Status and Evolution
of Multi-Processing in ROOT

G Ganis
CERN, PH/SFT

17 September 2015
ROOT 2015, Saas-Fee, Switzerland

2

Content

* PROOF

— Status, Perspectives

 Beyond PROOF
— Multiproc

* Summary

17/9/15 G.Ganis, Multi-Processing in ROOT

PROOF

Coordination of multiple ROOT sessions to
speed-up embarrassingly parallel task

Master/Workers model, pull architecture

Designed for TTrees
— Work scheduling is TTree-driven

Main goal: increase effective |I/0O

2

PROOF usage

» Systems built around of / using it
— VAF, Virtual Analysis Facility (see CHEP 2013)
— PAF (-> next talk)

LHC

— ALICE: CAF moved to VCAF, analysis framework supporting
PROOF

— ATLAS: PROOF-Lite, PoD on LSF/Ixbatch, PanDA

— CMS: Spontaneous users (PROOF-Lite, local clusters)
Italian National Project (PRIN)

— LHC data analysis on clouds using PROOF/PoD

— ALICE / ATLAS / CMS

Overall PROOF appears in 7 contributions to CHEP2015

PROOF since ROOT 2013

e Consolidation

e Established PoD as recommended RMS
— Relevant code on CernVM-FS

* Virtual Analysis Facility based on CernVM

* Dynamic addition of workers

— Includes adaptation of main packetizers
* Merging optimization

— Memory footprint, improved lookups
* Interface with igProf

* Prototype of ROOT/PROOF Draw unification

17/9/15 G.Ganis, Multi-Processing in ROOT

2

Dynamic addition of workers

* Exploit cloud-awareness of the PROOF model
— Adapts to heterogeneous resources
— Runs on elastic clouds

* Flexible workflow
— Start the query as soon as submission

— Workers added as available dynamically adapting to
the size of pool

* Full implementation since v5.34/27 / v6.04

* |Included in an ATLAS contribution at CHEP 2015
(next slide)

PROOF@ATLAS, CHEP 2015

U) 90_] L LI I LI l LI] I l I LI I T T T l L I I L ‘w

- PROOF w/ PoD/PanDA Q2 - Dynamic worker addition test .
- Measured average worker g 801" —NAPOLI Latency (average + RMS) E
_ : ~ Task processing activity:]

ramp l.Jp rate for the site Qo 701 — pull (proof) with dynamic worker addition
(blue line, hashed area) e sol .- push (batch)]

- 40 workers asked, PROOF T : /g
: > : £

launched right away & 50F —

. . o f =—=—

. Achve workers o.lurlng query s 401 — /__/ =
time (full black line) w/ -g : //]
dynamic worker addition s 30p == E

’ : C < B =l .

- Estimated execution time inn 201 ; § =
push (batch) mode (dashed 10k T Rec
black line) 5 == ﬂ ime-To-Result

. O Il 'I_l_ l Ll l |l l 1 Ll Il Ll L 1Ll l L | Ll I

- Time-to-result reduced by 500 300 400 500 600 700 800 9001000
20% in this example . . o
Time since submission [s]
Di Nardo et al., “PROOF-based analysis on ATLAS Italians Tiers with ProdSys2 and Rucio”, CHEP 2015, #179

17/9/15 G.Ganis, Multi-Processing in ROOT 7

2

PROOF: result of survey

Used by 121/364 of survey participants
PROOF-Lite

Local clusters

PoD

Start from TChain

Put all code in the selector file

Use improved output handling

Write own Merge

Use for non-tree driven tasks

Features less used (or known)

33%
32%
50%
18%
66%
47%
80%
12%
13%

Processing by-object (10%), feedback (5%), log viewer (10%)

2

PROOF plans

* “Frozen” functionality
— But remove gap with plain TTree::Process

* Consolidation
— Remove duplications, unused parts
— Full move to XRootD-4

e Documentation
— Dedicated primer

17/9/15 G.Ganis, Multi-Processing in ROOT

17/9/15

Beyond PROOF

G.Ganis, Multi-Processing in ROOT

10

2

What works

Exploitation of multi-cores w/ PROOF-Lite

“Automatic” merging is nice
— Single file with the results
— Multiple level of merging, submasters

Interactive exploitation of batch resources w/
PoD allow to fully use the assigned slot

— Use and reuse several times
Pull model may effectively reduce time-to-result
Easy-to-setup tools (PROOF-Lite, PoD)

2

What works less

* Requires modification of the code

— From BIG macro to TSelector
e Requires a class (TSelector) even for very simple things

e TSelector requires hacks to work on PROOF
— Steered by different internal code
* Lack of automatic environment consistency
— Loaded libs, envs settings, ...
Stability issues
— Non-PoD deployments not very stable
— PROOF-blamed even when not faulty
— Difficult Error Handling/Recovery
e Lack of practical examples

2

Future of Multi Processing

* Needs more flexibility

— Non TTree driven
* Generic task list

— Support for generic interface, macros, lambdas, ...
* Transparent environment setting
 Minimal - and extendible — protocol

2

e Multi-core machines

MP: three cases

* Local clusters
— Group or department farm
— Sharing file system

* Geographically distributed resources
— Clouds

17/9/15 G.Ganis, Multi-Processing in ROOT

14

2

e Multi-core machines " Rest of the talk

MP: three cases

* Local clusters
— Group or department farm
— Sharing file system

* Geographically distributed resources
— Clouds

17/9/15 G.Ganis, Multi-Processing in ROOT

15

2

Multi-core

* |dea: use copy-on-write techniques to address
environment setup issues in PROOF-Lite
workers

* Based on python multiprocessor module
— Adding reduce, process, ...

