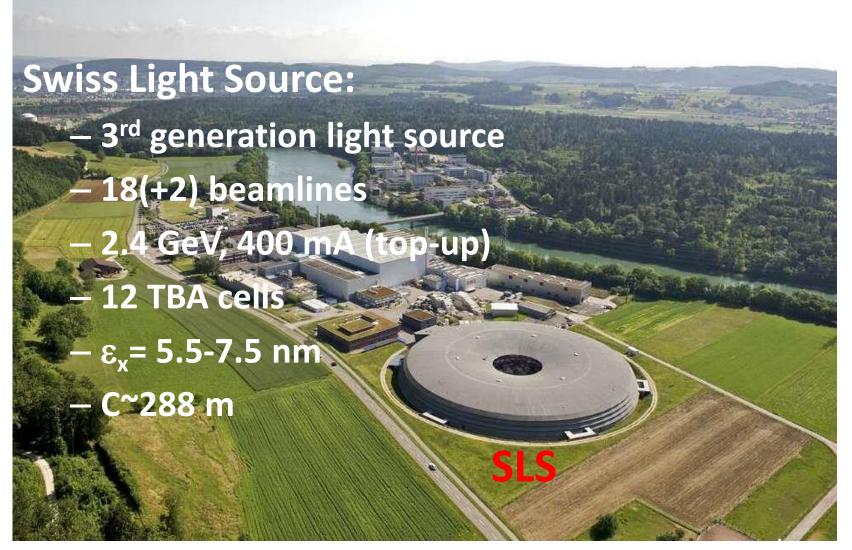


#### **Recent optics measurements at SLS**

M. Aiba, M. Böge, Á. Saá Hernández, D. Mayilyan and A. Streun Paul Scherrer Institut

Advanced Optics Control, CERN, 05-06.02.2015




#### Contents

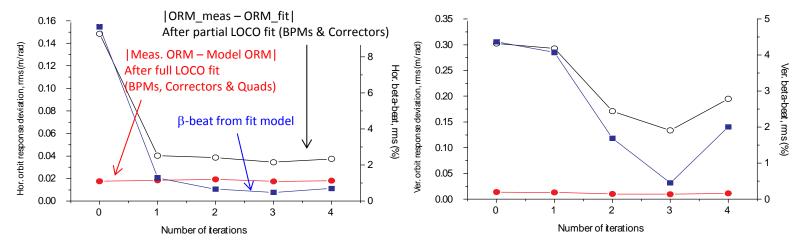
- SLS
- "Local" LOCO
- Emittance monitor status
- Energy spread measurement using TBT data
- Summary

Advanced Optics Control, CERN, 05-06.02.2015



## Swiss Light Source




Advanced Optics Control, CERN, 05-06.02.2015

# "Local" LOCO (1)

Motivation

PAUL SCHERRER INSTITUT

– LOCO\* optics correction did not converge for  $\beta_V$ -beat<~2% at SLS\*\*



ORM difference after BPM&corrector fit/calibration (black plots)

- Should be comparable to the measurement noise level (0.01 m/rad) after iteration
- Should fluctuate within the measurement noise level after a couple of iterations
- Should be close to ORM difference with full LOCO fit (red plot)

There is something wrong especially in the vertical plane...? Method to probe the ring optics "locally" may give a better insight.

> \* J. Safranek, NIM-A, 388, p.27 (1997) \*\* M. Aiba et al., PRST-AB, 16, 012806 (2013)

Advanced Optics Control, CERN, 05-06.02.2015

# "Local" LOCO (2)

Local orbit response matrix measurement

PAUL SCHERRER INSTITUT

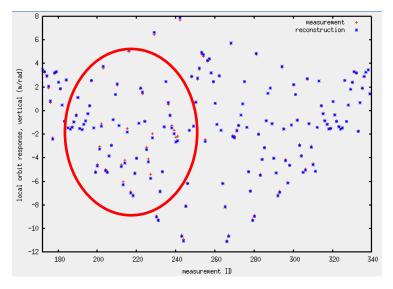
- Keep orbit feedback running except for the section under measurement
- Measure orbit response as in LOCO for the correctors in the measurement section
- Statistical measurement error ~0.02 m/rad in the vertical plane (cf. full ORM ~0.01 m/rad)
- Larger error in the horizontal (dispersive) plane, not fully understood

