

Fix-lines and stability

G. Franchetti and F. Schmidt GSI, CERN

AOC-Workshop - CERN

Introduction: close to $3Q_x = N$

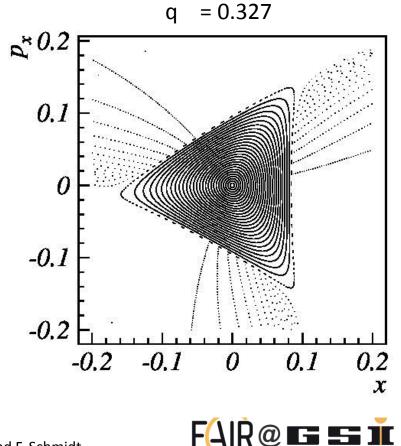
Stability Domain

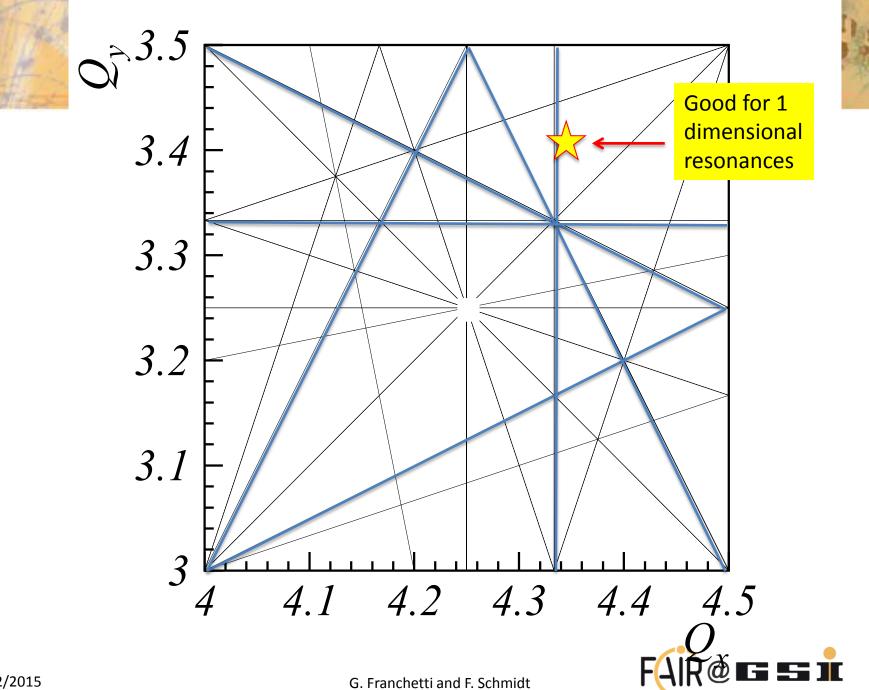
Analytic theory do not exist far from the continuum limit, but possible near resonances

