(V/— PROOF
PAF ANALYSIS
W\V FRAMEWORK

Isidro Gonzdlez Caballero
& Javier Delgado Ferndndez

ROOT Users’ Workshop 2015

http://www.hep.uniovi.es/PAF
http://www.hep.uniovi.es/PAF

Outline

Why? — The use cases

What? — Description

How? — The details and examples

Where? — PAF Environments

When? — The present situation and the future

Who? — Developers, users, documentation...

Why? — A typical HEP analysis scenario

RAW Data &

: : Reconstruction MiniAOD
Simulation

Experiment

Expert user —wmlpy Physics results ; Flat Trees

(Histograms)
Final user <«

o1 After reconstruction, skimming, slimming, ... what is left is a
(more or less) flat tree with the relevant variables and events

o Size: 100 MB — 10 GB per sample
o1 Total data to process: 100 GB — 10 TB per analysis

PROOF Analysis Framework — ROOT User’s Workshop 2015 - I. Gonzalez

Why? — The computing resources around
xm

0 Heterogeneous situation among institutions

o CPU: From multicore workstations to local clusters with
batch, grid or cloud systems

©1 Storage: From few local TB to dedicated disk servers with
O(100 TB)

o In many situations these resources are underused during
the analysis development phases

1 At the beginning only process a (few selected) sample(s)
o Only when things are stable go for the whole data

o Drawbacks of usual strategies:
- Local root macro only uses a core

- Batch system response time driven by biggest sample
= If sample split in several jobs, manually merge results at the end

-~

>

PROOF Analysis Framework — ROOT User’s Workshop 2015 - I. Gonzalez

What? — PROOF

PROOF stands for Parallel ROOT Facility 7

It is an extension of ROOT enabling interactive analysis
of large sets of ROOT files in parallel on clusters of

computers or many-core machines.)5;{
The main design goals for the PROOF system are: J -

Transparency: running a PROOF session should not be very different
from running a ROOT session

Scalability
Adaptability to variations in the remote environment

It is based on the TSelector model by ROOT

IMHO, PROOF is a very nice and complete framework

But using it at the level required for a serious analysis introduces
some complexities that may scare new adopters

A=t :
SO A PAF -
njn uL jm (1[] by
00,0°8a4

What — PROOF Analysis Framework -
(PAF) N\
o

1 The PROOF Analysis Framework (PAF) is a tool to easily and quickly implement
distributed analysis over ROOT trees

Physicists should concentrate on analysis rather than on software or computing
Migration from a typical ROOT based sequential analysis should be very easy
-1 PAF hides as much as possible the inherent complexities of parallel paradigms to
the final users

Taking care of the tedious and repetitive tasks as much as possible (setting the
environments, packaging and uploading code, passing information to the WNs, ...)

Setting sensible default values for configurable parameters (still maintaining access to
them)

Making smart decisions when possible

1 PAF provides a common framework for different distributed computing
technologies:
Uniformly exposing the PROOF related configurations across technologies
Taking advantage of all the cores in modern CPUs through PROOF Lite
Building dynamic PROOF clusters through PROOF Cluster or PROOF on Demand
(or even pure sequential processing)

b /RN D PAF< .
af o A -
nn u[jr\ LL] v
00,0°8a4 .

http://www.hep.uniovi.es/PAF
http://www.hep.uniovi.es/PAF

What? — PAF history

Initial release in 2006
With little changes until now 4

It has served well the CMS community
at U. Oviedo and IFCA during LHC Run |

During the last 6 months we have completely
re-engineered PAF = V5.0.1

PAF has now a strong object orientation:

Easier to understand and modify the system, particularly
for new developers

Enforcing a modular architecture design
Flexibility to adapt to new scenarios

Providing interfaces to change almost any
functionality

AR

I\ / \ 1
Y dh0
0 il Joaa
00 6 0 1 0

1]1] (ﬁ
6 6 6 B\

0 / N A
b B]ﬁf‘f’n
¥ Ih i b
vabbo

Y
U/

CMS

PAF =~
‘s

How? — The big (probably useless) picture

[]