* E.Guiraud’s summer student project

* First version already in v6.05/02
— Module ‘core/multiproc’

17/9/15 G.Ganis, Multi-Processing in ROOT 16

.

2

multiproc approach

Normal
workfow

reap [fork()

subprocesss
collect results H distribute tasks]/

fork and

— connect to
objects are sent back using s e

ROQOT streaming capabilities

via socket
pipes

17/9/15 G.Ganis, Multi-Processing in ROOT 17

2

Implementation
Base protocol
TMPClient TFileHandler
Fork() Utility tools 1‘
Broadcast(..., <T>) mxz:s(()'"’ <T>) TMPWorker
HandleMPCode() virtual Handlelnput()
A

Derived protocol I
TPool TPoolWorker<F, T>
Map() Handlelnput()
MapReduce() F function
HandlePoolCode() T arguments

17/9/15

G.Ganis, Multi-Processing in ROOT

2

TPool::Map, TPool::MapReduce

defaults to C/C++ function _
std::container
n. of cores loaded macro . .
functor initializer list
std:-function TCollection&
'y ioned N
TPool pool(8) ambda exor unsigne
std::vector or TObjArray Reduce
function

auto result = pool.Map(fun, args)
auto result = pool.MapReduce(fun, args, redfun)

retType

Reduce function: <retType> redfun(std::vector<retType>)

17/9/15 G.Ganis, Multi-Processing in ROOT 19

2l

Map, MapReduce example

V6.05/02
TPool pool()
TObject
.L myMacro.cxx
auto res = pool.Map([](string £f){
return myMacro(“opt”,12, f£);},
{“filel”, “file2”, *“file3"})

auto res = pool.MapReduce([](string £f){
return myMacro(“opt”, 12, £);},
{"filel”, *“file2”, “file3"},
PoolUtils: :ReduceObjects)

Default reducer for TObject’s:
namespace PoolUtils { TObject* ReduceObjects(const std::vector<TObject *>& objs); }

17/9/15 G.Ganis, Multi-Processing in ROOT 20

2

* Dedicated to TTree processing

TPool::Process WoRK In

PROGRESS

* Exploit TTreeReader goodnesses
* Flexible range of ‘macros’, functions, ...
e Support for TSelector

17/9/15 G.Ganis, Multi-Processing in ROOT 21

2l

fun retType

TPool::Process

std::vector
TFileCollection
TChain

C/C++ function
loaded macro
functor, ...
TSelector

auto result = pool.Process(dset, fun, args)

Example w/ @ <retType> fun(TTreeReader r) {

generic
function

17/9/15

// Attached to required leaves
TTreeReaderValue<Float_t> pO(t, “p0”);
// Loop over the range

while (r.Next()) {

// Do something
}

return ret;

G.Ganis, Multi-Processing in ROOT

WORK IN
PROGRESS

(Final interface can
be different!)

22

TPool AoB

* More TPool::Map signatures available
— Including possibility to call fun N times

* Supports greedy workers implemented
— Not yet in the repository

 Merging (reduce) is currently serial

— Plans to implement
e Parallel (submerger) technology (for histos ...)
e Collector (ParallelIMerge) technology (for trees ...)

 Some portability issues
— MacOsX does not like fork()
— Windows does not have fork()

2

MP on clusters: ideas

* local (well connected) clusters

— multiproc interface could be ‘kept’ if
 Efficient sharing of working directory

* Environment setup a la distributed shell
— Execute commands on all processes concurrently

* Distributed clusters
— Protocol to loosely couple ROOT sessions

— Modular functionality to build on top
* Merger, elastic scheduler, ...

2

e Dynamic Deployment System

Distributed cluster with DDS

— GSI development built on PoD experience
* In the context of ALFA (see M. Al-Turany talk)

— Handles set of processes, exchanging info via key-values
pairs
* PROOF on DDS as a first step

— Requires implementation of DDS message exchanging
technology in ROOT

— Removes need for a connection layer, daemon, ...
— Allows to run the master on the cluster

e Could be the base for a more flexible interconnection
protocol

17/9/15 G.Ganis, Multi-Processing in ROOT 25

2

Summary

PROOF maintenance mode
— Base for well advanced analysis facility toolkits

Multi-process framework available for
multicores

— Provides flexible and powerful interface exploiting
copy-on-write and C++11 features

Evaluating / prototyping ideas for the future
ROOT MP across machines

DDS promising ‘replacement’ of PoD