Very useful close to the resonances

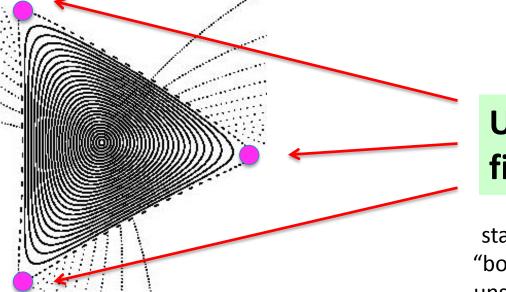
Example, slow extraction near q=1/3

It is possible to give an analytic estimate of the border of stability





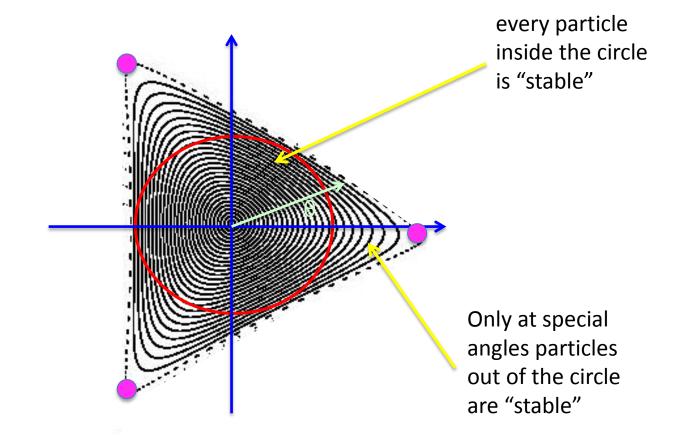
In proximity of $3Q_x = N$



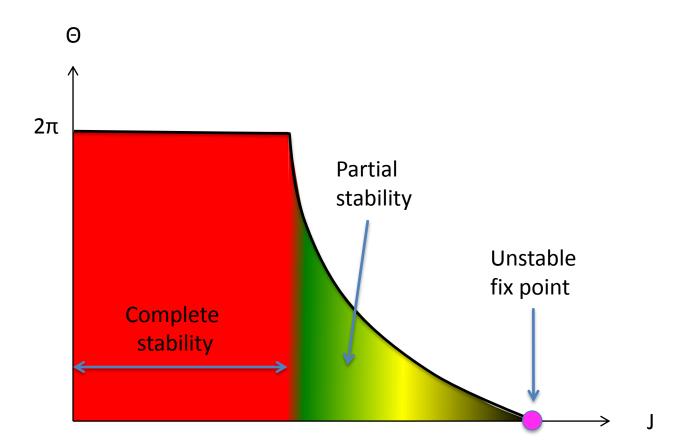
Unstable fix points

stable orbits are "bounded" by the unstable fix points

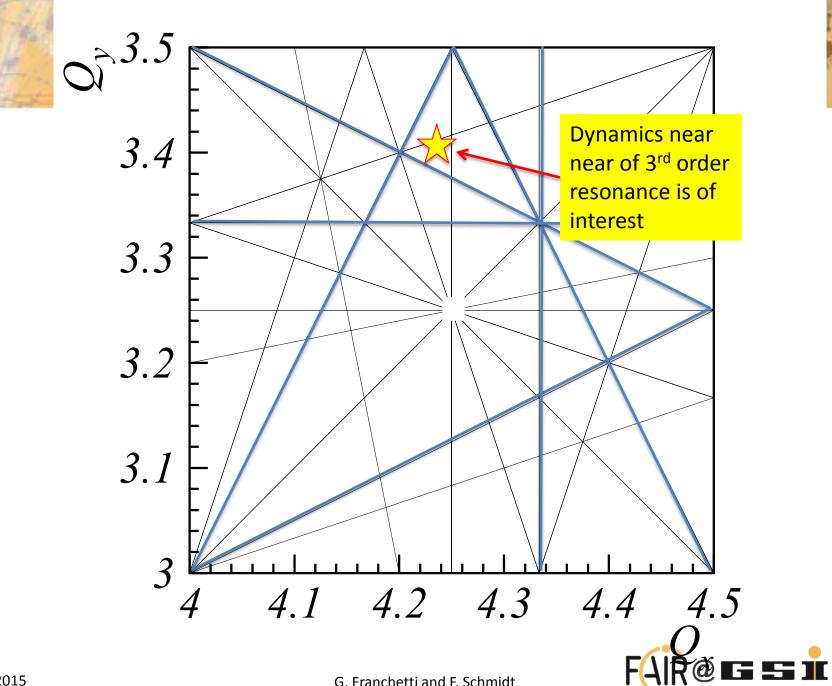
Properties of the stability domain



Representation of stability

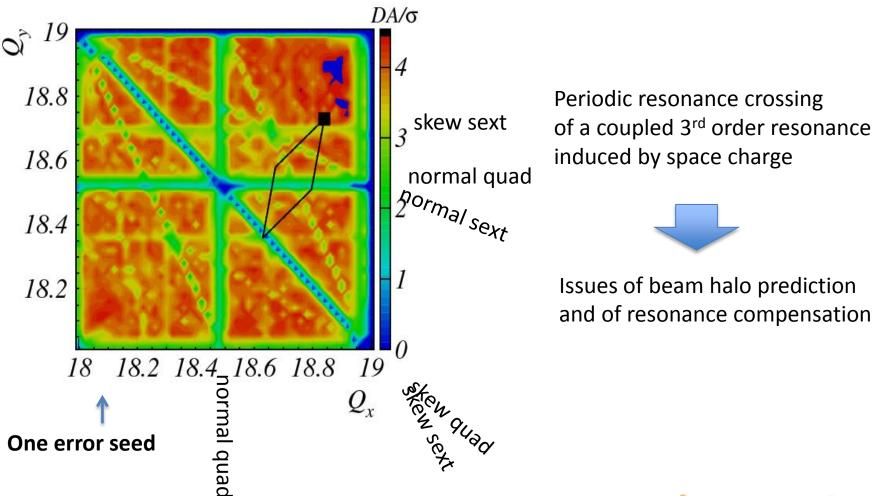


Close to $Q_x + 2Q_y = N$



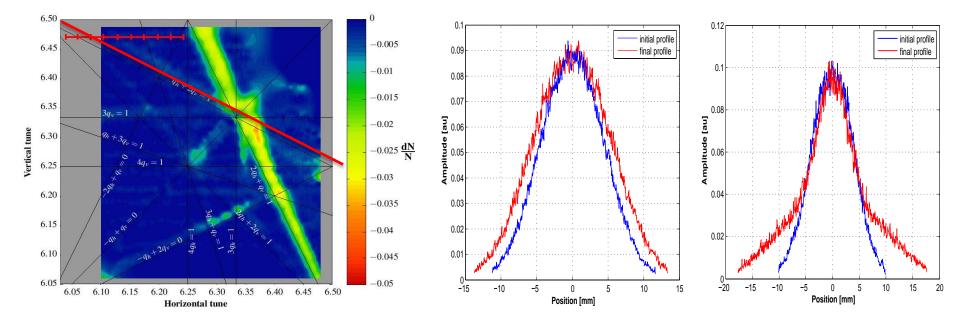
G. Franchetti and F. Schmidt

Relevance



Experimental signature of something strange

Resonance: $q_x + 2 q_y = 19$



G. Franchetti, S. Gilardoni, A. Huschauer, F. Schmidt, R. Wasef

11

G. Franchetti and F. Schmidt

Unfortunately coupled resonances require a 4D treatment of the dynamics

$$nQ_x + mQ_y = N$$

structure of resonances is controlled by the equations

$$\frac{d^2x}{ds^2} - k_x x = Re \left[\sum_{n=2}^{M} (k_n(s) + ij_n(s)) \frac{(x+iy)^n}{n!} \right]$$
$$\frac{d^2y}{ds^2} - k_y y = -Im \left[\sum_{n=2}^{M} (k_n(s) + ij_n(s)) \frac{(x+iy)^n}{n!} \right]$$

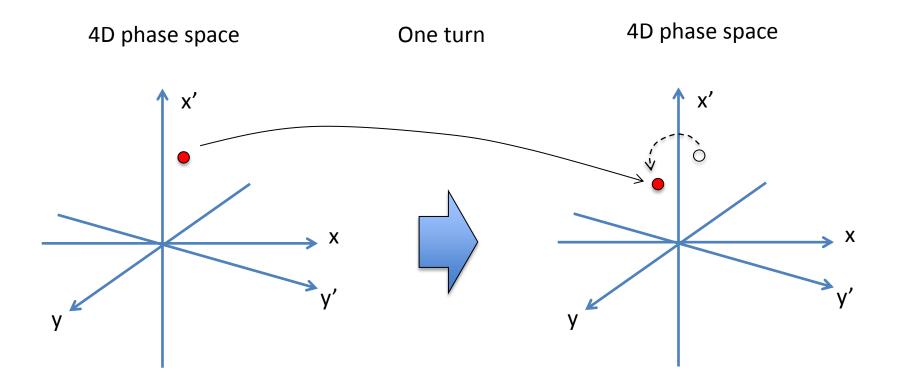
Do we find fix points in proximity of $2Q_y + Q_x = N$?