Computing
= . B Packagesf . B
ontainers and processorsfor execution code
1 1 °
Computing Computing Types :
Classes directly involved in the analysis process Types used in calculations PAFLibrary PAFSelector
PAFISelector PAFBaseSelector PAFI[Type PAFTypesFactory PAFPackageSelector
PAFChainltemSelector PAFChainSelector PAFAbstractType PAFPrimitiveType <T>
]
- PAFArrayPrimitive Type<T> PAFElementType<T> Logger
ComputingHelpers : Logger used by PAF
Components making easier some computing tasks
PAFFindHelper IPAFElementVectorType<T> PAFTObjectType<T> PAFLogger PAFLoggerEnum
PAFILogger PAFConsoleLogger
| :
VariableContainer S
Component that holds any type of data]
F Environments
PAFVariableContainer . . PHOOFLll?raryUpIoac.i o Environments available in which you can execute your analysis
Provides different strategies to load libraries in PROOF
. . . . PAFIExecutionEnvironment PAFPROOFEnvironment
PAFGenericltemVariableContainer PAFPROOFIUploadLibrary
] . PAFPROOFCloudEnvironment PAFPROOFLiteEnvironment
PAFPROOFUploadLibrarySharedDirectory
1
Util . PAFPROOQOFClusterEnvironment PAFPoDEnvironment
Utility classes for PAF PAFPROOFUploadLibraryTProofUpload
PAFNamedItem PAFStopWatch PAFSequentialEnvironment
PAF StringUtil
[1]
Project
1] _ 1 _ 1
Provides the settings t%epgt,ﬂgﬁsing several strategies Classes configurin%rgj%%tmplete user analysis Behaviour whenaﬁoeg{)'?géyg&‘,{’saé?gnalysis is updated
PAFISettings PAFProject PAFAbstractProject PAFIProgreessUpdated
PAFManualSettings PAFProjectGeneric PAFProgresUpdatedLogger
PAFEnvironmentVariableSettings

How? — Everything starts with a project

Project paradigm to configure
an execution:

Easy and intuitive configuration

PAFProject has lots of
parameters
Only a couple are mandatory:

I n p ut d ata PAFPrOJectconﬁguratmn possibilities
Selector name (see next slide)

Default values and smart
decision taking for most of
them

Almost any aspect is configurable

Mandatory Optional y

Data Fil N i .
| -

I , :
"1" uL jm nt(n Ay
00,0°8a4

How? — Selector for physics

The physics code is encapsulated into one (or several) @ 2N
selectors

Inheriting from PAFChainItemSelector
The processing is split in the usual three hooks

Initialize () & 4
Actions needed before going through the events EH :Ht; " o }* ttt‘li“
For example: create and register histograms, trees, Int_t nbinsx, Axis , Axis_t xup);
pr(yﬁles." CreateH1lD(const char* name, const char* title,
InSideLOOp () g Lrudteﬁ_:(lnwt_: n%b?n(;a:la:;fuliO\JrjaA:l‘EcItlztlp)‘
Actions performed for each event [EE nNBAnSx, Flostth xbins,

Int_t nbinsy, Float_t* ybins);

For example: Select events, fill histogrames, ...

i template<typename T>
Lazy loading of data

T (const char* key);

Summary () Int_t (const char* key);

Float_t (const char* key);

Actions needed after processing all the events
For example: Print some summary output

Double_t (const char* key);

PAF-
‘~

How — A basic selector

#include "BasicSelector.h"

#include "TCanvas.h"

ClassImp(BasicSelector);

void BasicSelector::Initialise() {

etHisto = CreateHlF("etHistogram","#slash{E} {T}", 1ee, e., 20e.);

void BasicSelector::InsidelLoop() {
float t_metpf et = Get<float>("ootpum2");
etHisto->Fill(t_metpf_et);

void BasicSelector: :Summary() {
TCanvas* canvas = new TCanvas("canvas", "Proof ProofFirst canvas");
TH1F* result = FindOutput<TH1F*>("etHistogram");
result->Draw();

canvas->Update();

How? — Lazy Loading

o Smart trick to dynamically tell ROOT which branches are used

1 ... and therefore read from the file
o ... faster 1/O

-1 Speed up by a factor 2-10 the whole processing time

1500
. . e PoD
W 1200 ® PROOF Lite
Q . ® PoD with Lazy Loading
£ 900 e PROOF Lite with Lazy Loading
o 600
= s
oA 300 e
) ‘et o :
8 0 I I. I I. ! ,_. I .I I I.
-
o 0O 5 10 15 20 25 30 35 40 45 50

Number of nodes

PROOF Analysis Framework — ROOT User’s Workshop 2015 - I. Gonzalez

How? — Selector extended for modular
analysis

Support for chained selectors introduced in new version:
Modularization: Cleaner, easier to understand, atomic tasks...
Reusability and sharing of the selectors in different analysis

Mechanism to pass messages among sub-selectors
introduced

The same used to get information from the project

Salector: Selector: Selectar:
TriggerFiltering) ElectronSelection ’ MuonSelection }

Selactor: Selector:
Je?gemfet;riﬁn L EventSelection I GenerateEvent-
(Based on e+, U+, jels) DiscriminantVariables

';—*-.

