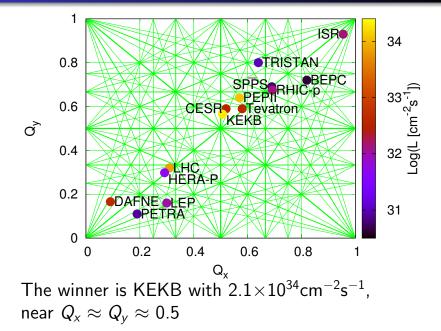
Optics needs for LHC



February 5, 2015

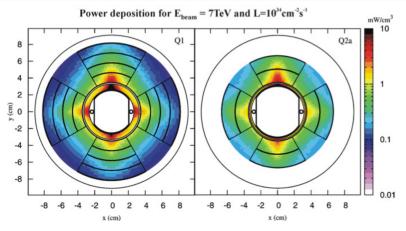
\star LHC plans and limits

- ★ Optics control challenges
- \star 2012 and getting ready for 2015
- ★ The upgrade: HL-LHC

Colliders in the tune space

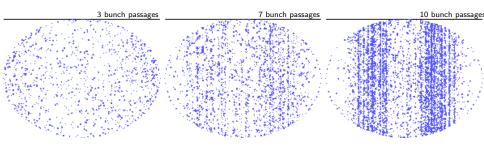
- SuperKEKB might need another 2 years to produce large luminosities (see Sugimoto's talk)
- ★ LHC has a window of opportunity
- ★ What will limit the LHC performance?

CMS Experiment at LHC, CERM Data recorded: Mon Mel 28 01 16:20 2012 CEST Runckient: 195099-31548125 Lumi,saction: 65 Ocht/Crossing: 16992111 1,2295


CMS

Living with High Pileup

2015


Raw $\Sigma E_T \sim 2$ TeV 14 jets with $E_T > 40$ Estimated PU ~ 50

Heat load in the triplet quads

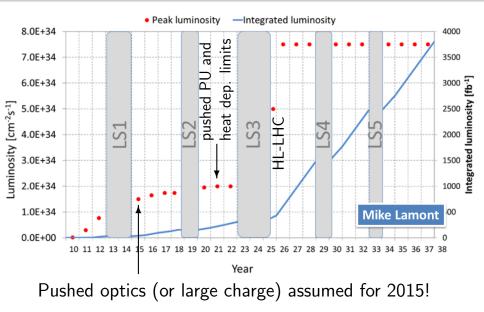
★ Limitation in the triplet heat exchanger bayonet
★ Luminosity ≤ 1.75 × 10³⁴ cm⁻²s⁻¹,
★ this lumi corresponds to ≈50 PU events!

Electron cloud

- e-cloud heat load and instabilities pose the largest threats for LHC nominal operation
- ★ Fallback solution would be to reduce number of bunches by ≥30% increasing bunch charge
- ★ This needs luminosity leveling to limit PU
- \star and smallest β^* for max integrated luminosity

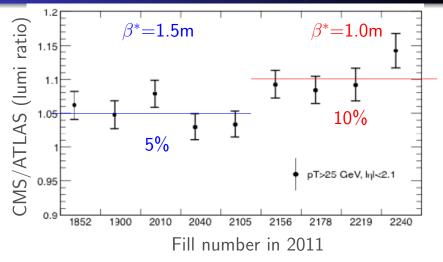
β^* reach in 2015

11 σ BB sep, ε =3.75 μm, 1.15×10 ¹¹ ppb			Baseline
β* (sep/cross)	Half angle	Aperture	L (10 ³⁴ cm ⁻² s ⁻¹)
80/80 cm	145 µrad	13.8 σ	0.65 relaxed start
40/40 cm	205 µrad	9.5 σ	1.0
	205 µrad	9.5 σ	1.2
30/40 cm	200 µrau	3.50	1.2
30/40 cm _10 σ BB sep, ε =2	•		Pushed
	•		· · -
10 σ BB sep, ε =2	2.5 μm , 1.15×	10 ¹¹ ppb	Pushed
<i>10 σ BB sep, ε = </i> β* (sep/cross)	2.5 μm , 1.15× Half angle	10 ¹¹ <i>ppb</i> Aperture	Pushed L (10 ³⁴ cm ⁻² s ⁻¹)

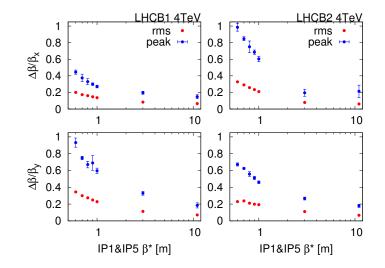

When is LHC starting?

