#### LumiCal Performance with a Tracking Detector

Oleksandr Borysov Tel Aviv University

FCAL Meeting, CERN March 24, 2015

# Outline

- Introduction and motivation for the study
- Simulation with LuCaS
- Reconstruction with LumiCal clustering software
- LumiCal with and without tracking detector
- Summary and plans

### **Tracking Detector**

- Improve polar angle measurement accuracy;
- LumiCal alignment;
- Provide more information to enable e/γ identification, important for various physics study.



### **Generated Events**

- Subset of 2000-5000 events out of 10000 were used for simulation
- Each event contains one e<sup>-</sup>, 250 GeV;
- Uniformly distributed on momentum  $\phi$  (0, 2 $\pi$ ),  $\theta$  (41, 69 mrad).





θ [rad]

# Simulation

- Modified versions of LuCaS (Geant4 application) was used;
- Range cut: 20 µm (5 µm also was tested);
- Minimum step: 5 µm;
- Physics list: QGSP\_BERT;
- Two layers of Si 100 μm and 300 μm thick;
- Different distance to LumiCal;
- No mechanical constraints;



#### Energy Deposition in Tracking Detector



## **Occupancy of Tracking Detectors**

- Average occupancy per event from back-scattered particles normalized on the number of primary ones is less then 2 at a distance of 5 cm from LumiCal.
- It decreases down to ~1 at 30 cm.
- The second layer has 5% 10% less occupanly for the same distance from LumiCal.



|           | Close Detector |             | Far Detector  |             |           |
|-----------|----------------|-------------|---------------|-------------|-----------|
| N_primary | Position (cm)  | N_RecPoints | Position (cm) | N_RecPoints | Far/Close |
| 5000      | 5              | 8781        | 10            | 7407        | 0.95      |
| 5000      | 10             | 7767        | 15            | 6545        | 0.92      |
| 5000      | 15             | 7071        | 20            | 6025        | 0.95      |
| 5000      | 20             | 6373        | 25            | 5351        | 0.90      |
| 5000      | 25             | 5938        | 30            | 4969        |           |

### Momentum Change



### Reconstruction in LumiCal

500

2 cases:

200 -

180

160

140

120 100

80

60 40

20

0

- without tracking detector (air);
- with 2 layer of 100 µm thick Si.

100 um Si tracking detectors w/o tracking detectors 400 Gaussian fit 300 Mean: 0.6 urad σ: 0.03 mrad 200  $\theta_{gen} - \theta_{reco};$ 100  $\varphi$ \_gen –  $\varphi$ \_reco; 1×10<sup>-3</sup> 0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.5 0.6 E reco; 0.4  $\theta_{\text{gen}}$ - $\theta_{\text{reco}}$ , rad 70 100 µm Si tracking detectors 60 100 µm Si tracking detectors w/o tracking detectors 50 w/o tracking detectors 40 30 20 10 E 0 <u>□</u> -0.1 500 -0.08 -0.06 -0.04 0.06 1000 1500 2000 2500 3000 3500 0.02 0.04 0.08 -0.02 0 0.1  $\phi_{\text{gen}} - \phi_{\text{reco}}$ , rad E<sub>reco</sub>, MeV

9

#### **Treck Reconstruction**



#### Residuals



# Summary and Plans

- The average occupancy of tracking detectors caused by the scattered particles from LumiCal varies from 2 to 1 depending on the distance to LumiCal. At a distance of 30 cm it is about 1 for each primary particle.
- Reconstruction in LumiCal does not show visible influence of tracking detector on LumiCal performance.
- Include tracking detector in  $\phi$ ,  $\theta$  reconstruction.

# Backup

#### LuCaS with qt UI

