
New Interfaces for
ROOT 7

Axel Naumann
ROOT Users’ Workshop, 2015

Prelude

ROOT Users’ Workshop 2015 — Axel Naumann

ROOT has Evolved

3

ROOT Users’ Workshop 2015 — Axel Naumann

Backward Compatibility

• For 20 years now, ROOT macros “just” work across
ROOT versions:

TFile* f = new TFile(“hist.root”);
hpx->Draw();

4

ROOT Users’ Workshop 2015 — Axel Naumann

That’s Good, Right?

• Dated interface personality

• Functionality changes impossible

5

ROOT Users’ Workshop 2015 — Axel Naumann

No Change of Behavior
• We can add. And we did. Plenty. 
 
 
 
 
 

• But changing behavior is deadly for backward
compatibility, see e.g. TAxis::SetRange()

6

openhub.net

ROOT Users’ Workshop 2015 — Axel Naumann

v6 Interface Personality
• ROOT’s interfaces homogenous and consistent

• Convey meaning besides the interface itself

• Example:

• takes something that inherits from TObject;
check the documentation of what’s allowed

• it’s likely not an optional argument (no “= 0”)

7

func(TObject* o);

ROOT Users’ Workshop 2015 — Axel Naumann

v6 Interface Personality

• Interface design is from the 1990s: object
oriented, virtual interfaces; feature set available in
C++98 and CINT

• Pointers-to-base

• PAW-style convenience: named objects, partial
and implicit lifetime management

8

ROOT Users’ Workshop 2015 — Axel Naumann

ROOT Bashing Is Fun!
• ROOT’s design allowed us to do large scale, scientific

computing for decades!

• Serialization! Math! Interaction with giant frameworks!
All those plots! On (nearly) whatever platform!

• We all speak and know ROOT, and there is a reason

• ROOT is an excellent product, especially taking into
account that it’s ROOTed in the 90s!

9

–Francis Bacon

“Things alter for the worse spontaneously, if
they be not altered for the better designedly.”

10

ROOT Users’ Workshop 2015 — Axel Naumann

This Talk

• Motivation

• Destination

• Progress

• Plan

11

Motivation

12

ROOT Users’ Workshop 2015 — Axel Naumann

Attack Dated C++

• ROOT is not using the C++ you learn, nor that of 5
years from now

• Hinders interoperability with current code (user or
frameworks): iterators, std library, virtual interfaces

13

ROOT Users’ Workshop 2015 — Axel Naumann

New Interfaces
• Use language features to simplify physicists’ life:

more robust, more speed, more clarity

• Break backward compatibility once, to fix design
issues without duck tape

• not about TH1, but about RecursiveRemove(),
const char* returns and int = -1 arguments,
context (gPad, gDirectory) and alike

14

ROOT Users’ Workshop 2015 — Axel Naumann

Goal: Interoperability
• Interoperability with current C++

• standard types - std::string, std::vector

• standard concepts - iterators, templates

• side effect: less code in ROOT!

• Interoperability with other languages

• explicit interfaces: no void*, no implicit ownership

15

ROOT Users’ Workshop 2015 — Axel Naumann

Goal: Simplicity
• Very subjective - but we can likely agree on:

• classes with 100 virtual functions are not simple

• sweet spot of “simple” has changed with time:
compiler support; multithreading; code size

• Split functionality, keep things focused

• Less TClass / interpreter, more regular C++

16

ROOT Users’ Workshop 2015 — Axel Naumann

Goal: Task-Parallel

• Clear objective: reduce statics, caches

• no context state: gDirectory, gPad

• less object registration, no PAW-style memory
management

• Plus “const means thread-safe” / documentation

17

ROOT Users’ Workshop 2015 — Axel Naumann

Goal: Robustness
• Type-safety: no cast surprises

• Ownership defined on type-level (smart pointers);
self-documenting

• func(const X&) not X* if func requires an X!

