New Interfaces for

ROOT 7/

Axel Naumann
ROQOT Users’ Workshop, 2015

Prelude

ROQOT has Evolved

ROOT

Version 4

ROOT

Data Analysis Framework

ROOT

Version 5

3 ROOT Users’ Workshop 2015 — Axel Naumann

Backward Compatibility

* For 20 years now, ROOT macros “just” work across
ROOT versions:

TFile* f = new TFile(“hist.root”);
hpx->Draw() ;

4 ROQOT Users' Workshop 2015 — Axel Naumann

That's Good, Right?

* Dated interface personality

* Functionality changes impossible

5 ROQOT Users' Workshop 2015 — Axel Naumann

No Change of Behavior

* We can add. And we did. Plenty.

3M

openhub.net

2M

1M

___________“w

2002 2004 2006 2008 2010 2012 2014

* But changing behavior is deadly for backward
compatibility, see e.g. TAxis::SetRange()

6 ROOT Users’ Workshop 2015 — Axel Naumann

v6 Intertace Personality

 ROOT's intertaces homogenous and consistent
« Convey meaning besides the intertace itselt

C Example; func(TObject* 0);

» takes something that inherits from TObject;
check the documentation of what's allowed

o it's likely not an optional argument (no "= 0")

7 ROQOT Users' Workshop 2015 — Axel Naumann

v6 Intertace Personality

* Interface design is from the 1990s: object
oriented, virtual interfaces: feature set available in

C++98 and CINT

e Pointers-to-base

 PAW-style convenience: named objects, partial
and implicit lifetime management

8 ROQOT Users' Workshop 2015 — Axel Naumann

ROQOT Bashing Is Fun!

ROQOT's design allowed us to do large scale, scientific
computing for decades!

Serialization! Math! Interaction with giant frameworks!
All those plots! On (nearly) whatever platform!

We all speak and know ROOT, and there is a reason

ROQT is an excellent product, especially taking into
account that it's ROOTed in the 90s!

9 ROQOT Users' Workshop 2015 — Axel Naumann

“Things alter for the worse spontaneously, if
they be not altered for the better designedly.”

~-Francis Bacon

10

Motivation
Destination
Progress

Plan

This Talk

11

ROQOT Users' Workshop 2015 — Axel Naumann

Motivation

Attack Dated C++

 ROOT is not using the C++ you learn, nor that of 5
years from now

* Hinders interoperability with current code (user or
frameworks): iterators, std library, virtual intertaces

13 ROQOT Users' Workshop 2015 — Axel Naumann

New Interfaces

* Use language features to simplify physicists’ lite:
more robust, more speed, more clarity

* Break backward compatibility once, to fix design
issues without duck tape

e notabout TH1, but about RecursiveRemove(),
const char* returns and int = -1 arguments,
context (gPad, gDirectory) and alike

14 ROQOT Users' Workshop 2015 — Axel Naumann

Goal: Interoperability

* |Interoperability with current C++
» standard types - std::string, std::vector
* standard concepts - iterators, templates
* side effect: less code in ROOT!

* |Interoperability with other languages

» explicit interfaces: no void*, no implicit ownership

15 ROQOT Users' Workshop 2015 — Axel Naumann

Goal: Simplicity
Very subjective - but we can likely agree on:

 classes with 100 virtual functions are not simple

* sweet spot of “simple” has changed with time:
compiler support; multithreading; code size

Split functionality, keep things focused

Less TClass / interpreter, more regular C++

16 ROQOT Users' Workshop 2015 — Axel Naumann

Goal: Task-Parallel

» Clear objective: reduce statics, caches
* no context state: gDirectory, gPad

* |ess object registration, no PAW-style memory
management

e Plus “const means thread-safe” / documentation

17 ROQOT Users' Workshop 2015 — Axel Naumann

Goal: Robustness

Type-safety: no cast surprises

Ownership defined on type-level (smart pointers);
self-documenting

func(const X&) not X* if func requires an X!

Move from string flags to compiler-checkable

identifiers: TFile::Open(...,"RECREATE") versus
TFile::Recreate(...)

18 ROQOT Users' Workshop 2015 — Axel Naumann

Goal: etc

» Backward compatibility until 2035

» design for change: abstraction, separation of
public and internal parts

* Speed

* necessary, but not sufficient as an argument

19 ROQOT Users' Workshop 2015 — Axel Naumann

Why Now?