LHC tasks for 2015

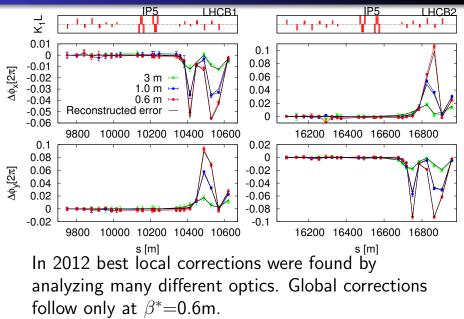
Initial Commissioning		New optics	56
Scrubbing (for 50 and 2	5 ns)		23
Early LHCf/VdM1		New optics	5
Proton physics 50 ns			9 + 19
Proton physics 25 ns –	phase 1		30
Change in beta*		New optics	5
Proton physics phase 2	(including ramp-up)		48
Special physics runs (TO Intermediate energy ru		New optics	7
MD		New optics?	15
Technical stops			15
Technical stop recovery			6
lon setup/lon run		v E, New optics	4 + 24
	Mike Lamont, LMC	28/1/2015	


Luminosity predictions

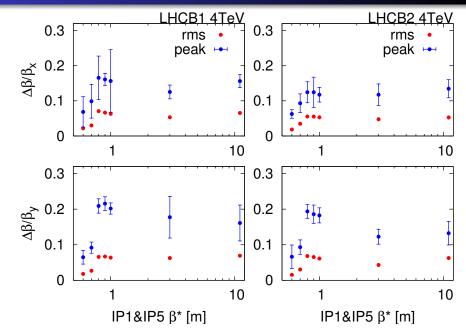
Optics Control challenges


- \star Optics corrections at low eta^*
- \star Accuracy and resolution
- ★ Dynamic Optics:
 - β^* leveling
 - Combined Ramp & Squeeze
 - Collide & Squeeze
- \star Non-linear beam dynamics at low β^*

Luminosity imbalance CMS/ATLAS


Corrections only at $\beta^* = 1.5m$. ATLAS was unhappy to get lower luminosity at $\beta^* = 1m$ \rightarrow Need optics corrections at all β^* .

Natural β -beating versus β^* in 2012



Up to 100% β -beating without corrections!

Local corrections: segment-by-segment

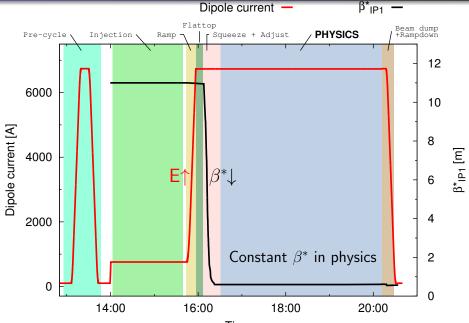
After local & global corrections

LHC optics control made history

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 15, 091001 (2012)						
Record low β beating in the LHC						
R. Tomás, [*] T. Bach, R. Calaga, A. Langner, Y. I. Levinsen, E. H. Maclean, T. H. B. Persson, P. K. Skowronski, M. Strzelczyk, and G. Vanbavinckhove <i>CERN, CH 1211 Geneva 23, Switzerland</i> R. Miyamoto <i>ESS AB, SE-221 00 Lund, Sweden</i> (Received 12 July 2012; published 28 September 2012)						
Lepton	Circumference	Peak	Hadron	Circumference	Peak	
Collider	[km]	$\Delta eta / eta$ [%]	Collider	[km]	$\Delta eta / eta$ [%]	
PEP II	2.2	30	HERA-p	6.3	20	
LEP	27	20	Tevatron	6.3	20	
KEKB	3	20	RHIC	3.8	20	
CESR 0.8 7 LHC 27 7						

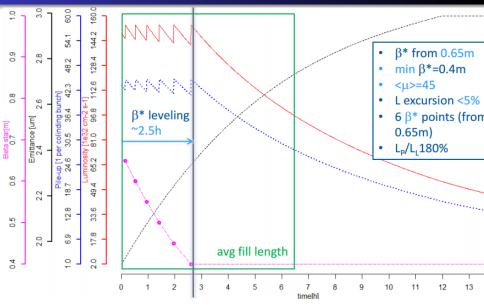
CMS and ATLAS luminosities in 2012 got equal!

