SR

Root-Based Analysis in
ATLAS

Nils Krumnack (lowa State University)



Introduction g@@

e pre-run |: all analysis is to be done in Athena
» Athena: official framework used for production and trigger
» working with its own data format: AOD
» root-only code only to be used for making plots
® no corrections, calibrations, etc. in this step
» big focus on uniformity, reusability and reproducibility

e then came collision data:
» few people actually followed the official model
» most dumped their data into a "flat" n-tuple instead
» most analysis tools applied on n-tuples

* had to develop new framework as data came in:
» no grand concept, address problems by priority
» very limited manpower for development (I-3 FTEs)
» needed to integrate with code users wrote so far

Nils Krumnack (lowa State University) 2



RootCore Build System g@@

* first thing we needed was a build system:
» every tool came with its own build system
» some users spend two weeks(!) on getting all tools to compile

* first approach very simple:
» each makefile included a Makefile-common
» in turn included Makefile.arch from root package
e extremely useful file
* provided instant portability
» some extra shell scripts for core functionality

e extremely crucial part:
» provided conversion for all common tools
» open-ended offer to convert user packages as well
» strong support to all users
e very successful: quickly became widely used, very positive feedback

Nils Krumnack (lowa State University) 3



RootCore Evolution

* RootCore evolved a lot since the early days
» mostly driven by user requests
» or to address recurring user problems

* supports package management
» user provides text files with package lists
» RootCore handles the SVN operations
e support for grid and batch submission
» generates a self-contained directory with all packages
» includes scripts for setup on worker nodes
* initialization scripts for interactive root
» loads all libraries and performs any special setting needed
* support for various external packages
» downloads and compiles source for the user
» makes them portable and easy to use

Nils Krumnack (lowa State University) 4



Data Formats

SR

e carly on ATLAS developed a "flat" n-tuple dumper for Athena:
» i.e. one branch for each variable

» data format called D3PD
» works well for analysis, which often only reads a subset of data

* later on joined by a corresponding reader:

» performec

» rebuild obj

* greatly simp

read-on-access optimization
ects like electrons from individual variables
ified/optimized reading D3PDs

Nils Krumnack (lowa State University)



% EventLoop Job Managementgfﬁiﬁz

* needed a job management system that:

» provided better job handling on the grid

» made it easier for users to use PROOF

» allowed to switch easily between local, batch and grid running
* basic design is fairly standard:

» user writes code as algorithms (similar to a TSelector)

» different drivers handle running in different locations

e originally assumed this could be a backend for other frameworks:
» users can easily use their own algorithm base class
» submission/configuration easily wrappable as well
» nobody ever used this flexibility
e successful with new users, but not for existing projects:
» migration typically involves some code re-writes
» legacy code often already does what users need

Nils Krumnack (lowa State University) 6



EventLoop: Algorithm Design g@@

* EventLoop uses streaming algorithms:
» user configures algorithm in his submission script
» then gets streamed via root-i/o to the worker nodes
» sidesteps any need for configuration by EL

* really regret this design decision:
» causes majority of user problems with EL
» many users have problems writing streamable objects
» in root 5 many header files were not parseable

* had briefly flirted with using TSelector instead, but:
» having own class provides greater flexibility
e extended it repeatedly
» harder to simplify PROOF usage if we use the same interface
» allows syntactic similarity to Athena

Nils Krumnack (lowa State University) 7



Further EventLoop Design 5@@

* provides no data model or white board service:
» most users use a single algorithm anyways
* i.e. they don’t need communication mechanisms
» possible to plug in data model as extra algorithms
» allowed EventLoop to remain unchanged as data model evolved

* instead of submission id, using a submission directory:
» i.e.a unique directory for each job submission
» holds output data, configuration and temporary data
» allows drivers to store any extra data they need
» no need for a central job database

Nils Krumnack (lowa State University) 8



EventLoop & PROOF g@@

* PROOF-lite support fairly straightforward
® main issue: no way to run code on empty files
» needed for in-file meta-data stored in each file
» workarounds possible, but native support would be nice

e PROOF-farm support is a continual head-ache:

» impossible to test without a PROOF farm

» non-trivial to debug even with a PROOF farm

» bad fit between ATLAS build system and PROOF setup system
e users do like the PROOF-farm though:

» provides strong performance improvements

* a |less integrated system would probably work better:
» i.e. EventLoop schedules and starts the jobs
» within each job create a PROOF client object
» ask the PROOF client object which event to process next

Nils Krumnack (lowa State University) 9



SampleHandler

e an ATLAS analysis may require over a hundred datasets
» mostly different background samples
» also need to track sample meta-data like luminosity
» tedious to do manually for large number of datasets
* manages list of files and meta-data per dataset
» can also pre-stage files as needed (rarely used feature)
» can manage local and grid datasets
* contains various data discovery methods
» typically written by expert when users request them
» allows to organize the input data in various ways

® success is somewhat mixed:
» lots of people use the basic functionality for EventLoop
» few people use (all) the advanced features that would help them
» mostly because it is hard to communicate all that SH can do

Nils Krumnack (lowa State University) 10




SampleHandler |l

* basic implementation very simple
» nothing difficult about a file list
» some extra features for pre-staging, remote access, etc.
* only snafu is meta-data:
» ideally want something like std::map<std::string,boost::any>
» but root can’t stream that
» instead use TList, wrapping everything into TObjects
» seems to be a recurring problem in several tools