ROQT 6 is missing only PCMs and Windows

We collected issues and solutions: hardware +
software demand changes

We have the tools now: modern C++ and its
knowledge out there, deployment with
experiments, cling

Become ready with CERN experiments for Run 3

20 ROQOT Users' Workshop 2015 — Axel Naumann

Destination

4

ROOT Is Our Language

canv->Draw(hist);
file->Write(“hpx”, hist);

22 ROQOT Users' Workshop 2015 — Axel Naumann

...Adapt Where Needed

TFilePtr f = TFilePtr::Read(“htst.root”);
auto hist = f->Get<TH1F>(“hpx");

23 ROQOT Users' Workshop 2015 — Axel Naumann

Ingredients: C++ >= 14

i L SN
T el y e

* Rationale: target compilers in 3 years from now
(but can actually be used already now)

 Makes code much simpler

« example std::array_view (start and size), ranges

24 ROOT Users’ Workshop 2015 — Axel Naumann

Ingredients: Ownership

* unique_ptr, shared_ptr

e TCoopPtr

» pointer-handle: everyone can have one, once
anyone calls TCoopPtr::Delete(), everyone will

see a nullptr

* replaces RecursiveRemove()

25 ROQOT Users' Workshop 2015 — Axel Naumann

« Member function that only accesses public 47
interfaces should not be a member: Fit()

|t adding state or optional complexity: split!
THistBufferedFill, THistView

* bad: more classes, good: clearer job description,
reduced dependencies, only pay for what you use

* Documentation! Move internals into namespace

26 ROQOT Users' Workshop 2015 — Axel Naumann

Ingredients !|= Goals

* Ingredients are tools
to get the goals done

 Don't misinterpret
C++14 as the goal!

2al ROOT Users' Workshop 2015 — Axel Naumann

tutorials/v//simple.cxx

#include "ROOT/THist.h"
#include "ROOT/TFit.h"
#include "ROOT/TFile.h"

void simple() {

// Create a 2D histogram with an X axis with equidistant bins, and a y axtis
// with irregular binning.

ROOT: : TAxisConfig xAxis(100, 0., 1.);

ROOT: : TAxisConfig yAxis({0., 1., 2., 3.,10.});

ROOT: :TH2D histFromVars(xAxis, yAxis);

// Or the short in-place version:

// Create a 2D histogram with an X axis with equidistant bins, and a y axis
// with irregular binning.

ROOT::TH2D hist({100, 0., 1.}, {{0., 1., 2., 3.,10.}});

// Fill weight 1. at the coordinate 0.01, 1.02.
hist.Fil11({0.01, 1.02});

// Fit the histogram.
ROOT: : TFunction<2> func([](const std::array<double,2>& X,
const std::array view<double>& par)
{ return par[0]*x[0]*x[0] + (par[1]-x[1])*x[1]; });

ROOT: :TFitResult fitResult = ROOT::FitTo(hist, func, {{0., 1.}});

ROOT: :TFilePtr file = ROOT::TFile::Recreate("hist.root");
file->Write("TheHist", &hist);

28 ROOT Users' Workshop 2015 — Axel Naumann

#includes

#include "ROOT/THist.h"
#include "ROOT/TFit.h"
#1include "ROOT/TFile.h"

* Scoped headers

29 ROOT Users’ Workshop 2015 — Axel Naumann

Explicit Concepts

ROOT: : TAxisConfig xAxis(100, 0., 1.);
ROOT: : TAxisConfig yAxis({0., 1., 2., 3.,10.});
ROOT: : TH2D histFromVars(xAxis, YyAX1ls);

 ROOT 6: "“just” a set of arguments.

» Added structure, yet easily usable due to C++11:

ROOT::TH2D hist({100, 0., 1.},
{{0., 1., 2., 3.,10.}});

30 ROQOT Users' Workshop 2015 — Axel Naumann

Contemporary C++ == Safety

hist.Fil1({0.01, 1.02});

* We might not know, but young people and

compilers read: “pass collection with two
elements”

 Map Double_t* to “coordinate” concept:

* |let compiler check the size! (and yes, make it
availablel!)

31 ROQOT Users' Workshop 2015 — Axel Naumann

Use Contemporary Wording

ROOT: : TF1tResult fi1tResult
= ROOT::FitTo(hist, func, {{0., 1.}});

* Separate properties from operations on objects

32 ROQOT Users' Workshop 2015 — Axel Naumann

More...

file->Write("TheHist", hist);

No names, unless as a key

Lifetime management is good - but now explicit

Reduce TClass + interpreter use, replace by

templates, abstract interfaces

Pass reference if function expects valid argument

33

ROQOT Users' Workshop 2015 — Axel Naumann

AR -l b A
N e N N N,
S o S AN A

A .
LR B
... <9/ (=

V\-.,\

Proot-Ot-Concept Prototype

cmake -Droot7=0n -Dcxx14=0n

e Inv6.05.02! See tutorials/v7/

 Show-cases interfaces

 started with histograms and their interaction with
TFile, drawing

» THistView, bin iteration, compile-time properties...

