LHC Beam Dumping System

Experience from reliability run and Re-commissioning procedures

MPP 31.10.2014

Nicolas Magnin – TE/ABT/EC

OUTLINE

- Summary of MKD HV Generator problems and renovations during LS1
- Summary of Electrical distribution renovations during LS1
- Summary of TSDS problems and renovations during LS1
- Summary of Second Dry Run Results
- Requirements for Commissioning without Beam (Cold Checkout)
- Requirements for Commissioning with Beam
- Conclusion

MKD HV GENERATORS RENOVATION

LHC Run I operation limited to 5 TeV due to electrostatic discharge on GTO stack => Spontaneous triggers

 \Rightarrow Added insulator between Plexiglas insulated ground ROD and GTO HV deflectors.

MKD HV Generators - FIRST RELIABILITY RUN RESULTS Spontaneous Triggering of MKD HV Generators

Stay at 7 TeV for long periods, trigger every 8h (?):

- Started tests with MKD Beam1 (08.2013): => 2 Gen. doing spontaneous triggers.
- Started tests with MKD Beam2 (11.2013): => 6 Gen. doing spontaneous triggers.

Problem is still due to small electrostatic discharges inside HV generator that provoke the triggering of the GTO stacks. After months of investigations:

1) We found a workaround:

Adding resistance in parallel with G-C of GTO to reduce mutual coupling (via trigger transformers) => electrostatic discharges do not trigger the GTO stack anymore. => Resistances installed on all GTO trigger transformers.

We identified one source of the problem:An insulator tube gets charged slowly due to its

geometry and surface properties, and eventually discharges through the top GTO A-G capacitance.

- New tube series production launched.
- 20 % of series will be tested in the laboratory.
 > New tubes installed in all HV generators.
- **3) We found a lot of dust inside the HV generators:** After proper cleaning of all the generators, no significant electrostatic discharges occurred anymore.

Sand blasted Bakelite tube after sparking

LOCAL Reliability Run:

- Progressive increase of voltage and flat-top duration
- Flat-top up to 7.1TeV / 6h
- => No problem found !

=> HV Generators OK, tests continue during Dry Runs...

BUT: Still some worries about DUST in UA (in generators due to HV)

ELECTRICAL DISTRIBUTION RENOVATION

ELECTRICAL DISTRIBUTION RENOVATION DURING LS1 Improvement of Power Distribution Architecture

• 'Secondary' PSU surveillance inside TFO and all general purpose crates.

What	Who	When
Install redundant UPS powering from UPS in US65 to LBDS general purpose racks (MYDGPxx to MYDGPyy) in UA63 and UA67.	EN/EL	09/2013
Implement correct redundant UPS power distribution system for LBDS general purpose racks.	EN/EL	09/2013
Define specifications and implement power distribution boxes inside racks housing VME & cPCI crates.	BE/CO EN/EL	09/2013
Calculate correct selectivity of UPS distribution system.	EN/EL	09/2013
Check correct selectivity of UPS distribution system.	EN/EL	09/2013
Remove temporary LBDS UPS connection to F4 line (QPS) in UA63 & UA67.	EN/EL	09/2013

What	Who	When
 Full simultaneous test of power cut of two UPS in UA67 US65 And MAIN. => Resulted in a synchronous dump as expected. No diagnosis, so first TSU client not identified. 	EN/EL TE/ABT	03/2013
Individual test of UPS power cut in UA67 and US65. \Rightarrow Resulted in a synchronous dump as expected.	EN/EL TE/ABT	10/2014
Nonetheless, Non conformity identified and corrected.		
TSU IPOC diagnosis not available, because redundant PSU not yet installed in KISS FEC .		

Planned Actions: Implementation of 'Secondary' voltages surveillance

What	Who	When
Develop (and produce) secondary voltages surveillance modules for G64, VME and TFO crates.	TE/ABT	12/2012
Connect G64, VME and TFO secondary voltages surveillance modules to LBDS ASIbus. Integrate surveillance within safety part of LBDS master PLC. Generate synchronous internal dump request in case of failure.	TE/ABT	09/2013
Implement REMOTE surveillance of VME and cPCI crates. Connect REMOTE surveillance to LHC SIS (INJECTION PERMIT or BEAM PERMIT).	BE/CO	06/2014
Hardware and software surveillance of crate PSU not yet tested.	TE/ABT	??/????

TSDS RENOVATION

TSDS RENOVATION DURING LS1 New TSU Deployment

Change deployment from 1 VME crate to 3 VME crates.