Wrong concept!

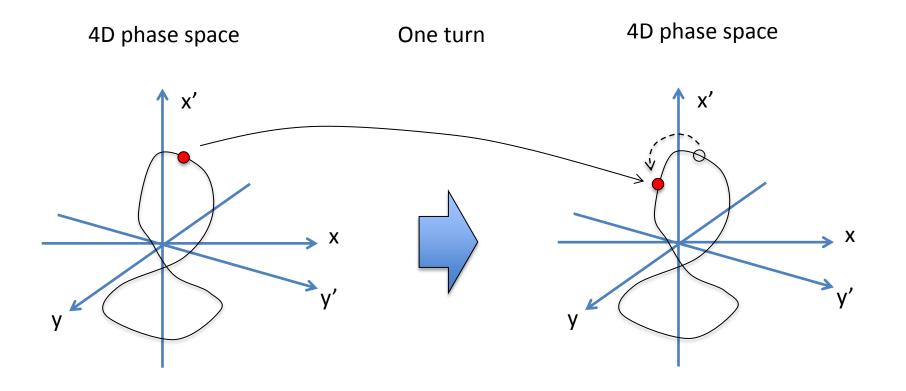
For
$$2Q_y + Q_x = N$$
 there are fix-lines F. Schmidt PhD

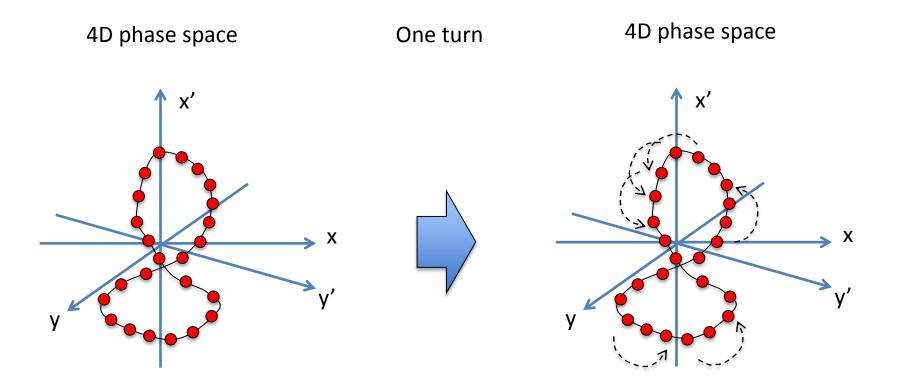
These are closed lines in the 4D phase space of which we can only see the projections

Close to the resonance



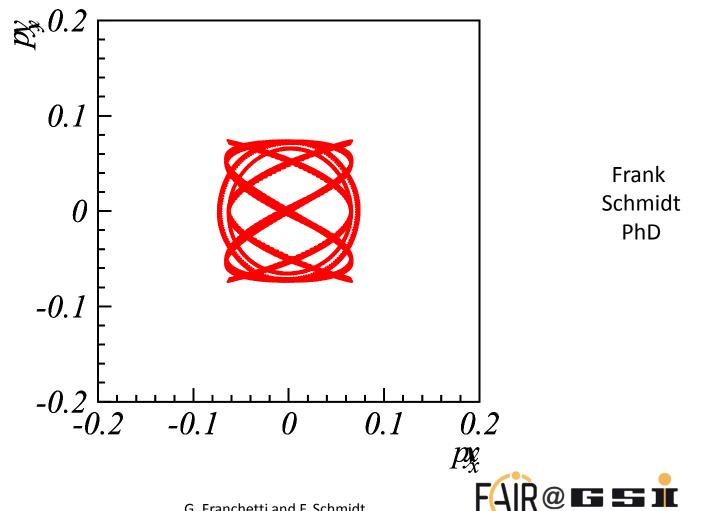
Close to the resonance





After one turn each point on the fix-line is mapped into the fix-line

Fix-line projections



G. Franchetti and F. Schmidt

Fundamental Questions

(Where Do We Come From? What Are We? Where Are We Going?)

- 1) Can we characterize these objects with a mathematic expression?
- 2) Can we predict their extension as functions of lattice nonlinear errors?
- 3) How many fix-lines do we have ?
- 4) Can a fix-line be stable or unstable? What does it mean ?
- 5) Do we have "secondary" tunes? What does it mean?
- 6) Do we have a concept of "island"?
- 7) How are fix-lines related to the stability domain ?

1) Analytic form

projection of a fix-line close to the 3rd order coupled resonance

$$x_t = \sqrt{\beta_x a_x} \cos[-2(Q_y - t_y)t + \pi M]$$
$$y_t = \sqrt{\beta_y a_y} \cos[(Q_y - t_y)t]$$

- a_x, a_y are the invariant of the fix line, they depends on the "distance" from the resonance, and they are **CONSTANT**
- M is an integer that depends on the sign of $\Delta_r = -N + Q_x + 2Q_y$ the "distance" of the resonance
 - t_y parameter that specify the canonical transformation in which makes a_x , a_y time independent.
 - t parameter that parametrize the fix-line

The shape of the line is set by the order of the resonance.

The amplitude of the fix-line is determined by a_x , a_y

Therefore ignoring the position of a particle in a fix-line, the fix-line can be identified by a proper pair of a_x , a_y

2) Fix-line extension function of lattice

Fix-line is given by
$$0 = \Delta_r \Lambda(-1)^M \left[\frac{1}{2\sqrt{\tilde{a}_x}} \tilde{a}_y + 2\sqrt{\tilde{a}_x} \right] + \frac{\Delta_r^2}{2}$$

with
$$\Lambda = \sqrt{\Lambda_c^2 + \Lambda_s^2} \quad \cos \theta = \Lambda_c / \Lambda \quad \sin \theta = \Lambda_s / \Lambda$$
$$\Lambda_c = -\sum_j \frac{1}{8L} K_{2j} \sqrt{\beta_{xj}} \beta_{yj} \cos \left[2\pi \frac{s_j}{L} N + \mathscr{D}_x(s_j) + 2\mathscr{D}_y(s_j) \right]$$
$$\Lambda_s = -\sum_j \frac{1}{8L} K_{2j} \sqrt{\beta_{xj}} \beta_{yj} \sin \left[2\pi \frac{s_j}{L} N + \mathscr{D}_x(s_j) + 2\mathscr{D}_y(s_j) \right]$$