* Criticism very welcome!

35 ROQOT Users' Workshop 2015 — Axel Naumann

Major Missing Features

* No graphing, no serialization yet

* (Almost) no histogram operations yet

* Warning - this is a non-functional prototype!
For now...

36 ROQOT Users' Workshop 2015 — Axel Naumann

THist<?2, float>

e User-level interface

» provides range (all or view) operations, for
instance Add(), Project()

* access by coordinates

e Points to...:

37 ROQOT Users' Workshop 2015 — Axel Naumann

THistimplBase<?2, float>

* Implementation (but accessible for users)
* provides bin index operations, bin iterator

» derived types templated on axis type
(equidistant, irregular,...) and statistics type

38 ROQOT Users' Workshop 2015 — Axel Naumann

Separation THist/Impl

e Less runtime if-s: axis, statistics are compile-time
 much faster Fill()

* Reduced interface complexity

« Can move vtable evaluation out of bin-loop

» apply lambda to all bins: add, project etc

39 ROQOT Users' Workshop 2015 — Axel Naumann

Performance

TH2D on a Xeon E5-2650 2.6 GHz, no Sumw2()

Irregular binning Equidistant binning

ROOT 6/ROOT7 ROOT6/ROOT7

N
O _ :
bQ 15? l l 155
0 o 24714 oo 2477
9 RooTée ROOTZ ” ROOT6 ROOT7
40} 25
ds / B 20 ¢
seconds 25 s
: / :
20 F :
1G Fills 15¢ 40716 10} 25/ 7
by 5¢
9 Roote RoOTz ° ROOT6 ROOT7

40 ROOT Users’ Workshop 2015 — Axel Naumann

TPad::Draw(WHAT, OPT)

std::unique ptr<TDrawable>
GetDrawable(.. ptr<THist<D,T>>,

e Calls HistOpts<D>)

* Free function creates TPad primitive, here for THist
+ drawing options; THist stays math object

* Loose coupling of painting through TDrawable
interface: invokes THistPainter from libHistPainter

» extendable drawing without TObject

41 ROQOT Users' Workshop 2015 — Axel Naumann

The Plan

Gradual Transition

* New interfaces arrive one by one
* cannot devote full team on this

» design with care, take time: these interfaces
should survive for the next 20 years!

e Think ROOT in the 90s

e start smalll

43 ROQOT Users' Workshop 2015 — Axel Naumann

Avoiding Collisions

e Before release of ROOT 7:

e new interfaces arrive in ROOT::

e After release of ROOT 7:

* replaced, old interfaces move to ROOT::vé::

44 ROQOT Users' Workshop 2015 — Axel Naumann

ROOT 7/

e "ROOT 7" once relevant fraction is available, then

deprecate old interfaces
* Goal: intime for Run 3 shutdown

* we know experiments are questioning their
software fundamentals

 make ROQOT the obvious building block again!
We have the experience and expertise

45 ROQOT Users' Workshop 2015 — Axel Naumann

Feasible?

Allow reading old data into new ROOT
Glue new interfaces to rest of ROOT 6
Later: ROQOT 6 interfaces use ROOT 7 ones

Interact with experiments, early and continuously

e take what worked well for ROOT 6

46 ROQOT Users' Workshop 2015 — Axel Naumann

Conclusion

: . ~

.
v
L
B
s
“%

The Goal

* The world has changed, ROOT needs to adapt
* Successful maintenance, yet need for evolution

* Can only convince through features, robustness,
simplicity: usability

48 ROQOT Users' Workshop 2015 — Axel Naumann

The Path

* Small steps enable organic growth: enable feed-
back loop

* Early involvement and adoption has proven a key
ingredient to success of ROOT 6 (and v1,v2,...),
much more for ROOT 7

e |Intime for Run 3!

49 ROQOT Users' Workshop 2015 — Axel Naumann

ROOT 7/

e Like ROQOT 6: a revolution for ROOT

* New interfaces are an integral part, enabling
ROOT to implement the lessons learnt over two

decades

* While being backward incompatible once, ROOT
will continue to be built by experts, based on
experience, for HENP production tasks

50 ROQOT Users' Workshop 2015 — Axel Naumann

