
Root-Based Analysis in
ATLAS

Nils Krumnack (Iowa State University)

Nils Krumnack (Iowa State University)

Introduction
• pre-run I: all analysis is to be done in Athena
‣Athena: official framework used for production and trigger
‣working with its own data format: AOD
‣ root-only code only to be used for making plots
• no corrections, calibrations, etc. in this step
‣ big focus on uniformity, reusability and reproducibility

• then came collision data:
‣ few people actually followed the official model
‣most dumped their data into a "flat" n-tuple instead
‣most analysis tools applied on n-tuples

• had to develop new framework as data came in:
‣ no grand concept, address problems by priority
‣ very limited manpower for development (1-3 FTEs)
‣ needed to integrate with code users wrote so far

2

Nils Krumnack (Iowa State University)

RootCore Build System
• first thing we needed was a build system:
‣ every tool came with its own build system
‣ some users spend two weeks(!) on getting all tools to compile

• first approach very simple:
‣ each makefile included a Makefile-common
‣ in turn included Makefile.arch from root package
• extremely useful file
• provided instant portability
‣ some extra shell scripts for core functionality

• extremely crucial part:
‣ provided conversion for all common tools
‣ open-ended offer to convert user packages as well
‣ strong support to all users

• very successful: quickly became widely used, very positive feedback

3

Nils Krumnack (Iowa State University)

RootCore Evolution
• RootCore evolved a lot since the early days
‣mostly driven by user requests
‣ or to address recurring user problems

• supports package management
‣ user provides text files with package lists
‣ RootCore handles the SVN operations

• support for grid and batch submission
‣ generates a self-contained directory with all packages
‣ includes scripts for setup on worker nodes

• initialization scripts for interactive root
‣ loads all libraries and performs any special setting needed

• support for various external packages
‣ downloads and compiles source for the user
‣makes them portable and easy to use

4

Nils Krumnack (Iowa State University)

Data Formats
• early on ATLAS developed a "flat" n-tuple dumper for Athena:
‣ i.e. one branch for each variable
‣ data format called D3PD
‣works well for analysis, which often only reads a subset of data

• later on joined by a corresponding reader:
‣ performed read-on-access optimization
‣ rebuild objects like electrons from individual variables

• greatly simplified/optimized reading D3PDs

5

Nils Krumnack (Iowa State University)

EventLoop Job Management
• needed a job management system that:
‣ provided better job handling on the grid
‣made it easier for users to use PROOF
‣ allowed to switch easily between local, batch and grid running

• basic design is fairly standard:
‣ user writes code as algorithms (similar to a TSelector)
‣ different drivers handle running in different locations

• originally assumed this could be a backend for other frameworks:
‣ users can easily use their own algorithm base class
‣ submission/configuration easily wrappable as well
‣ nobody ever used this flexibility

• successful with new users, but not for existing projects:
‣migration typically involves some code re-writes
‣ legacy code often already does what users need

6

Nils Krumnack (Iowa State University)

EventLoop: Algorithm Design
• EventLoop uses streaming algorithms:
‣ user configures algorithm in his submission script
‣ then gets streamed via root-i/o to the worker nodes
‣ sidesteps any need for configuration by EL

• really regret this design decision:
‣ causes majority of user problems with EL
‣many users have problems writing streamable objects
‣ in root 5 many header files were not parseable

• had briefly flirted with using TSelector instead, but:
‣ having own class provides greater flexibility
• extended it repeatedly
‣ harder to simplify PROOF usage if we use the same interface
‣ allows syntactic similarity to Athena

7

Nils Krumnack (Iowa State University)

Further EventLoop Design
• provides no data model or white board service:
‣most users use a single algorithm anyways
• i.e. they don’t need communication mechanisms
‣ possible to plug in data model as extra algorithms
‣ allowed EventLoop to remain unchanged as data model evolved

• instead of submission id, using a submission directory:
‣ i.e. a unique directory for each job submission
‣ holds output data, configuration and temporary data
‣ allows drivers to store any extra data they need
‣ no need for a central job database

8

Nils Krumnack (Iowa State University)

EventLoop & PROOF
• PROOF-lite support fairly straightforward
• main issue: no way to run code on empty files
‣ needed for in-file meta-data stored in each file
‣workarounds possible, but native support would be nice

• PROOF-farm support is a continual head-ache:
‣ impossible to test without a PROOF farm
‣ non-trivial to debug even with a PROOF farm
‣ bad fit between ATLAS build system and PROOF setup system

• users do like the PROOF-farm though:
‣ provides strong performance improvements

• a less integrated system would probably work better:
‣ i.e. EventLoop schedules and starts the jobs
‣within each job create a PROOF client object
‣ ask the PROOF client object which event to process next

9

Nils Krumnack (Iowa State University)

SampleHandler
• an ATLAS analysis may require over a hundred datasets
‣mostly different background samples
‣ also need to track sample meta-data like luminosity
‣ tedious to do manually for large number of datasets

• manages list of files and meta-data per dataset
‣ can also pre-stage files as needed (rarely used feature)
‣ can manage local and grid datasets

• contains various data discovery methods
‣ typically written by expert when users request them
‣ allows to organize the input data in various ways

• success is somewhat mixed:
‣ lots of people use the basic functionality for EventLoop
‣ few people use (all) the advanced features that would help them
‣mostly because it is hard to communicate all that SH can do

10

Nils Krumnack (Iowa State University)

SampleHandler II
• basic implementation very simple
‣ nothing difficult about a file list
‣ some extra features for pre-staging, remote access, etc.