Where to use PAF? — PAF Environments
T

[l
i o Ideal for multicore machines
i = No central setup needed

o PROOF Cluster/Cloud: Devel. at IFCA
= Suited for SGE/OGE/PBS batch systems !
o1 Central setup needed (just one person)

i o1 PoD: Devel. at GSI (support by ROOT)

!

=1 Suited for many batch systems
=1 Supports ssh login in remote nodes
=1 Central setup needed (just one person)

i 0 Sequential mode: No PROOF mode |
i =1 No change on the code required i

!

=1 ldeal for debugging

How? — A summary in a picture

Usually
just once

1 :

Just once Continuous

Maybe central modification

S — |

-

c PAF Installation Develop a selector .

=] [and configuration I—) (Implement PAFChainltemSelector) Create and configure PAFProject iLd5ihe e U Hesult

° .

: = :

£ PAFGhalnllemSeicctor PAFProject” project = new PAFProject();

e Initialise()

3 project=AddDataFile("ROOT Filename);

= InsideLoop()
\ SummaryQ project-=AddSelectorPackage("Selector name”); /
e N

S »,

2

- ; Prepare and compile Load code and

1]

u’j Initialize environment e configure slaves Free resources

[T

=<
= J

PROOF Analysis Framework — ROOT User’s Workshop 2015 - I. Gonzalez

How? — Extra goodies

PAF includes additional tools to
Create the skeleton of a selector

Inspect trees from the shell
Providing code snippets that you cut & paste in your code

*
R Reset and clean the whole environment
¢ 0 Includes auto completion ©

("T Event RunNumber");

vent EventNumber") ;

How? — More extra goodies

Logger
Configurable level of output (Debug, Warning, Error,...)
Stored in the output = Useful for debugging

Same output from sequential and parallel processing

Coherent mechanism for information passing and retrieval
from project to selectors and among selectors

External packages and libraries possible
Group or experiment repositories

Works on homogeneous (optimal) and heterogeneous
clusters

When? — Present and future

Present
PAF V5.0.1 just out there
We will use in LHC Run-I|
ROQOT 5 and ROOT 6 supported

Future:
Bug fixing, code cleaning and polishing, improve building process...
Ability to process several samples in one go

Further improve performance and usability: Avoid “unneeded”
compilations

Accounting, monitoring, ... 2 REST Service

Web frontend (for dissemination?) = A prototype already there

Integrate with other tools

Configuration of default parameters (ex. Batch queue name) like in .rootrc?
Support more complex structures (miniAOD, PAT)?

PAF =~
‘n

Who? — The team

I e
o Current core team: '

o Isidro Gonzalez Caballero — Project leader and initial ——— a
developer

o Javier Fernandez Delgado — Current main developer |
o 2 Students joining the team soon | .-

-1 Other developers
o1 Enol Fernandez Castillo — PROOF Cloud developer

-1 Past developers no more active:
1 Daniel Cano Fernandez — Initial developer

o Ana Y. Rodriguez Marrero — First redesign and PROOF
Cluster

o1 Alberto Cuesta — PoD integration
o Logo designer © - Lara Lloret Iglesias

PROOF Analysis Framework — ROOT User’s Workshop 2015 - I. Gonzalez

Thanks for your attention

n - o x
o More information: N T P v
1 Main PAF Page (documentation, tutorials...)

A
i http://www.hep.uniovi.es/PAF
7 Github repository: e A | e

O https://github.com/PROQOF-Analysis-Framework

1 Contact:
o Isidro.Gonzalez.Caballero@cern.ch

PROOF Analysis Framework — ROOT User’s Workshop 2015 - I. Gonzalez

http://www.hep.uniovi.es/PAF
https://github.com/PROOF-Analysis-Framework
http://www.hep.uniovi.es/PAF
http://www.hep.uniovi.es/PAF
https://github.com/PROOF-Analysis-Framework
https://github.com/PROOF-Analysis-Framework
http://www.hep.uniovi.es/PAF
http://www.hep.uniovi.es/PAF