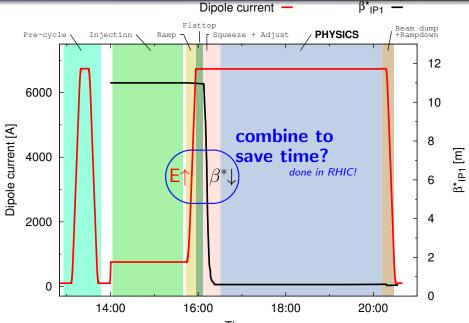
Phys. Rev. ST Accel. Beams 15, 091001, 2012


Improving accuracy, resolution and speed

- ★ N-BPM method (see Andy's talk)
- ★ Better models
- Coupling feedback (T. Persson et al, PRSTAB 17, 051004)
- High resolution BPMs: DOROS (see Rhodri's talk)
- Longer AC dipole plateau (Ν. Magnin) and BPM acquisition (V. Kain)

- ★ If pushed optics are demonstrated and large charge is available luminosity exceeds limits → Need to level luminosity
- ★ Also if e-cloud limits number of bunches PU would exceed 50 events \rightarrow Need to level PU
- ★ LHC has no experience with dynamic optics!

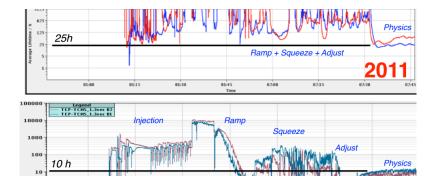

So far one thing at a time


Time

β^* leveling example

A. Gorzawski

Combined Ramp & Squeeze for 2015?

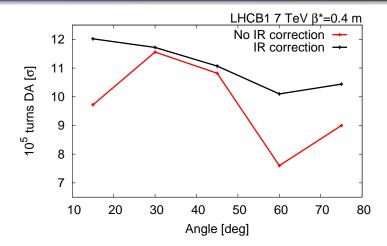


Time

Lifetime 2011 vs 2012

1

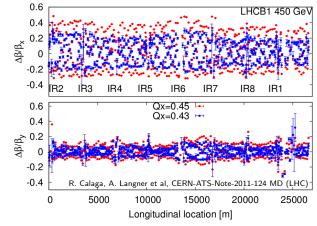
0.1


2012

 \star Lifetime considerably worse in 2012

S. Redaelli, LSWG day 2014

★ What is the role of non-linearities?


Dynamic Aperture at low β^*

Non-linear IR corrections will be critical at low β^* (see Ewen's talk)

Can LHC operate at $Q_x \approx Q_y \approx 0.5$?

Tevatron did it

- ★ Half integer resonance represents a challenge
- ★ First exploration at injection in 2011 \rightarrow Need further demonstrations

OMC software upgrades

	2013	2014	2015
	bad code (physicists)	good code (IT)	new features
Lines of code	331,312	141,195	166,370
Static analysis issues	479,680	165,531	112,227

New functionalities: Automatic 2-beam local corrections (P. skowronski), chromatic coupling correction, correction tests, amplitude detuning measurement, resonance driving terms, best real-time model, measurement database (D. Jacquet), etc