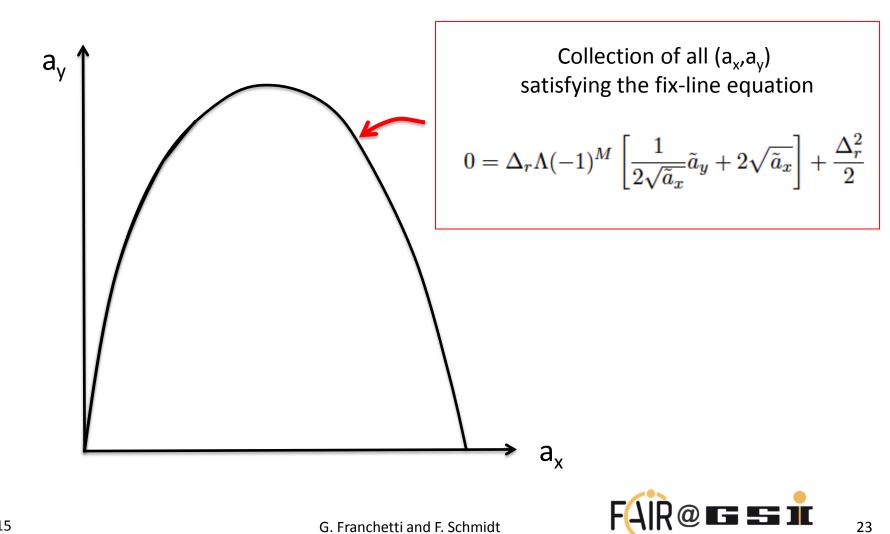
K_{2i} are the normal integrated sextupolar strength of all errors and correctors

Near $3Q_x = N$ there are 3 unstable fix points

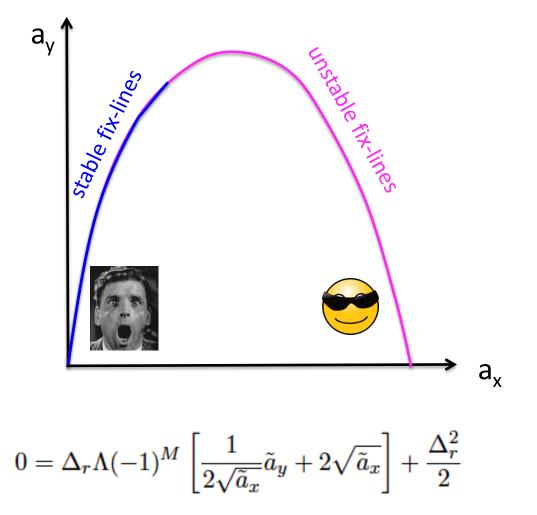
Near $2Q_y + Q_x = N$ there are **infinite** fix-lines !!

What is the meaning of this ?

All the infinite fix-lines



4) Fix-lines are stable or unstable?



G. Franchetti and F. Schmidt

5) The secondary tune: the dynamics off the fix-line

$$x = \sqrt{\beta_x a_x} \cos(\phi_x)$$

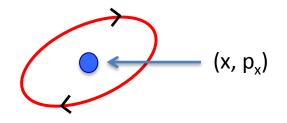
$$y = \sqrt{\beta_y a_y} \cos(\phi_y)$$
Particle coordinates parameterization
$$a_{x'}, a_y \text{ are constant}$$

$$\phi_{x/y} = \varphi_{x/y} + \int_0^s \frac{1}{\beta_{x/y}} ds$$
In a linear lattice

Near the resonance $a_x, \varphi_x, a_y, \varphi_y$ becomes time dependent Only on a fix-line $a_x, \varphi_x, a_y, \varphi_y$ are constant

The problem of the secondary tune

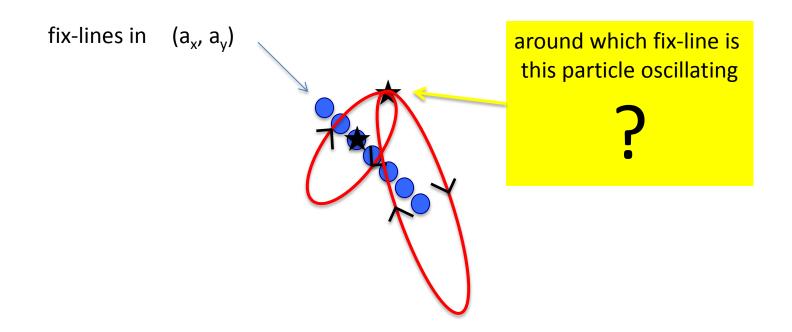
In a 1D resonance stable points means that



The angular velocity \rightarrow secondary tunes

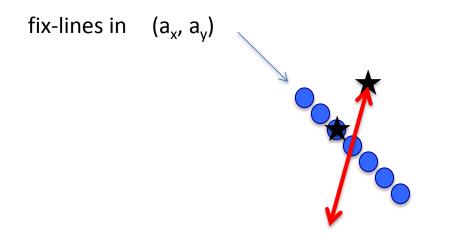
The problem of the secondary tune

What does it means if we have infinite fix-lines ?



