
CMS and ROOT6

David J Lange

LLNL

September 15, 2015

12015 ROOT workshop

CMS and ROOT

• CMS relies on ROOT from start to finish
– ROOT persistency to store simple and complex objects for

archiving and analysis
– ROOT histograming capability for quality assurance and data

certification plots
– User analysis (tuples, fitting, plotting)

• Like other externally developed packages, we build ROOT
ourselves (still using configure ) to have a flexible and
consistent tool set

• CMS made the transition to ROOT6 during the long
shutdown of LHC
– We maintain a mirror of the ROOT GitHub so we can retain the

flexibility to follow (or not) the latest changes in the ROOT
patches branches and to fix bugs we discover quickly.

2015 ROOT workshop 2

Evolution of ROOT6 in CMS

• Moving CMS to ROOT6 took a considerable effort
on the part of developers (and now users)

2015 ROOT workshop 3

2012 2014 2015 20162013

ROOT6 integration
into CMSSW

framework starts

ROOT6 integration
into rest of

CMSSW starts

First ROOT6
integration

build of CMSSW

First ROOT6
CMSSW release

ROOT6 becomes
default for CMSSW

Where are we now?

• 2015 release of CMSSW:
– Using ROOT 6.02.06+patches

– We will move soon to tip of 6.02 branch now that problem
blocking us for nearly 2 months is fixed

• Development release cycle
– Two versions

• Tip of 6.02 branch (+patches)

• Tip of 6.04 branch (+patches)

– Given the current status of our integration tests, we expect to
use ROOT 6.04 when this release cycle becomes production

• We are trying to stay up to date!

2015 ROOT workshop 4

Some issues we encountered on the way to
ROOT6.02....

2015 ROOT workshop 5

Increased memory footprint from header
parsing
• Increased memory from header parsing was a big part of the work.

Fixed both by ROOT changes and by CMSSW changes (to avoid the most
troublesome syntaxes).

• Fragile situation: on the CMSSW side, nothing prevents users from re-
introducing a “bad” syntax

• We still hope to do better, as header parseing a big part of our RSS

• Awaiting real PCMs: Reducing the memory from parsing can bring a
real improvement over our CMSSW+ROOT5

2015 ROOT workshop 6

RSS fraction of RECO application

Importance of threading: The CMS Multi-
threaded Framework now in production

• We have developed next-generation framework for CMSSW based
on a multi-threading approach

– This gives CMS a natural platform to
investigate highly parallelizable algorithms

• Short term focus: This Framework allows
us to process higher Run 2 trigger rates
efficiently and to adapt to computing
technology trends

• Current results:
– Good scaling in CPU performance beyond

where we need for Run 2

– Substantial application memory savings in
CMS reconstruction

• A development plan is in place to modify
the FWK to scale up the threading
performance to much higher levels over
the next years.

2015 ROOT workshop 7

ROOT and thread-friendliness

• To complete the transition of our production applications to
the threaded CMSSW framework, we needed to improve the
thread safety of a number of HEP products (“external” to
CMSSW)

• This work started with ROOT5 as our transition to the threaded
Framework started before ROOT6 was used by default in
CMSSW.

• For ROOT, the largest issues affecting us were with I/O
1. Read multiple TFiles on different threads
2. Write multiple TFiles on different threads
3. Calls to other ROOT functions on other threads should not

interfere with I/O

• We did not set reading/writing one TFile on multiple threads
as an initial need (or goal)

2015 ROOT workshop 8

Implementation

• Approach: Use static analyzer, helgrind, simple test
case

• Solutions applied
– thread_local

– Std::atomic<>

– Mutex locks

• Most of this work is now part of ROOT
– Exception: a lock in TROOT:GetListOfCleanups

– The ROOT changes were a critical component for
the efficient use of our threaded FWK

2015 ROOT workshop 9

What about analysis users?

• We asked CMS analysts for comments on their
experience moving from ROOT5 and ROOT6
– Received very little feedback – can interpret this as a

positive sign. No big troubles (despite some that were
anticipated)

– Some comments:
• Went more smoothly that expected.

• Compared to writing macros with ROOT5, ROOT6 forces you to
become a better programmer (both good and bad)

• Likely we will get much more feedback about ROOT6
performance as the Run 2 datasets increase.

2015 ROOT workshop 10

Changes to treatment of alpha-numeric
histogram
• Of course overflows in a

true alpha-numeric
histogram make no sense.

• But that doesn’t mean
that users don’t rely
on the previous
(ROOT5) behavior being
maintained in ROOT6

• Unfortunately it took looking at all of CMS Q/A histograms
to discover the handful of cases where the new behavior
makes a big difference
– This is one example where we missed any advertisement of

this important change.

2015 ROOT workshop 11

Its easier for us to adapt to low-level
changes than to user-facing changes.
Special care is needed as backwards
compatibility is usually assumed

Feedback on integration of bug fixes

• Bug fixes are often complex and may fix an issue for some but
cause new issues for others
– Impossible to catch all of these in a self contained ROOT test suite

• Suggestion: Can we work to more tightly couple experiment
validation and propagation of bug fixes?

• CMS would benefit from having an opportunity to check/sign-
off fixes in newest stable releases (eg, 6.04) before they go
back to older ones (eg, 6.02)
– The cost of problems getting all the way to stable releases is high

and delays other fixes from getting to our users
– We can volunteer to do this in a timely way (or not complain if we

don’t manage to)

2015 ROOT workshop 12

CMS data for Run 2: MiniAOD

• The “MiniAOD” has been created to increase agility and
flexibility of the CMS data format structure for Run 2

• We retain easy to use physics objects (e.g., complex
classes for jets,electrons,muons,etc) .

• Instead the big size gains in the MiniAOD come from
– Dropping objects used by a minority of analyses
– Adding tighter physics requirements on all objects
– Reduce precision where possible

• Goals were to keep only 20-40 kB per event while being
useful for 80-90% of CMS analyses
– While our format continues to evolve, these goals have been

achieved for Run 2 startup

2015 ROOT workshop 13

Optimizing miniAOD

• We investigated options for achieving better compression
– Focused on storage size and readback time
– The results of our AOD optimization years ago still hold. No

major improvements were found without changing data
formats (given current set of hooks available)

– On the other hand we found ways to potentially improve our
data formats

• One catch:
– We merge together MiniAOD from smaller files.

• Reconstruction time per event is too long to make a MiniAOD file that
is several GB (goes away with threaded MC jobs)

– Via fast cloning, the compression is much worse than if we
had run one long job

2015 ROOT workshop 14

Its important for ROOT to lead the way on new
platforms (with input from users of course)
• Low-power architectures are

one of the big R+D focus
points in CMS
– Collaborating on performance

measurements with both
reduced benchmarks and full
CMSSW

– Entire software stack up
to anaysis job submission
working in some cases (eg,
AArch64)

• Being an underlying
component of CMSSW, we
need ROOT support for
platforms
– Especially interested in

AArch64 and IBM POWER8
2015 ROOT workshop 15

Example CHEP15 Results

Conclusion

• ROOT has proven an extremely successful toolkit
for both CMS developers and users

• We find the weekly meeting with the ROOT team
essential
– We have ROOT6 for Run2 because of the long

collaboration between CMS and ROOT developers

– Should this become a more widely advertised
meeting for “customers” of ROOT?

2015 ROOT workshop 16

