

Aim & Requirements

long-term stable contact between sensor and readout electronics

Materials:

- Gold (electrode of GaAs/Si sensor, coated track of pcb/flex pcb)
- others?

Geometry:

- · 'coarse' grid (few mm)
- · very small height (200 ... 500µm)
- · 'long' distance to frontend electronics (max. sensor length)

Electrical:

- extremely low current
- · HV safe (?)
- · low crosstalk, low capacitance

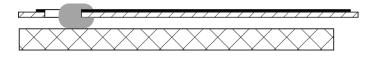
Current situation

- sensor with Au covered electrode pads
- fanout: flex pcb to frontend electronics (Au coated)
- · wire bonding at sensor side
- connector at electronics side
- fixation by some glue dots

Advantages:

- known technology
- in-house manufacturing
- · long term stable
- · repairable

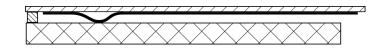
Disadvantages:


- touchy wire bond
- · 'high' loop of bond wire

Alternatives (w.r.t. sensor contact)

· conductive glue

flat loop wire bonding


bump bonding

tab ('tape automated') bonding

spring loaded contact

Survey

- Conductive Glue:
 - elasticity and resistance inversely proportional low resistance contact suspect to thermal damage
- Flat Loop Wire Bonding
 feasible with loop height ~ 100µm
 flex pcb with buried copper layer
- Bump Bonding:

established for small grid, small balls big grid: **very** problematic (thermal distortion! underfill) better prospects with ceramic pcb (expensive, ≥ 2mm height!)

Tape Automated Bonding

should be feasible (for small grid and small sizes)
should meet lab technology (standard wire bonder)
however: outdated technology (production of 'tapes' no longer supported)

Spring Loaded Contact (1)

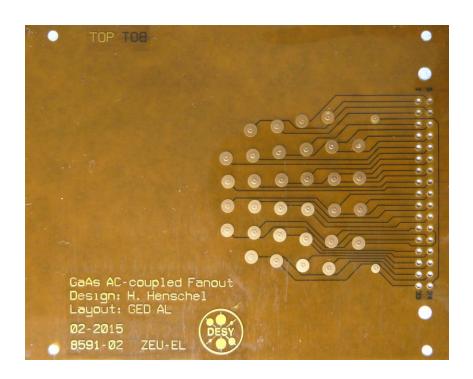
according to GED company quote:

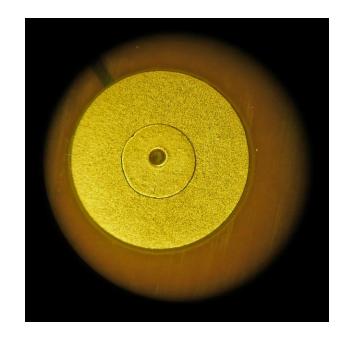
- · semi-flex pcb
- contacts are molded bumps (compare contacts of small size push button)

Advantages:

- assembly without thermal treatment
- robust against thermal impact and concussion
- residue-free removal
- easy exchange of either parts

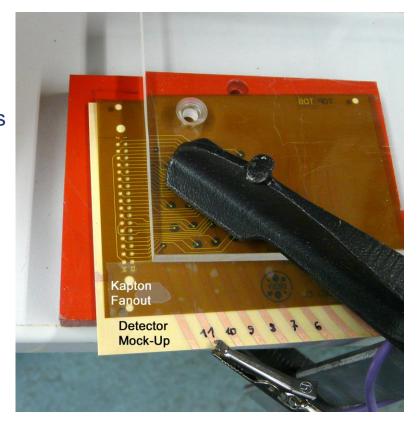
Disadvantage:


contact force to be permanently maintained (spacer required)



Spring Loaded Contact (2)

- Sample production at GED company
- Contacts NOT spring loaded! Just embossed
- Nevertheless ...



Spring Loaded Contact (3)

- First contact (resistance) tests [Ohms]
 (Au coated fanout on Cu contact gauge)
- Series of three measurements
 in two different clamps throughout two days
- NO fail! No degradation.

Sector 1		2	3	4	5	6
Ring 11		0.43	0.30	0.23	0.23	
10	0.43	0.40	0.33	0.37	0.27	0.33
9	0.30	0.30	0.27	0.33	0.27	0.27
8	0.77	0.23	0.23	0.53	0.23	0.27
7	0.30	0.27	0.23	0.27	0.20	0.30
6		0.37	0.27	0.23	0.23	