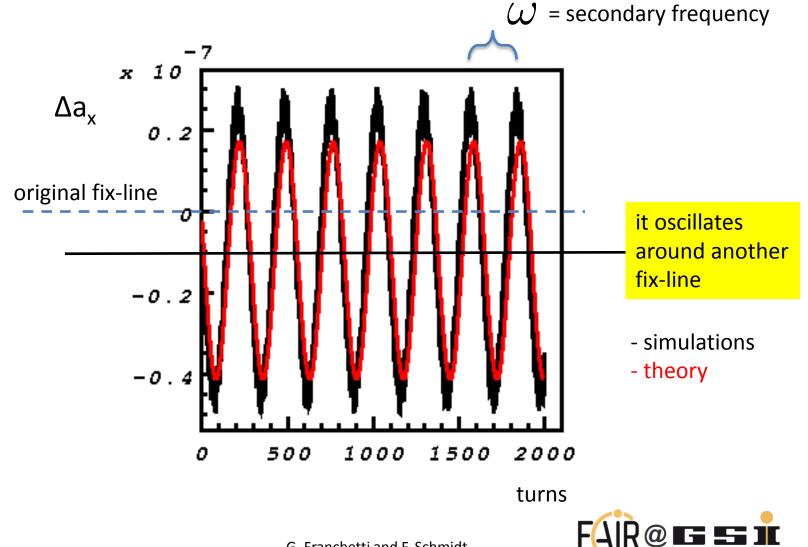
The problem of the secondary tune

What does it means if we have infinite fix-lines ?



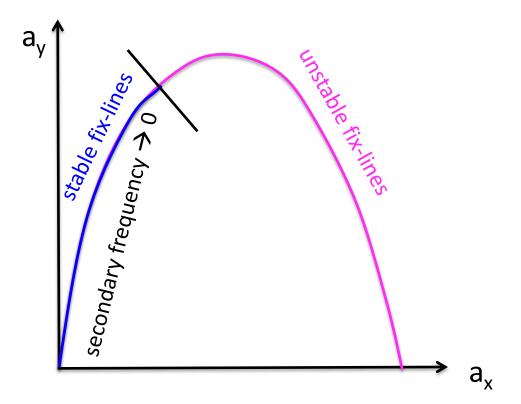
There is only one special direction of oscillation, which identify a unique fix-line

A very strange stability...

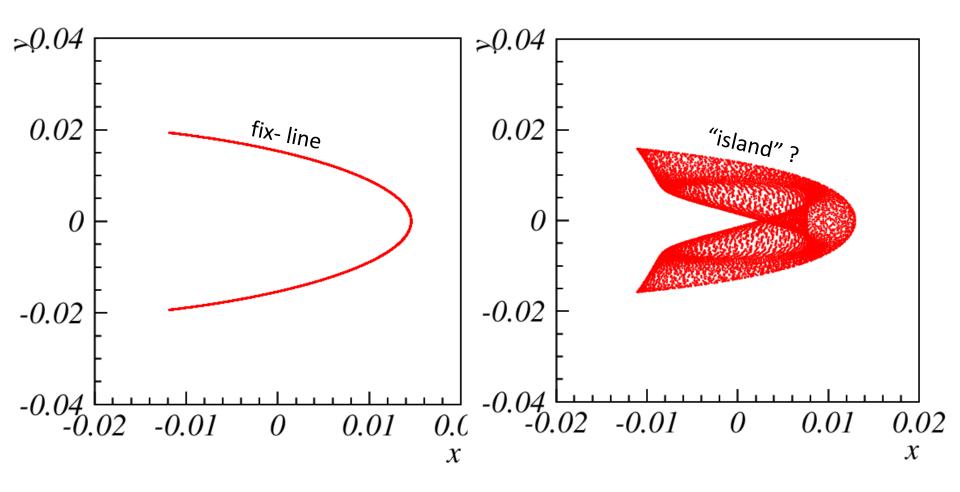


G. Franchetti and F. Schmidt

All the fix-lines



6) Islands or not Islands... that is the problem



7) Stability & fix-lines

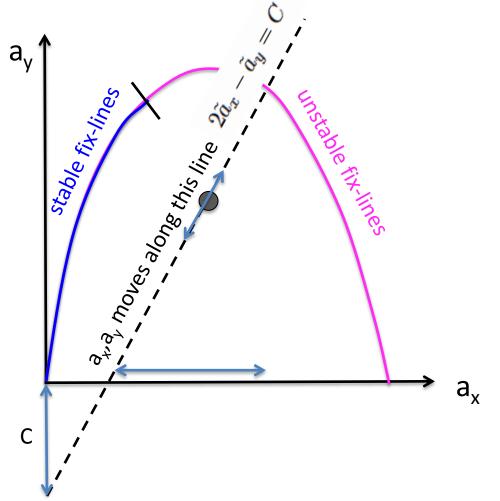
$$x = \sqrt{\beta_x \tilde{a}_x} \cos(\tilde{\varphi}_x)$$
 particle coordinates parameterization parameterization

Two invariants of motion

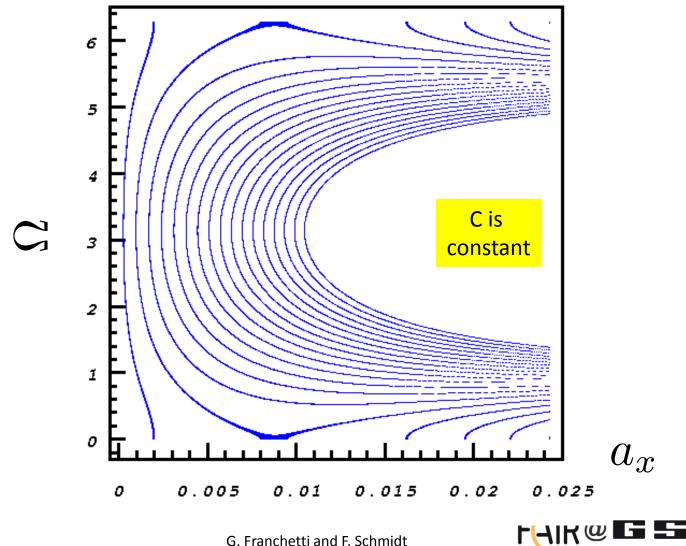
$$2\tilde{a}_x - \tilde{a}_y = C$$
$$I(\tilde{a}_x, \Omega) = 2\Lambda \sqrt{\tilde{a}_x}(2\tilde{a}_x - C)\cos[\Omega] + \tilde{a}_x \Delta_r$$

