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| - A bit of context

e RHIC Stochastic Cooling (SC) is operational for heavy ions lattices since Runl |; upgrades over
the past 3 years improved the system reliability and efficiency so that longer store lengths could

be achieved:
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e SC provides enough additional transverse aperture in the IR triplets to try and squeeze B" in the
STAR and PHENIX experimental insertions for integrated luminosity leveling!



| - A bit of context

e Since Runl2, RHIC uses a non-IBS suppression lattice for Heavy lons runs that leaves little room
in the IR shunt supplies to try and squeeze either STAR and PHENIX B* by any significant
amount => study the feasibility of CERN'’s Achromatic Telescopic Scheme (ATS) in RHIC

e Principle:
> use the insertions around the targeted IR’s to launch and cancel a B-beating wave in both
planes that would have its waist at the IP;

> requires Ap(cell) close to 90 for increased chromatic correction efficiency of sextupoles at
constant strength (AB,,,, reached at each sextupole location).
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| - A bit of context |l — Implementation |ll - APEX results and end-of-store work

* Matching section:
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Il — Implementation

Theoretical design: use the IR's around the targeted experimental insertion to launch and close
a B-beat wave to allow reducing B* further with little to no change to the chromatic functions.
ATS requires a 90° FODO lattice and phase advance of k(Tt/2) between the targeted IP and both
focusing and defocusing sextupole families for the ideal chromaticity correction scheme.
However, the RHIC lattice was designed with the STAR and PHENIX IR's downstream of one
another. For the ATS scheme implementation, this adds another phase advance constraint for
the B-beat wave to be effective at both IP's at the same time. For Runl4, the Uranium-Uranium
lattice from Runl2 was taken as a baseline: it offered the best performance in terms of dynamic
aperture and integrated luminosity for RHIC high energy A-A runs.
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Il — Implementation

Theoretical design: use the IR's around the targeted experimental insertion to launch and close
a B-beat wave to allow reducing B* further with little to no change to the chromatic functions.
ATS requires a 90° FODO lattice and phase advance of k(Tt/2) between the targeted IP and both
focusing and defocusing sextupole families for the ideal chromaticity correction scheme.
However, the RHIC lattice was designed with the STAR and PHENIX IR's downstream of one
another. For the ATS scheme implementation, this adds another phase advance constraint for
the B-beat wave to be effective at both IP's at the same time. For Runl4, the Uranium-Uranium
lattice from Runl2 was taken as a baseline: it offered the best performance in terms of dynamic
aperture and integrated luminosity for RHIC high energy A-A runs.
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| - A bit of context |l — Implementation |l - APEX results and end-of-store work

* Machine constraints: contrary to the LHC (one PS per quadrupole), RHIC features a nested
wiring scheme which puts additional constraints into the MAD-X matching algorithm.
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| - A bit of context |l — Implementation |l - APEX results and end-of-store work

* Machine constraints: contrary to the LHC (one PS per quadrupole), RHIC features a nested
wiring scheme which puts additional constraints into the MAD-X matching algorithm.
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| - A bit of context |l = Implementation

Il = APEX results and end-of-store work

Machine constraints: contrary to the LHC (one PS per quadrupole), RHIC features a nested

wiring scheme which puts additional constraints into the MAD-X matching algorithm.
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Il = Implementation

Machine constraints: contrary to the LHC (one PS per quadrupole), RHIC features a nested
wiring scheme which puts additional constraints into the MAD-X matching algorithm.

The required quadrupole strengths for the RHIC ATS scheme are calculated based on an initial
design with B*(STAR,PHENIX) = 0.7m and perfect, unperturbed optics. Implementing these new
optics would therefore require rounds of optics corrections: measurements from turn-by-turn
orbit data show a 20-30% B-beat perturbation for the Aul4-s0 optics
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Il — Implementation

Comparing predicted (red) and measured (black) beta-beating:

loptics (on cscompileol.pbn.bnl.gov)
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Il = Implementation

e Calculated corrector strengths for the 72 selected quadrupoles (Q1-3,TQ4-6 for all IR’s):
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Il = Implementation

Beta-beating before and after corrections (for * = 70 cm)
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sqrtibeta func [m])

Il = APEX results and end-of-store work

Timeline:

o first APEX attempt: Fill #18126

established the storage ramp for telescope beta squeezing to 0.6m p*

Ist time 100% online B-beat correction with loptics

o first time reaching 50cm in Blue for Fill #18128
o first time with 50cm in Yellow for Fill #18239
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Il = APEX results and end-of-store work

e Timeline:
o first APEX attempt: Fill #18126

established the storage ramp for telescope beta squeezing to 0.6m p*
It time 100% online B-beat correction with loptics

o first time reaching 50cm in Blue for Fill #18128
o first time with 50cm in Yellow for Fill #18239
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Luminosity [1025 cm'zs'1]

Il = APEX results and end-of-store work

* Luminosity as a function of time during one of the stores featuring dynamic B* squeeze:
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Luminosity [1025 cm'25'1]
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Il = APEX results and end-of-store work
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Measured luminosity (ZDC) gain: A = 14.54%
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Predicted: (hourglass/B) ors/(hourglass/B). ... = 14.47% (using APEX optics measurements and

assuming stable bunch length).