Motivation:

- Internal review of LBDS Powering (2012)
- VME crate +12V problem (2012)

TSDS RENOVATION DURING LS1 TSU v3 Development

Motivation for new TSU v3 design:

- External review of TSU v2 cards (2010)
- CIBU powering filter problems (2011)
- Improvement of surveillance & diagnosis
- Deployment over 3 VME crates

Project status:

- Hardware prototypes validated.
- Production of 12 cards **done**.
- Firmware development still in progress...

Planning:

- 1st step: TSU v3 hardware with TSU v2 firmware
 - \Rightarrow DONE

TSU v3 installed in the LHC !!!

- 2nd step: TSU v3 firmware with new features => ONGOING
- \Rightarrow Firmware development is **ongoing by small steps**
- ⇒ Revalidation of each changes before next step using the TSU Test Bench

TSDS RENOVATION DURING LS1 **TSU Test Bench**

Motivation:

Careful validation of new firmware before use in operation. Based on a National Instruments PXI system to:

- Generate all TSU input signals. _
- Check all TSU output signals. —

 Check IPOC analysis 	vsis results.		CLIENTS	CLIENTS 2 🥥	LOCAL/REMOTE	1 ARMING PLC
			RESET	RESET 2	Remo	le Am
	(> 100) and (> 100)	dialaan 246/7d	BEC SLOW DETECTED	BEC SLOW DETECTED 2	State Control TSU2	1
 various dump sc 	enario (>100) execute	a in 100p 24n/7a.	BIS SLOW DETECTED	BIS SLOW DETECTED 2	Inject & Dump	BLM
•	· · ·	• •	BIS HIGH DETECTED	BIS HIGH DETECTED 2		clie
					LOCAL/REMOTE	ARMING PLC
TimeStamp: 30.10.2014-19:52:56.789485225	User: LHC.USER.LHC	Energy 450.00	GeV			
				99 () 🔍 🗸		
			C	ursor position: -93.187		us
				Sel Col Device	Cursor	Units
BRF.B1/RawWaveform		П		BRF.B1	true	TSDS
DRBRF-A/RawWaveform		П		DRBRF-A	true	
DRBRF-B/RawWaveform				DRBRF-B	true	
SBDT-A1.B1/RawWaveform				SBDT-A1.B1	false	TSDS
SBDT-A2.B1/RawWaveform				SBDT-A2.B1	false	
SBDT-B1.B1/RawWaveform				SBD1-B1.B1	false	
SBDT-B1.B1/BawWaveform				SBD1-B1.B1	false	+
TRIG.TEO1.B1/RawWaveform					false	
TRIG TEO2 B1/Rawin/aveform				PTPIG-A P1	truo	
BTRIG & B1/Bawl@/aveform		<u> </u>		RTRIG-B B1	true	
DTDIC D D1/Dauth/avoform				BRE-IN AB1	true	+
DDE IN AD4/Dauté/aroform				DRBRE AB1	true	<u>+1</u>
				BAGK.AB1	true	<u>+ </u>
				DR1.AB1	false	<u>+ </u>
BAGK.AB1/Rawwaverurm -				DR2.AB1	false	
				SBDT1.AB1	false	
DR2.AB1/RawWaveform				SBDT2.AB1	false	
SBDT1.AB1/RawWaveform				ABDT.AB1	false	
SBDT2.AB1/RawWaveform				SCSS-IN.AB1	false	
ABDT.AB1/RawWaveform -				SCSS-DR1.AB1	false	
SCSS-IN.AB1/RawWaveform				SCSS-DR2.AB1	false	
SCSS-DR1.AB1/RawWaveform				BIS-IN.AB1	false	II
SCSS-DR2.AB1/RawWaveform				BIS-DR1.AB1	false	II
BIS-IN.AB1/RawWaveform				BIS-DR2.AB1	false	II
BIS-DR1.AB1/RawWaveform				BETS-IN.AB1	false	↓ ,
BIS_DR2 4B1/RawWaveform				PETS-DR1 AB1	Ifalee	