a strange invariant

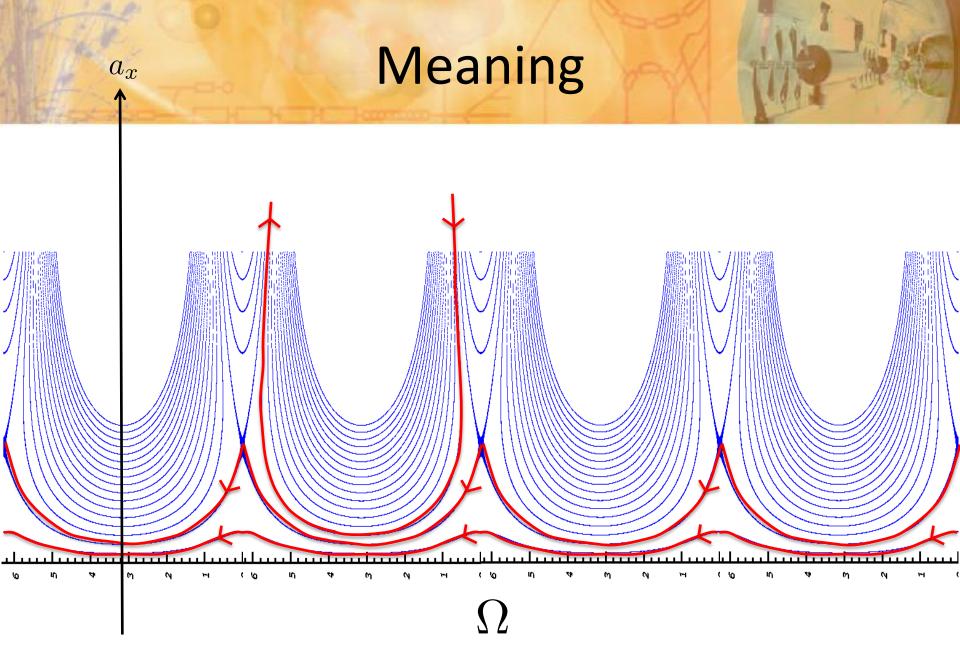
Consequences of the first invariant

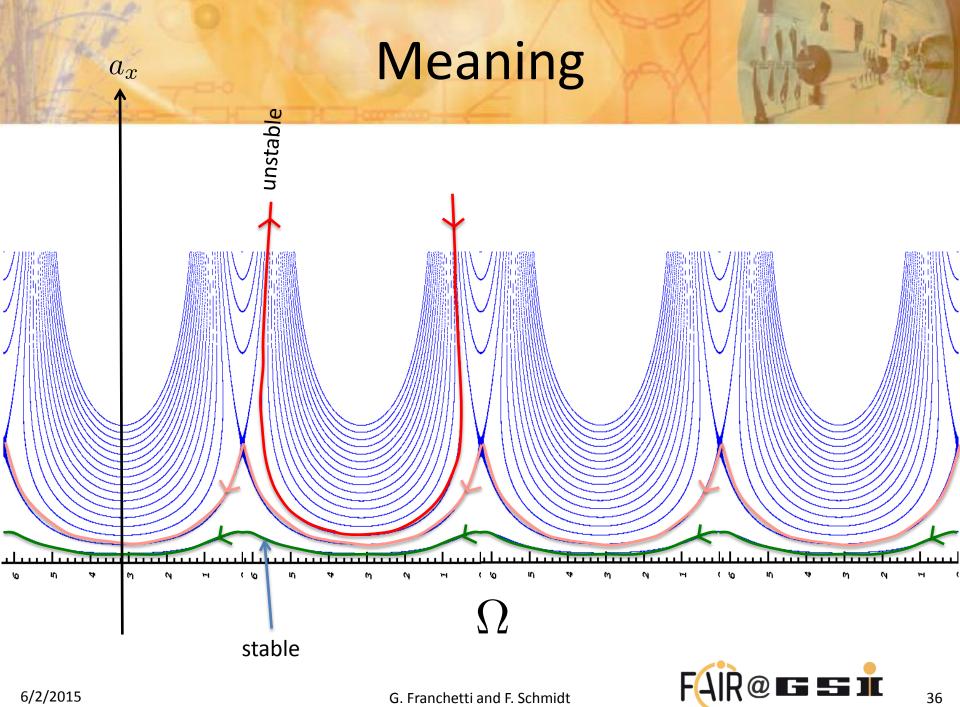


The second invariant: level lines



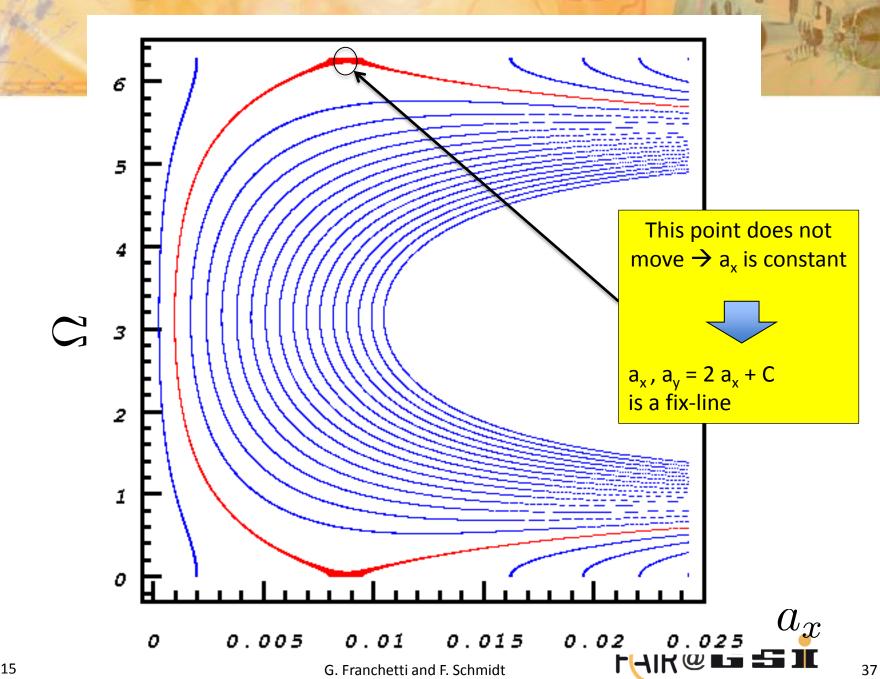
G. Franchetti and F. Schmidt



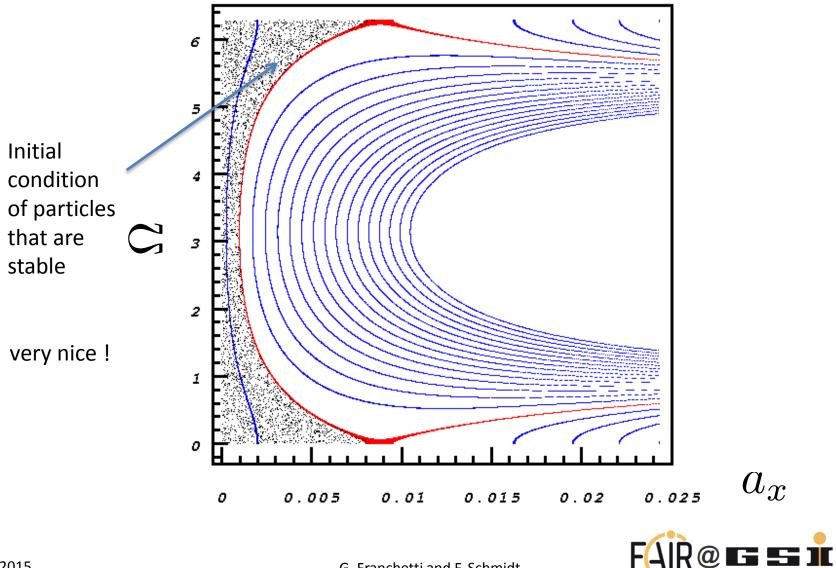


6/2/2015

G. Franchetti and F. Schmidt



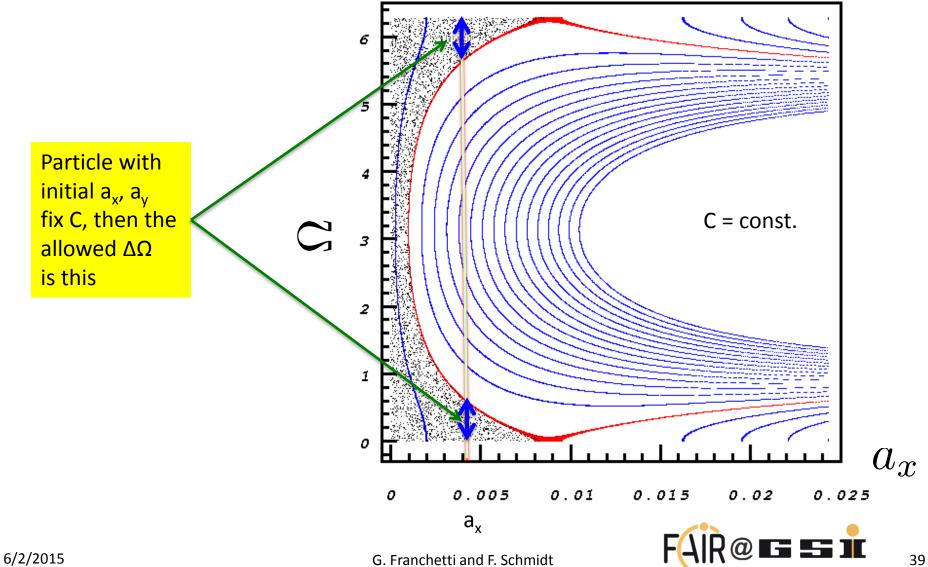
Comparison with simulations



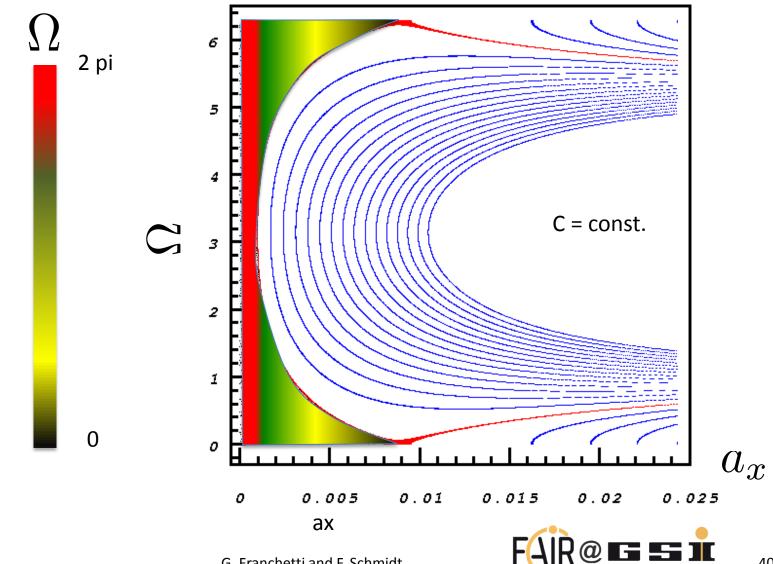
