H⁻ Injection into the ISIS Synchrotron

Bryan Jones
ISIS Synchrotron Group – BE-OP-PSB Associate
Content

• Who, what, where is ISIS?
• Injection scheme
• In-house foil manufacturing
• Beam measurements and simulations
• Upgrade plans
ISIS

- World leading spallation neutron source
- 30 years of operation
- 2000 users, 750 experiments/year
- 4 or 5 user runs per year
 - 24hr operation for 35-40 days
 - Around 90% beam availability
ISIS

Ion Source: 50mA peak, 200 μs, 50 pps
RFQ: 4-rod, 665 keV, H⁻
Linac: 70 MeV H⁻, 202.5 MHz, 25 mA

Synchrotron: 800 MeV protons, 3.0x10^{13} ppp max Q_{(h,v)} = 4.31, 3.83

Ten superperiods
- Doublet, Singlet, CF Dipole
- 20 Trim Quads & 13 Steerers
- No multipoles

RF -
- Six h=2 (1.3-3.1 MHz)
- Four h=4

~£35M/year operating budget
~350 staff - 150 in accelerator division
Synchrotron Hall

The 7GeV proton synchrotron
Acceleration Cycle

Injection:
~ 200 μs pulse
3x10^{13} ppp over ~ 135 Turns
~ 97-99% Efficient

Trapping and acceleration:
70 – 800 MeV in 10 ms
~ 95-98% Efficient

Fast Vertical Extraction:
~100% Efficient
ISIS Injection

- Four 12kA dipoles
- 65mm bump
- ~200 ug/cm² Al₂O₃ foil
- Vertical ‘sweeper’ magnet
- Horizontal painting achieved by closed orbit movement
Injection Timing

Injection Dipole

Vertical Sweeper

B Field

Ring Intensity

Dispersion Closed Orbit

Vertical Sweep Amplitude
Injection Dump

40mm long
Water cooled graphite
200W waste beam
ISIS Foil

Make foil template from 99.9% Al foil 0.15mm thick
Anneal in vacuum furnace – 360°C, 8 hrs
Anodise to thicken Al₂O₃ layer – 180V, 10 min
Anneal again
ISIS Foil

Scour one side of foil
Etch in Bromine solution
Rinse in Acetone
ISIS Foil

Coat both sides with 0.25um Al
Shelf life ~ 6 months
Diagnostics

- 39 Argon filled ionisation chamber Beam Loss Monitors (BLMs)
Diagnostics

- 39 Argon filled ionisation chamber Beam Loss Monitors (BLMs)
Diagnostics

• 30 split cylinder electrode Position Monitors (BPMs)
Diagnostics

0ms

10ms
Diagnostics

- 5 residual gas ionisation profile monitors – 2 multi-channel
Beam Distribution
Diagnostics

- 2 Toroidal intensity monitors
Orbit Correction

- Turn-by-turn DAQ of full cycle in 1 plane
- IDL front-end to MAD-X lattice model
- RMS orbit deviations reduced to 2-3mm in both planes.
Painting Measurement

\[y_n = A.e^{-\left(\frac{(\pi n \delta Q)^2}{2}\right)} \times \cos\left(2\pi n\left[Q_0 + \frac{n\Delta Q}{2}\right] + 2\pi \phi\right) + n\Delta R + R_0 \]

- \(y_n \): Position of nth turn
- \(\delta Q \): Q spread
- \(A \): Initial betatron amplitude
- \(\phi \): Initial betatron phase/2\pi
- \(Q_0 \): Initial Q value
- \(\Delta Q \): Change in Q per turn
- \(R_0 \): Initial closed orbit
- \(\Delta R \): Change in R per turn

- Measured betatron amplitude
- Measured closed orbit
- Calculated betatron amplitude
- Calculated closed orbit
Painting Measurement

\[y_n = A_e^{\left(\frac{\pi n \delta Q}{2}\right)} \times \cos\left(2\pi n \left[Q_0 + \frac{n \Delta Q}{2} \right] + 2\pi \phi \right) + n \Delta R + R_0 \]

- \(y_n \): Position of the \(n \)th turn
- \(A \): Initial betatron amplitude
- \(\phi \): Initial betatron phase/2\(\pi \)
- \(Q_0 \): Initial Q value
- \(\Delta Q \): Change in Q per turn
- \(R_0 \): Initial closed orbit
- \(\Delta R \): Change in R per turn

Graphs:
- Measured betatron amplitude
- Measured closed orbit
- Calculated betatron amplitude
- Calculated closed orbit

Equation Breakdown:
- \(y_n \) represents the position of the \(n \)th turn.
- \(A \) is the initial betatron amplitude.
- \(\phi \) is the initial betatron phase divided by \(2\pi \).
- \(Q_0 \) is the initial Q value.
- \(\Delta Q \) is the change in Q per turn.
- \(R_0 \) is the initial closed orbit.
- \(\Delta R \) is the change in R per turn.

Graph Details:
- The graphs show the measured and calculated behavior of betatron amplitude and closed orbit over time.
- The measured data is represented by solid lines, while the calculated data is represented by dashed lines.
- The graphs provide a visual comparison between the measured and calculated values over time.
Simulation in ORBIT

Horizontal

- 2.5×10^{12} ppp
- 2.5×10^{13} ppp
- 2.5×10^{12} ppp
- 2.5×10^{13} ppp
- -0.3 ms
- -0.2 ms
- -0.1 ms

Vertical

- 2.5×10^{12} ppp
- 2.5×10^{13} ppp
- 2.5×10^{12} ppp
- 2.5×10^{13} ppp
- -0.3 ms
- -0.2 ms
- -0.1 ms

Simulation in ORBIT

- Horizontal and Vertical graphs showing intensity profiles and ORBIT profiles.
Beam Loss Studies of the ISIS Synchrotron Using ORBIT – DJ Adams – IPAC’12

Upgrade plans

• Injection Dipole Power Supply
 – Individual magnets, achieve design current

• New foil change mechanism
 – New viewing port, multiple foils

• Tests of alternative foils
 – Collaboration with CSNS/JParc
180 MeV Injector

<table>
<thead>
<tr>
<th></th>
<th>Present</th>
<th>Upgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnet Field</td>
<td>Sinusoidal</td>
<td>Sinusoidal</td>
</tr>
<tr>
<td>Energy Range</td>
<td>70–800 MeV</td>
<td>180–800 MeV</td>
</tr>
<tr>
<td>Intensity</td>
<td>2.5–3.0x10^{13} ppp</td>
<td>~ 8.0x10^{13} ppp</td>
</tr>
<tr>
<td>Mean Power</td>
<td>160–200 kW</td>
<td>~ 500 kW</td>
</tr>
<tr>
<td>Injection</td>
<td>H^+, inside</td>
<td>H^+, outside</td>
</tr>
<tr>
<td>Longitud Trapping</td>
<td>“adiabatic capture”</td>
<td>chopped beam</td>
</tr>
<tr>
<td>RF System DHRF:</td>
<td>(f_2 = 1.3–3.1 \text{ MHz})</td>
<td>(f_2 = 2.0–3.1 \text{ MHz})</td>
</tr>
<tr>
<td>(h = 2, 4)</td>
<td>(V_{pk} = 80, 160 \text{ kV})</td>
<td>(V_{pk} = 80, 160 \text{ kV})</td>
</tr>
</tbody>
</table>
Questions?