU B.Bergmann, IEAP, CTU

St. Gohl

Evaluation of satellite orientation and direction of energetic radiation in LEO orbit

Institute of Experimental and Applied Physics, CTU

A (10) × (10) × (10)

Overview

St Gohl

Angle distribution of incoming particles to earth

- Evaluation of Space Application of Timepix RAdiation Monitor (SATRAM) data (attached to Proba-V satellite)
- Determination of satellite orientation relatively to earth
- Determination of particle angles in Timepix detector (track processing)

Express data in (L,B) coordinate system

- L = Mcllwain parameter
- distance from earth of the magnetic field lines of a dipole in earth radii above earth equator
- B = B-field strength

Proba-V and SATRAM

- Altitude = 820 km
- Inclination = 98.8°
- Sun-synchronous orbit
- in orbit since May 2013

→ □ → → □ → → □

Evaluation of satellite orientation and direction of energetic radiation in LEO orbit

Satellite orientation

Obtain particle angles in the Timepix detector and then:

- (日)

Evaluation of satellite orientation and direction of energetic radiation in LEO orbit

St. Gohl

Track processing

- Obtain particle angles by extracting skeleton from track
- Skeleton is the actual path of the particle within the silicon layer
- polar angle = angle in the plane of detector
- azimut angle = angle between detector plane and particle elevation

St. Gohl

Coordinate transformation

based on: Quaternions - a 4×1 matrix with scalar part s and vector part \vec{r} (Euler axis)

$$q = \begin{bmatrix} s \\ \vec{r} \end{bmatrix} = \begin{bmatrix} s \\ r_x \\ r_y \\ r_z \end{bmatrix} = \begin{bmatrix} \cos \frac{\Theta}{2} \\ ||\vec{e}|| \cdot \sin \frac{\Theta}{2} \end{bmatrix}$$

with $\Theta = \text{Euler angle}$

Figure : Taken from: [1]

transformation of \vec{r} from coordinate system A to B:

$$\begin{bmatrix} 0\\ \vec{r}_B \end{bmatrix} = q_{B\leftarrow A} \otimes \begin{bmatrix} 0\\ \vec{r}_A \end{bmatrix} \otimes q_{B\leftarrow A}^{-1}$$

Evaluation of satellite orientation and direction of energetic radiation in LEO orbit

McIlwain parameter

- L = magnetic shell parameter or McIlwain parameter
- distance from earth of the magnetic field lines of a dipole in earth radii above earth equator
- movement of particles trapped in the magnetosphere is described in (L,B) coordinate system
- symplifies system to 2 coordinates

L-Shell map

Institute of Experimental and Applied Physics, CTU

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Evaluation of satellite orientation and direction of energetic radiation in LEO orbit

St. Gohl

B-field strength

SATRAM data from March 2015:

Figure : Measured B-field strength 820 km above earth surface

Theoretical data from 2010:

Figure : Calculated B-field strength on earth surface. Taken from: [2]

Institute of Experimental and Applied Physics, CTU

Evaluation of satellite orientation and direction of energetic radiation in LEO orbit

References

St Gohl

 K. Großekatthöfer et al., "Introduction into quaternions for spacecraft attitude representation", Techincal University of Berlin, Department of Astronautics and Aeronatics, 2012
J Pilchowski et al. "On the definition and calculation of a generalised Mcllwain parameter", Astrophys. Space Sci. Trans., 6, 9-17, 2010
C. E. Mcllwain "Magnetic Coordinats", University of California, Department of Physics, 1965