6/2/2015

G. Franchetti and F. Schmidt

Measuring the stable area

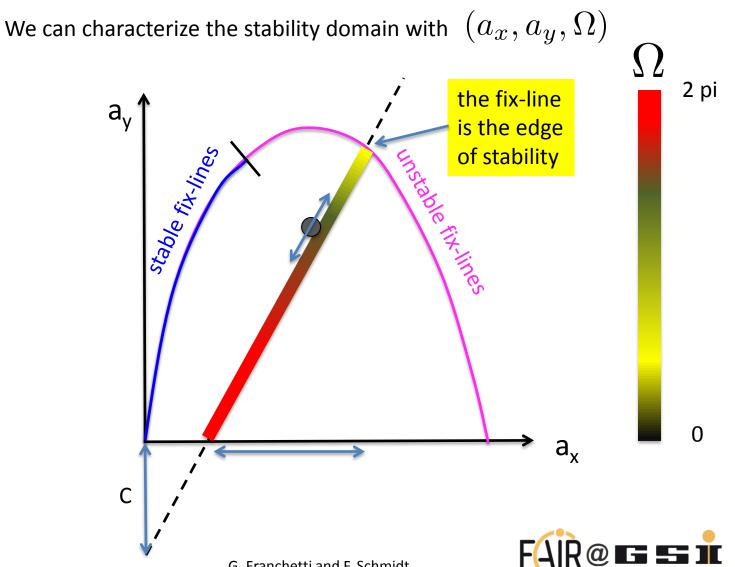


Measuring the stable area



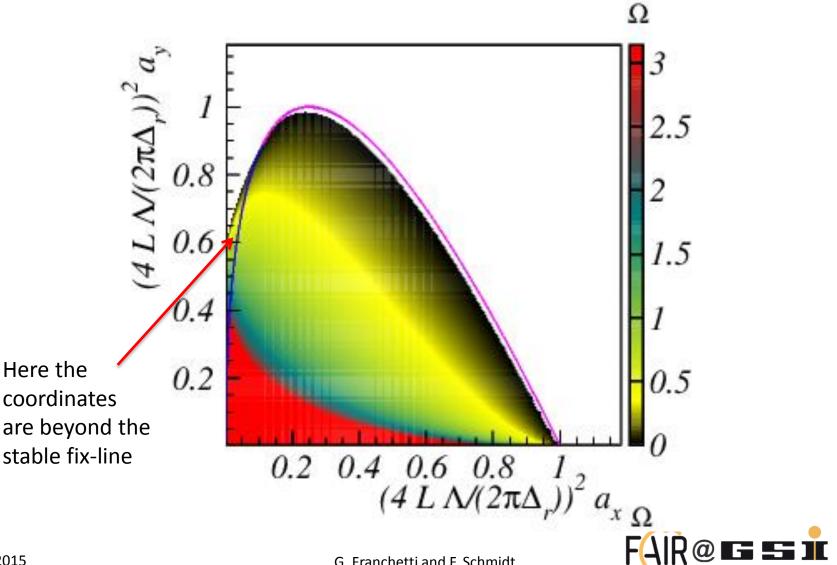
G. Franchetti and F. Schmidt

Stability domain



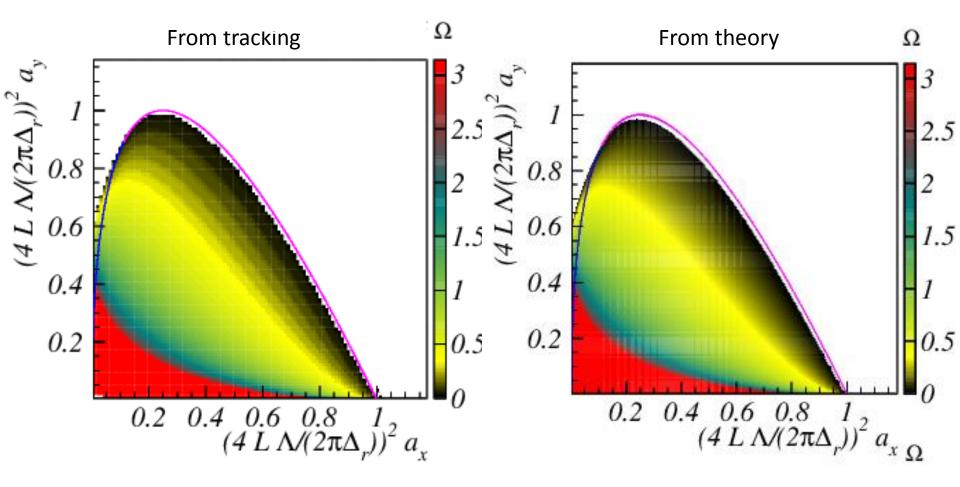
G. Franchetti and F. Schmidt

Stability domain



G. Franchetti and F. Schmidt

Comparison with simulations



Really good! also in situation off of the "single harmonics limit"