• only snafu is meta-data:
‣ ideally want something like std::map<std::string,boost::any>
‣ but root can’t stream that
‣ instead use TList, wrapping everything into TObjects
‣ seems to be a recurring problem in several tools

• main advantage is to have single format for per-dataset data
‣ can be filled from various sources: text files, central database, etc.
‣ decouples tools from input source

11

Nils Krumnack (Iowa State University)

MultiDraw Plot Making
• in principle TTree::Draw is pretty nice:
‣ it can be taught to anyone in minutes
‣ its interface is very intuitive
‣ it is highly optimized

• however: doesn’t scale well

• MultiDraw solves that:
‣wraps TTreeFormula into an EventLoop algorithm, e.g.

‣ can schedule as many algorithms as needed
‣ can run on any batch system via EventLoop
‣ can run in addition to any "regular" algorithm

• don’t know how many people actually use it:
‣mostly because it just works…
‣ people who do use it seem pretty happy with it though

12

new AlgHist (new TH1F (…), "el_n")

Nils Krumnack (Iowa State University)

Transition To Run 2
• the long shutdown gave us chance for reorganization:
‣ harmonized tools between Athena and root-only analysis
‣ addressed some general issues

• merged file formats between Athena and root-only analysis
‣ common interface classes in both environments
‣ greatly simplifies writing tools serving both
‣ reduces waste/incompatibilities from multiple formats

• centrally provide precompiled analysis releases
‣ contains all common packages typically needed
‣ saves users the trouble of compiling them
‣ allows greater central control over packages used

• required two major rewrites of RootCore:
‣ first to support the releases themselves
‣ then rewrite it in python for speed…

13

Nils Krumnack (Iowa State University)

New Tool Interface
• provide a new base class for analysis tools:
‣ i.e. tools that provide corrections, selections, etc.
‣ derives from different classes based on environment
‣ allows the same implementation to work in both environments

• nifty new mechanism for systematics:
‣ standard format/interface for systematic variations
‣ allows multi-sigma variations
‣ allows applying multiple systematics at once

• greatly simplifies systematics handling
‣ can just loop over all tools to set the systematic
• no tool specific code needed
• correlations automatically handled
• can happen before processing the event
‣ allows simple loop of systematics per event

14

Nils Krumnack (Iowa State University)

Analysis Frameworks
• during run I many groups provided analysis frameworks
• at their core they all do mostly the same
‣ i.e. apply all the standard tools for the user
‣ provide collections of fully corrected good objects to the user
‣ provide an overall event weight to the user
‣ evaluate all systematics in a standardized manner

• in general very useful:
‣ simplifies life for the user
‣ harmonizes work within groups
‣ reduces potential for mistakes

• numerous problems as well:
‣ often hard to understand what they do exactly
‣ differences can make collaboration across groups impossible
‣ not every group had a framework, leaving some users stranded
‣ doesn’t always integrate with other ATLAS software

15

Nils Krumnack (Iowa State University)

QuickAna Tool Scheduler
• QuickAna is an attempt at a common analysis framework
‣ runs all analysis tools for the user
‣ provides final analysis objects to the user
‣ support for users from all high-pT physics groups
‣ implements object definitions from various groups
‣make use of existing ATLAS software where possible

• try hard to avoid "black box" complaints
‣ all code that makes physics decisions is separated from the rest
‣written in simple and straightforward C++
‣ following closely the actual physics logic
‣ should be understandable without looking at infrastructure code

16

Nils Krumnack (Iowa State University)

QuickAna Object Definitions
• tools are grouped into object definitions
‣ e.g. all electron tools form the electron definition

• multiple possible configurations per object type
‣ the user chooses object definitions by name
• e.g. "tight" electrons, "loose" muons, etc.
‣ user can also choose multiple object definitions at once
• can store multiple selections on same object
‣ typically no extra configuration of individual tools needed

• a number of advantages:
‣ easy to teach to newcomers
‣ configuration matches physics presentations more closely
‣ insulates users from changes in tools

• introduces an additional layer to configuration
‣ translates physics configuration to tool configuration

17

Nils Krumnack (Iowa State University)

QuickAna Optimized Running
• systematics evaluation is fairly simple:
‣ apply systematics setting
‣ run analysis code
‣ change systematics setting
‣ repeat dozens of times per event

• simple, robust, and wasteful:
‣ systematic setting typically affects just one tool
‣ rerunning other tools wastes CPU
‣ storing their output wastes disk space too

• for optimization all tools report:
‣ their inputs, outputs, and directly affecting systematics

• only re-run a tool if the systematic affects it or its inputs
‣ for other tools use output from no-systematics evaluation

• saves about factor 2-3 in terms of CPU

18

Nils Krumnack (Iowa State University)

Some Personal Lessons
• if you give users a choice between all or nothing 

sometimes they will choose nothing

• make life easy for newcomers
‣ they outnumber the experts
‣ experts can often handle the complications better

• support multiple ways of doing the same thing
‣ hard to know which way is best beforehand
‣ different users have different tastes/needs

• try to implement user feature requests
‣ they typically know better than you what they need
‣ but don’t hesitate to do it your way
‣ some of my best features were based on feature requests

• do implement features only 5% of users want:
‣ a dozen such features is half your user base

19

Nils Krumnack (Iowa State University)

Summary & Outlook
• during run I ATLAS developed a suite of analysis tools
‣mostly because users weren’t using the main framework
‣ forming a simple analysis frameworks by now

• used the long shut-down to reengineer our tools
‣made the two environments more similar
‣made it easier to switch between the two environments

• continuing to integrate the tools even more
‣ aiming to have a single framework eventually

• trying to support work further down the analysis chain as well
‣ i.e. applying all the corrections, etc.
‣ simplify standard tasks like plotting, data management, etc.

20