LIVE FREEZE

TSU1 State READY

STATE CONTROL

PLC ARMING

TSU STATUS

BRF DETECTED O DETECTED

DUMP STATUS

DUMP CLIENTS () READ

INTERNAL FAULT O OK

BRF DELAY FAULT 🧿 OK

BRF SYNCHRO FAULT

SYNCHRO DUMP A NOT REQUEST SECOND SYNC, FAULT

OK

ок

DUMP SYNCHRO () READY DUMP ASYNCHRO 🧿 READY

TSU 1

BAGK Trigger 2.47

iency 2

REMOTE

ARMED

ARMED

LOCKED

TSU CONTROL TEST

9.3750M

10.00M

% Cycle

% Cycle

% Cycle

% Cycle

50 00

50.00

50 00

BLM 1

BRF Frequency Setting 11.250k Hz

BIS1 Frequency Setting 28.3750M

BIS2 Frequency Setting

BEC Frequency Setting

BRE Cycle Sync

BIS1 Cycle Sync

BIS2 Cycle Sync

State Control TSU

Inject & Dump 1

BEC Cycle Sync 2 50.00

What	Who	When
Study the option to replace the actual single FEC housing the two redundant TSUs by separate and fully redundant FECs.	TE/ABT	11/2012
Add diode in the +5V and +12V powering circuit at the input of the TSU & increase capacitance level at the cathode side of the diodes in order to increase hold-on duration in case of global powering failure.	TE/ABT	11/2012
Add internal surveillance of +12V and +5V within the TSU. Generate an INTERAL_FAULT condition in case of detection of one voltage out of tolerance (typ10%) and request a DUMP_TRIGGER through the redundant TSU.	TE/ABT	11/2012
Study the impact (reliability, powering, failure mode) of replacing the WIENER FECs with new ELMA FECs.	BE/CO TE/EPC PH/ESE	12/2012
Install ELMA FECs in LBDS (1 redundant and 2 simples).	BE/CO	09/2013

TSDS RENOVATION DURING LS1 Direct connection from BIS to LBDS Retrigger-lines

In the case the TSU cards do not send triggers at all (unknown/new failure mode)?

=> BIS generates retrigger pulses after 250 us

MPE designed a new **CIBDS** card, inserted between BIS and Re-Trigger delay boxes.

CIBDS and TDU250 are installed in UA63 and UA67

TSDS - FIRST DRY RUN RESULTS Direct Connection from BIS to LBDS Retrigger-Lines

- Asynchronous dump triggered by BIS has been tested.
- Presence of pulses from CIBDS and TDU250 will be checked by IPOC.

BIS retrigger pulse quite low after 15 MKDs.

• Enough to trigger LBDS

NOT Enough to be detected by IPOC

What	Who	When
Study possible implementation and integration of redundant asynchronous triggering of the LBDS directly from the BIS.	TE/ABT TE/MPE	10/2012
Produce re-trigger crates with 250us delay (4 + 2 crates).	TE/ABT	03/2013
Modify cables routing of re-trigger lines at the level of the BIS racks in UA63 & UA67 in order to include BIS dump request in the chain.	EN/EL	09/2013
Install cables between BIS and LBDS racks for monitoring of re-trigger crates within BIS.	EN/EL	09/2013
Generate "trigger pulse" from BIS to re-trigger crates for TRUE to FALSE transitions of the BIS frequencies.	TE/MPE	TBD
Add channels in LBDS master PLC surveillance for additional re-trigger crates.	TE/ABT	09/2013
Modify TSU-IPOC analysis for detection of re-trigger pulses coming from BIS 250us after dump request.	TE/ABT	03/2014

SECONDARY DRY RUN

SECOND DRY RUN RESULTS LBDS Looping Arm - Ramp - Dump in REMOTE

- GLOBAL BIS loop closed
- Signal Generator connected to BETS
- BRF coming from RF.

6

- New TSU v3 cards Armed !!!
- ⇒ Looping Arm-Ramp-Dump using LHC Sequencer

CUE CCD DCD Web Nextended Televent Fuelseen	
CWE-CCR-PC2 - Web Navigator - Windows Internet Explorer	_ 🗆 ×
	🗟 😏 🗙 🚡 🕁 🔅
CWE-CCR-PC2 - Web Naviga X	
a 🕘 CCDB 🥥 CERN - AB - OP eLogbook 🔒 LHC Beam Dump System 🔒 LHC PAGE 1 🚑 LHC PAGE 2 遵 Measurement DB 🖨 Nico's Vistar web page 🔒 TEABTEC - Equi	pment »
Controls TE/ABT Equipment Control 5/27/2014	5:30:56 PM
I HC	
Ream Dumping Kicker Systems PEAM1 450 (Cold. REMOTE CON	DEADY
Electronics Beam Dumping Ricker Systems - BEAM1 450 [GeV] REMOTE ON	READT
Arming	
RE-TRIGGER MAINS LASS	
RTUA RTUB MKD-Q1 STATUS LASSA	
MAINS PRESENCE MKD - Q1 FAULT LASS B	
UPS PRESENCE MKD - Q2 STATUS LSS6	
TSU 12V ATLS 15V ATLS 5V MKD - MAINS PRESENCE	
MKD - UPS PRESENCE BETS	
MKB - Q1 STATUS	
IPOC MKB - Q1 FAULT	
MKD - ROGOWSKI MKB - Q2 STATUS KICKERS	
MKD - PEARSON MKB - MAINS PRESENCE MKD	
MKB MKB - UPS PRESENCE MKB	
TSU READY	
TSUA TSU B	
LBDS READY	
BEAM PERMIT INJECTION PERMIT	
OFF STANDBY ON ACK	ARM