Advantages

fine exploration of the stability domain with tracking

100 processors2 hours30x30x100 initial conditionstracking 1000 turns

CPU time = $7x10^5$ sec.

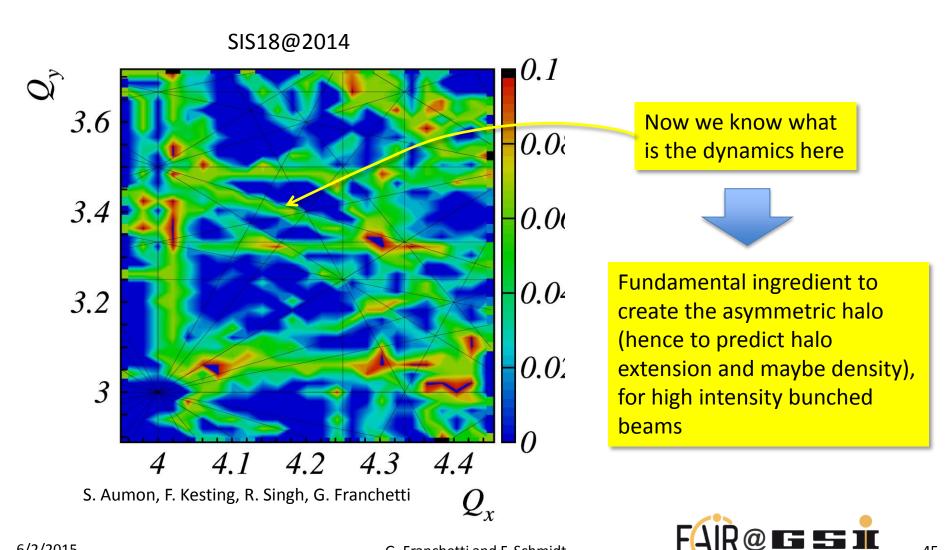
fine exploration of the stability domain with analytic theory

stability during infinite turns !

CPU time = 3 seconds

gain > $2x10^5$

Conclusion/Outlook



G. Franchetti and F. Schmidt



Stability in a 1D system