Il = APEX results and end-of-store work

e Timeline:

o first APEX attempt: Fill #18126
established the storage ramp for telescope beta squeezing to 0.6m p*

Ist time 100% online B-beat correction with loptics
o first time reaching 50cm in Blue for Fill #18128
o first time with 50cm in Yellow for Fill #18239

e End-of-store experiment:
o with a 12x12 test ramp (APEX) = Fill #18272
o withafull I'l IxI11 = failed (LISA used Aul4-s0 to re-optimize), Fill #18261
o withafull I'l'lxI'l'l =successful, Fill #18320 (both Blue and Yellow)

¢ THOR (Telescopic Hi-lumi Optics for RHIC) declared operational on 6/12/2014!

¢ Complications during commissioning:
* need to commission each individual stone separately: APEX was the ideal place to do so;

e chromaticity control: prefire protection bumps and their large orbit offsets in the
corresponding arcs pushed our knobs to a whole different realm (about -60 units in
Yellow...) => should be less of a problem with the new masks!



CONCLUSION

e  From Runl4 operations:

> successful implementation of the concept of ATS optics: achieved the requested B* in both STAR and
PHENIX experiments;

°  resulting change in luminosity also follows predictions from design;

> for future A-A runs, the next step is leveling luminosities for the entire length of a store.
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CONCLUSION

From Runl4 operations:

> successful implementation of the concept of ATS optics: achieved the requested B* in both STAR and
PHENIX experiments;

resulting change in luminosity also follows predictions from design;

for future A-A runs, the next step is leveling luminosities for the entire length of a store.

Run|5 applications:

o

based on initial design by S. White, RHIC Runl5 for polarized protons features a lattice that satisfies all
theoretical requirements for “full” ATS implementation;

o

redesigned the whole RHIC ramp construction system to allow for additional lattice constraints related to

operations with the electron lens compensation scheme: first linear optics measurements show great
agreement with design values.
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CONCLUSION

e  From Runl4 operations:

> successful implementation of the concept of ATS optics: achieved the requested B* in both STAR and
PHENIX experiments;

> resulting change in luminosity also follows predictions from design;

for future A-A runs, the next step is leveling luminosities for the entire length of a store.

e Runl5 applications:

o

based on initial design by S. White, RHIC Runl5 for polarized protons features a lattice that satisfies all
theoretical requirements for “full”” ATS implementation;

redesigned the whole RHIC ramp construction system to allow for additional lattice constraints related to

operations with the electron lens compensation scheme: first linear optics measurements show great
agreement with design values.
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CONCLUSION

From Runl4 operations:

> successful implementation of the concept of ATS optics: achieved the requested B* in both STAR and
PHENIX experiments;

> resulting change in luminosity also follows predictions from design;

> for future A-A runs, the next step is leveling luminosities for the entire length of a store.

Run|5 applications:

> based on initial design by S. White, RHIC Runl|5 for polarized protons features a lattice that satisfies all
theoretical requirements for “full” ATS implementation;

> redesigned the whole RHIC ramp construction system to allow for additional lattice constraints related to
operations with the electron lens compensation scheme: first linear optics measurements show great
agreement with design values.
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CONCLUSION

From Runl4 operations:

> successful implementation of the concept of ATS optics: achieved the requested B* in both STAR and
PHENIX experiments;

> resulting change in luminosity also follows predictions from design;

> for future A-A runs, the next step is leveling luminosities for the entire length of a store.

Run|5 applications:

> based on initial design by S. White, RHIC Runl|5 for polarized protons features a lattice that satisfies all
theoretical requirements for “full” ATS implementation;

> redesigned the whole RHIC ramp construction system to allow for additional lattice constraints related to
operations with the electron lens compensation scheme: first linear optics measurements show great
agreement with design values.

Additional features to be tested:

e RHIC Runl5: repeat chromaticity measurements, incl. non-linear terms, to assess the quality of the ATS
lattice design;

e test a new chromaticity knob that uses 24 families (instead of the current 2), to allow for specific
corrections in the ATS matching section;

e prepare a lattice comparable to pp-Run|5 but dedicated to A-A runs: check power supply limits, take SC
system requirements into account.