SECOND DRY RUN RESULTS LBDS Looping using BETS-Simulator

12h Cycles - Looping using Sequencer:

- 1 pulse every 10min at 450 during 1h
- ~1h cool down at 450 GeV
- 20min Ramp-Up to 6.5 TeV
- >8h Flat-Top at 6.5 TeV
- 20 min Ramp-Down to 450 GeV

- No problem seen with HV generators
- No problems arming the CIBDS cards
- No problems arming the new TSU cards

=> All dumps performed properly

SECOND DRY RUN RESULTS Direct Connection from BIS to LBDS Retrigger-Lines

New IPOC systems at both ends of Re-Trigger lines Presence of pulses from CIBDS and TDU250 will be checked by IPOC.

SECOND DRY RUN RESULTS Direct Connection from BIS to LBDS Retrigger-Lines

Pulse at 450 GeV

SECOND DRY RUN RESULTS Direct Connection from BIS to LBDS Retrigger-Lines

Problem:

Free-Wheel Re-Trigger pulse could hide TSDS pulse !

(Measured up to **150us** after trigger)

=> Can we increase the TDU delays ?

- TSDS = 250us (instead of 200us)

- CIBDS = 270us (instead of 250us)

We need to perform studies on the re-trigger line:

- A model for full simulation of Re-Trigger line is needed.

UPDATED PLANNING

Dates	Duration	Control	Activity
=> End of 2014		REMOTE	Dry Run: - Global BIS Loops / BETS Simulator - Validate TSU firmware(s) - Validate BIS-Retrigger (IPOC) - Validate LBDS settings (SCSS / IPOC / XPOC) - Ramp, Flat-Top 8h, Dump
End November	1 week-end	REMOTE	LBDS must be ready for Transfer Lines Tests: - Validate Inject&Dump
Date TBD by OP and MPE		LOCAL	 LOCAL Reliability Run: Remove BETS Simulator Test HV holding for long periods Regular Ramps & Energy-Scans

We would like to keep LBDS in REMOTE with the LOCAL BIS loops as long as possible !

COMMISSIONING WITHOUT BEAM

We request 2 days in REMOTE with BIS closed to:

- Re-validate hardware (HV Generators, TSU, BETS, IPOC, TCDQ, Etc...)
- Re-validate of all software layers (SCSS, IPOC, XPOC, BETS, TSU, Etc...)
- Re-validate Arming sequences
- Re-validate Inject & Dump sequence
- Re-validate Beam Injection Permit

PLUS:

- Updated Machine Protection Procedures for LBDS (EDMS 896392)

COMMISSIONING WITH BEAM

- Re-synchronise MKD rising edge with dump of pilot bunch 1
 => Adjust TSU Trigger delay
- Re-synchronise BAGK with injection of pilot bunch 1
 => Adjust TSU BAGK delay
- Scan of MKD rising edge
 - Never done...
 - => Procedure to be approved !
 - 1 complete shift required ?
- Test of BLMDD TSU client
 - Never tested with beam...
 => Procedure to be approved !

PLUS:

- Updated Machine Protection Procedures for LBDS (EDMS 896392)
- Updated procedure in case of non-working dump trigger (EDMS 1166480)

Planned Actions: OTHER

What	Who	When
Review integration of BLMDD within TSDS . Check possible failure scenarios.	TE/ABT BE/BI	03/2013
Study impact of new TSDS configuration on reliability & availability of LBDS after modification.	TE/ABT	06/2013
Perform a study which predicts the consequences of different type of powering failures (MAINS, UPS and individual secondary voltages).	TE/ABT	06/2013
Define test procedure for a full re-commissioning of the LBDS powering (NORMAL and UPS) after LS1 and after major maintenance activities.	TE/ABT EN/EL	12/2013

CONCLUSION

- Unforeseen complicated problems of spontaneous triggering of MKD HV generators: After months of investigations we identified various source to the problem.
 => Successful Reliability Run II (BUT problems with dust foreseen)
- Electrical distribution improved
 =>successfully tested.
- TSDS renovation: CIBDS and TSU v3 installed in LHC
 => Tests ongoing during Dry Run.
- Dry Runs in REMOTE started.
 > No major problems found.
- LBDS is ready for Transfer Line Test, end November.

Thank you for your attention.

Spares slides / Removed...