* main advantage is to have single format for per-dataset data

» can be filled from various sources: text files, central database, etc.
» decouples tools from input source

Nils Krumnack (lowa State University) |



MultiDraw Plot Making st

e in principle TTree::Draw is pretty nice:
» it can be taught to anyone in minutes
» its interface is very intuitive
» it is highly optimized

* however: doesn’t scale well

* MultiDraw solves that:
» wraps T TreeFormula into an EventLoop algorithm, e.g.

new AlgHist (new THLF (...), "el_n")]

» can schedule as many algorithms as needed
» can run on any batch system via EventLoop
» can run in addition to any "regular” algorithm
* don’t know how many people actually use it:
» mostly because it just works...
» people who do use it seem pretty happy with it though

Nils Krumnack (lowa State University) 12



Transition To Run 2

* the long shutdown gave us chance for reorganization:
» harmonized tools between Athena and root-only analysis
» addressed some general issues

* merged file formats between Athena and root-only analysis
» common interface classes in both environments
» greatly simplifies writing tools serving both
» reduces waste/incompatibilities from multiple formats

e centrally provide precompiled analysis releases

» contains all common
» saves users the troub
» allows greater centra

packages typically needed
e of compiling them

control over packages used

* required two major rewrites of RootCore:
» first to support the releases themselves
» then rewrite it in python for speed...

Nils Krumnack (lowa State University) |3




New Tool Interface

* provide a new base class for analysis tools:
» i.e. tools that provide corrections, selections, etc.
» derives from different classes based on environment
» allows the same implementation to work in both environments

* nifty new mechanism for systematics:
» standard format/interface for systematic variations
» allows multi-sigma variations
» allows applying multiple systematics at once
e greatly simplifies systematics handling
» can just loop over all tools to set the systematic
* no tool specific code needed
e correlations automatically handled
* can happen before processing the event
» allows simple loop of systematics per event

Nils Krumnack (lowa State University) |4



Analysis Frameworks

* during run | many groups provided analysis frameworks
* at their core they all do mostly the same
> i.e. apply all the standard tools for the user
» provide collections of fully corrected good objects to the user
» provide an overall event weight to the user
» evaluate all systematics in a standardized manner

* in general very useful:
» simplifies life for the user
» harmonizes work within groups
» reduces potential for mistakes
* numerous problems as well:
» often hard to understand what they do exactly
» differences can make collaboration across groups impossible
» not every group had a framework, leaving some users stranded
» doesn’t always integrate with other ATLAS software

Nils Krumnack (lowa State University) |5



QuickAna Tool Scheduler s

* QuickAna is an attempt at a common analysis framework
» runs all analysis tools for the user
» provides final analysis objects to the user
» support for users from all high-pt physics groups
» implements object definitions from various groups
» make use of existing ATLAS software where possible

e try hard to avoid "black box" complaints
» all code that makes physics decisions is separated from the rest
» written in simple and straightforward C++
» following closely the actual physics logic
» should be understandable without looking at infrastructure code

Nils Krumnack (lowa State University) 16



QuickAna Object Deﬁnitionsﬁ@?@

* tools are grouped into object definitions
» e.g. all electron tools form the electron definition

* multiple possible configurations per object type
» the user chooses object definitions by name
e e.g. "tight" electrons, "loose” muons, etc.
» user can also choose multiple object definitions at once
e can store multiple selections on same object
» typically no extra configuration of individual tools needed

* a number of advantages:
» easy to teach to newcomers
» configuration matches physics presentations more closely
» insulates users from changes in tools
* introduces an additional layer to configuration
» translates physics configuration to tool configuration

Nils Krumnack (lowa State University) |7



QuickAna Optimized Running 5@@

* systematics evaluation is fairly simple:
» apply systematics setting
» run analysis code
» change systematics setting
» repeat dozens of times per event
* simple, robust, and wasteful:
» systematic setting typically affects just one tool
» rerunning other tools wastes CPU
» storing their output wastes disk space too

e for optimization all tools report:

» their inputs, outputs, and directly affecting systematics
* only re-run a tool if the systematic affects it or its inputs

» for other tools use output from no-systematics evaluation
* saves about factor 2-3 in terms of CPU

Nils Krumnack (lowa State University) |18



Some Personal Lessons g@@

e if you give users a choice between all or nothing
sometimes they will choose nothing

* make life easy for newcomers

» they outnumber the experts

» experts can often handle the complications better
 support multiple ways of doing the same thing

» hard to know which way is best beforehand

» different users have different tastes/needs

* try to implement user feature requests

» they typically know better than you what they need

» but don’t hesitate to do it your way

» some of my best features were based on feature requests
* do implement features only 5% of users want:

» a dozen such features is half your user base

Nils Krumnack (lowa State University) 19



Summary & Outlook

* during run | ATLAS developed a suite of analysis tools
» mostly because users weren’t using the main framework
» forming a simple analysis frameworks by now

* used the long shut-down to reengineer our tools

» made the two environments more similar

» made it easier to switch between the two environments
* continuing to integrate the tools even more

» aiming to have a single framework eventually

* trying to support work further down the analysis chain as well

» i.e. applying all the corrections, etc.
» simplify standard tasks like plotting, data management, etc.

Nils Krumnack (lowa State University) 20