• Move from string flags to compiler-checkable
identifiers: TFile::Open(…,”RECREATE”) versus
TFile::Recreate(…)

18

ROOT Users’ Workshop 2015 — Axel Naumann

Goal: etc

• Backward compatibility until 2035

• design for change: abstraction, separation of
public and internal parts

• Speed

• necessary, but not sufficient as an argument

19

ROOT Users’ Workshop 2015 — Axel Naumann

Why Now?
• ROOT 6 is missing only PCMs and Windows

• We collected issues and solutions; hardware +
software demand changes

• We have the tools now: modern C++ and its
knowledge out there, deployment with
experiments, cling

• Become ready with CERN experiments for Run 3

20

Destination

21

ROOT Users’ Workshop 2015 — Axel Naumann

ROOT Is Our Language

22

canv->Draw(hist);
file->Write(“hpx”, hist);

ROOT Users’ Workshop 2015 — Axel Naumann

…Adapt Where Needed

23

TFilePtr f = TFilePtr::Read(“hist.root”);
auto hist = f->Get<TH1F>(“hpx”);

ROOT Users’ Workshop 2015 — Axel Naumann

Ingredients: C++ >= 14

• Rationale: target compilers in 3 years from now
(but can actually be used already now)

• Makes code much simpler

• example std::array_view (start and size), ranges

24

ROOT Users’ Workshop 2015 — Axel Naumann

Ingredients: Ownership
• unique_ptr, shared_ptr

• TCoopPtr

• pointer-handle: everyone can have one, once
anyone calls TCoopPtr::Delete(), everyone will
see a nullptr

• replaces RecursiveRemove()

25

ROOT Users’ Workshop 2015 — Axel Naumann

Ingredients: Focus
• Member function that only accesses public

interfaces should not be a member: Fit()

• If adding state or optional complexity: split!
THistBufferedFill, THistView

• bad: more classes, good: clearer job description,
reduced dependencies, only pay for what you use

• Documentation! Move internals into namespace

26

ROOT Users’ Workshop 2015 — Axel Naumann

Ingredients != Goals

• Ingredients are tools
to get the goals done

• Don’t misinterpret 
C++14 as the goal!

27

ROOT Users’ Workshop 2015 — Axel Naumann

tutorials/v7/simple.cxx

28

#include "ROOT/THist.h" 
#include "ROOT/TFit.h" 
#include "ROOT/TFile.h" 
 
void simple() { 
 
 // Create a 2D histogram with an X axis with equidistant bins, and a y axis 
 // with irregular binning. 
 ROOT::TAxisConfig xAxis(100, 0., 1.); 
 ROOT::TAxisConfig yAxis({0., 1., 2., 3.,10.}); 
 ROOT::TH2D histFromVars(xAxis, yAxis); 
 
 // Or the short in-place version: 
 // Create a 2D histogram with an X axis with equidistant bins, and a y axis 
 // with irregular binning. 
 ROOT::TH2D hist({100, 0., 1.}, {{0., 1., 2., 3.,10.}}); 
 
 // Fill weight 1. at the coordinate 0.01, 1.02. 
 hist.Fill({0.01, 1.02}); 
 
 // Fit the histogram. 
 ROOT::TFunction<2> func([](const std::array<double,2>& x, 
 const std::array_view<double>& par) 
 { return par[0]*x[0]*x[0] + (par[1]-x[1])*x[1]; }); 
 
 ROOT::TFitResult fitResult = ROOT::FitTo(hist, func, {{0., 1.}}); 
 
 ROOT::TFilePtr file = ROOT::TFile::Recreate("hist.root"); 
 file->Write("TheHist", &hist); 
}

ROOT Users’ Workshop 2015 — Axel Naumann

#includes

• Scoped headers

29

#include "ROOT/THist.h" 
#include "ROOT/TFit.h" 
#include "ROOT/TFile.h"

ROOT Users’ Workshop 2015 — Axel Naumann

Explicit Concepts

• ROOT 6: “just” a set of arguments.

• Added structure, yet easily usable due to C++11:

30

ROOT::TAxisConfig xAxis(100, 0., 1.); 
ROOT::TAxisConfig yAxis({0., 1., 2., 3.,10.}); 
ROOT::TH2D histFromVars(xAxis, yAxis);

ROOT::TH2D hist({100, 0., 1.}, 
 {{0., 1., 2., 3.,10.}});

ROOT Users’ Workshop 2015 — Axel Naumann

Contemporary C++ == Safety

• We might not know, but young people and
compilers read: “pass collection with two
elements”

• Map Double_t* to “coordinate” concept:

• let compiler check the size! (and yes, make it
available!)