OMC software upgrades

J. Coello LHCB1 Memory used: 64 Mb / 8 Analysis panel Optics Correction Matching afs/cern.ch/user/i/icoellod/work/nublic/Ream1Meas IP 1 🔻 Run Ŧ afs/cern.ch/user/i/icoellod/work/public/Beam2Meas Beam 2 Variables Beam 1 0.001 🕑 kqt13.r1b1 Variable kn411h2 0.001 🕑 kqt13.11b1 Magnet: MQY.4L1.82 23200 23400 23600 23800 24000 24200 24400 24600 2600 2800 3000 Correction: 0.0002 3400 3600 ✓ kqt12.11b1 S [m] Position: 3027.3989 🖌 kqt111.11b1 Legend Mase measured Mase model - Thase measured - Thase measured ✓ kq10.l1b1 0.03 ₽ kg9,11b1 0.025 ₩ kg8,l1b1 0.02 ₩ kg7.l1b3 0×12m 0.015 Ream 2 0.01 🕑 kqti11.i1b3 0.005 ₩ kq10.l1b2 ✓ kq9.l1b2 -0.005 ✓ kg8,l1b2 -0.01 ₩ kg7.l1b2 23200 23400 23600 23800 24000 24200 24400 24600 2600 2800 3000 3200 3400 3600 S [m] S (m) ka6.11b2 Legend 0.04 1 Legend 🕑 kq5.l1b2 Phase measure Phase model kq4.11b2 Phase medel Common kgxr1 0.02 ktax1.r3 6 ktax2.r3 0.01 ✓ kax11 ktax2.11 ktax1.11 -0.01 23200 23400 23600 23800 24000 24200 24400 24600 2600 2800 3000 3200 3400 3600

S [m]

23000 Console Running tasks

200 🛨 🖸 🔞

Ream 1

Ream

BPM panel

Beam 1

¥ 0.003

-0.001

0.0

0.05

0.04

0.03

0.0

0.01

-0.01

0.035-

0.03

0.025

0.02

0.015

0.0

0.005

-0.005

-0.01

[2m]

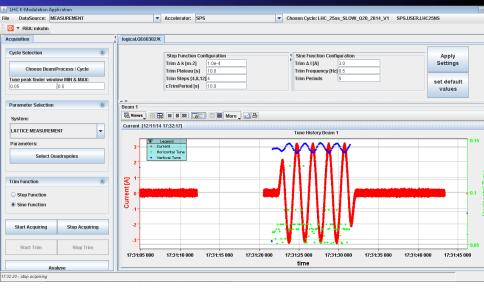
i.o

A6X [211]

23000

23000

- 10:08:42 process watFort) "SegmentBySegmentMatch" finished, duration: 107ms, exitValue: 0


S [m]

- 10:08:45 Start external process. ApplicationName: SegmentBySegmentMatch, logDirectory, null
- 10:08:45 process waitFort) "SegmentBySegmentMatch" finished, duration: 114ms, exitValue: 0
- 10:08:45 Start external process. ApplicationName: SegmentBySegmentMatch, logDirectory; null
- 10:10:04 process.waltFort) "SegmentBySegmentMatch" finished, duration: 78978ms, exitValue: 0

20:10:04 - errors happened in external process, see log viewer

New tools: K-modulation

M. Kuhn

First tests in the SPS with sine modulations as in LEP

The upgrade: HL-HLC

★ $\beta^* = 15$ cm, smallest β^* in hadron colliders

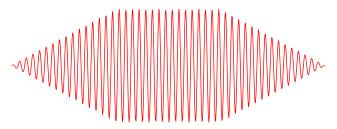
- 🛧 Large Nb₃Sn triplet quadrupoles
- ★ Crab cavities for geometric luminosity factor $(1^{st} time in hadron colliders)$
- ★ Extreme β^* leveling, $\beta^* \in [0.65, 0.15]$ m
- ★ Pushed combined Ramp & Squeeze
- ★ Doubling LHC nominal bunch charge
- ★ PU≈140, ...

Summary

LHC is getting close to its limits, setting unprecedented demands on *optics control* for its safe exploitation

Summary

LHC is getting close to its limits, setting unprecedented demands on *optics control* for its safe exploitation


OMC owls waiting for the beam

Thanks!

Extra slides

Forced oscillations with AC dipole

- ★ An AC dipole forces betatron oscillations
- If adiabatically ramped up & down causes no emittance blow up
- Can be used as many times as needed with the same beam

AC dipole for non-linear diagnostics

Adiabaticy with non-linearities

"Adiabaticity of the ramping process of an AC dipole" PRSTAB 8 024401

★ Resonace Driving Terms

"Measurement of global and local resonance terms" PRSTAB 8 024001

★ Coupling & Chromatic coupling

"Measurement of Coupling Resonance Driving Terms in the LHC with AC

Dipoles" IPAC 2011

"Chromatic coupling correction in the LHC" PRSTAB 16, 081003

🛧 Amplitude detuning

"Direct amplitude detuning measurement with AC dipole" PRSTAB 16 071002

★ Impedance measurements N. Biancacci CERN-THESIS-

2014-043