31

hist.Fill({0.01, 1.02});

ROOT Users’ Workshop 2015 — Axel Naumann

Use Contemporary Wording

• Separate properties from operations on objects

32

ROOT::TFitResult fitResult 
 = ROOT::FitTo(hist, func, {{0., 1.}});

ROOT Users’ Workshop 2015 — Axel Naumann

More…

• No names, unless as a key

• Lifetime management is good - but now explicit

• Reduce TClass + interpreter use, replace by
templates, abstract interfaces

• Pass reference if function expects valid argument

33

file->Write("TheHist", hist);

Progress

ROOT Users’ Workshop 2015 — Axel Naumann

Proof-Of-Concept Prototype

• In v6.05.02! See tutorials/v7/

• Show-cases interfaces

• started with histograms and their interaction with
TFile, drawing

• THistView, bin iteration, compile-time properties…

• Criticism very welcome!

35

cmake -Droot7=On -Dcxx14=On

ROOT Users’ Workshop 2015 — Axel Naumann

Major Missing Features

• No graphing, no serialization yet

• (Almost) no histogram operations yet

• Warning - this is a non-functional prototype!  
For now…

36

ROOT Users’ Workshop 2015 — Axel Naumann

THist<2, float>

• User-level interface

• provides range (all or view) operations, for
instance Add(), Project()

• access by coordinates

• Points to…:

37

ROOT Users’ Workshop 2015 — Axel Naumann

THistImplBase<2, float>

• Implementation (but accessible for users)

• provides bin index operations, bin iterator

• derived types templated on axis type
(equidistant, irregular,…) and statistics type

38

ROOT Users’ Workshop 2015 — Axel Naumann

Separation THist/Impl
• Less runtime if-s: axis, statistics are compile-time

• much faster Fill()

• Reduced interface complexity

• Can move vtable evaluation out of bin-loop

• apply lambda to all bins: add, project etc

39

ROOT Users’ Workshop 2015 — Axel Naumann

Performance
TH2D on a Xeon E5-2650 2.6GHz, no Sumw2()

40

Irregular binning 
ROOT 6 / ROOT 7

Equidistant binning 
ROOT 6 / ROOT 7

seconds /  
10M Constructions 24 / 14 24 / 7

seconds /  
1G Fills 40 / 16 25 / 7

Fix
ed

 n
um

be
rs

!

ROOT Users’ Workshop 2015 — Axel Naumann

TPad::Draw(WHAT, OPT)

• Calls

• Free function creates TPad primitive, here for THist
+ drawing options; THist stays math object

• Loose coupling of painting through TDrawable
interface: invokes THistPainter from libHistPainter

• extendable drawing without TObject

41

std::unique_ptr<TDrawable>
GetDrawable(…_ptr<THist<D,T>>,
 HistOpts<D>)

The Plan

ROOT Users’ Workshop 2015 — Axel Naumann

Gradual Transition
• New interfaces arrive one by one

• cannot devote full team on this

• design with care, take time: these interfaces
should survive for the next 20 years!

• Think ROOT in the 90s

• start small!

43

ROOT Users’ Workshop 2015 — Axel Naumann

Avoiding Collisions

• Before release of ROOT 7:

• new interfaces arrive in ROOT::

• After release of ROOT 7:

• replaced, old interfaces move to ROOT::v6::

44

ROOT Users’ Workshop 2015 — Axel Naumann

ROOT 7
• “ROOT 7” once relevant fraction is available, then

deprecate old interfaces

• Goal: in time for Run 3 shutdown

• we know experiments are questioning their
software fundamentals

• make ROOT the obvious building block again!
We have the experience and expertise

45

ROOT Users’ Workshop 2015 — Axel Naumann

Feasible?
• Allow reading old data into new ROOT

• Glue new interfaces to rest of ROOT 6

• Later: ROOT 6 interfaces use ROOT 7 ones

• Interact with experiments, early and continuously

• take what worked well for ROOT 6

46

Conclusion

47

ROOT Users’ Workshop 2015 — Axel Naumann

The Goal

• The world has changed, ROOT needs to adapt

• Successful maintenance, yet need for evolution

• Can only convince through features, robustness,
simplicity: usability

48

ROOT Users’ Workshop 2015 — Axel Naumann

The Path

• Small steps enable organic growth: enable feed-
back loop

• Early involvement and adoption has proven a key
ingredient to success of ROOT 6 (and v1, v2,…),
much more for ROOT 7

• In time for Run 3!

49

ROOT Users’ Workshop 2015 — Axel Naumann

ROOT 7
• Like ROOT 6: a revolution for ROOT

• New interfaces are an integral part, enabling
ROOT to implement the lessons learnt over two
decades

• While being backward incompatible once, ROOT
will continue to be built by experts, based on
experience, for HENP production tasks

50