#### Local orbit response matrix example (V correctors #19-#31 out of #1-#73)



- Local response matrix measurement is established
- Quadrupole errors outside the measurement section are transparent

Advanced Optics Control, CERN, 05-06.02.2015

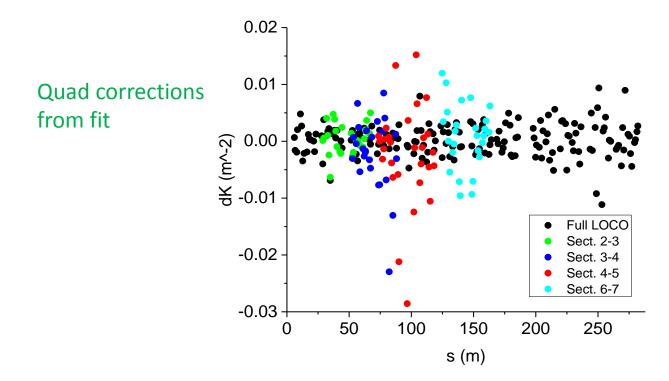



# "Local" LOCO (3)

• First results (using only vertical data):

|                                    | Sect.2-3      | Sect.3-4      | Sect.4-5                    | Sect.6-7      |
|------------------------------------|---------------|---------------|-----------------------------|---------------|
| RMS residual before/after LOCO fit |               |               |                             |               |
| ORM_meas - ORM_fit  (m/rad)        | 0.0207/0.0099 | 0.0312/0.0267 | 0.0494/ <mark>0.0439</mark> | 0.0264/0.0145 |
| Average quad change, < dK > (m^-2) | 0.0020        | 0.0066        | 0.0071                      | 0.0044        |

Sect. 4-5, ORM meas. vs ORM fit model (unsuccessful case)

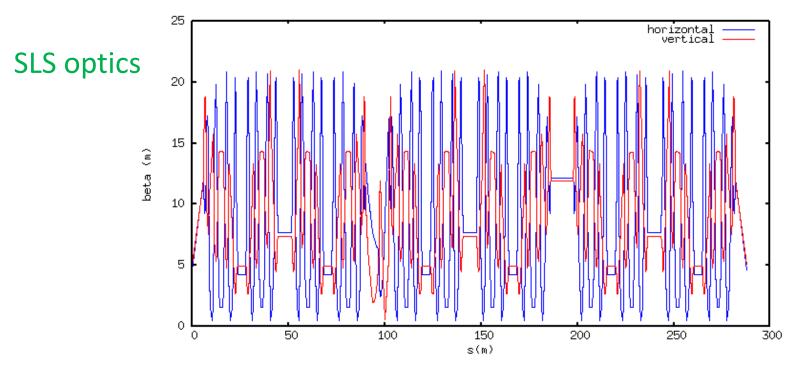



Advanced Optics Control, CERN, 05-06.02.2015



# "Local" LOCO (4)

• Comparison – LOCO and Local LOCO




#### It seems that there is something wrong around Sector 4-5!

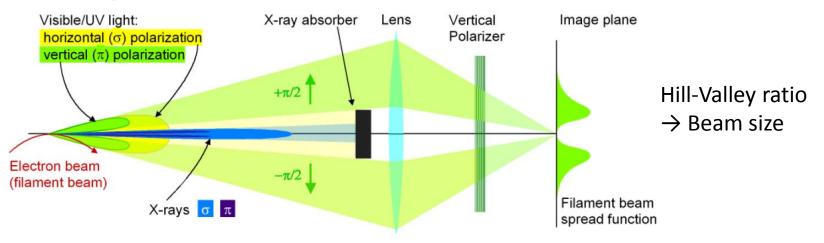
Advanced Optics Control, CERN, 05-06.02.2015



# "Local" LOCO (5)



Straight section 5 accommodates Femto beamline...


- With wiggler, chicane, additional quads...
- With additional  $\pi$  phase advance and irregular optics

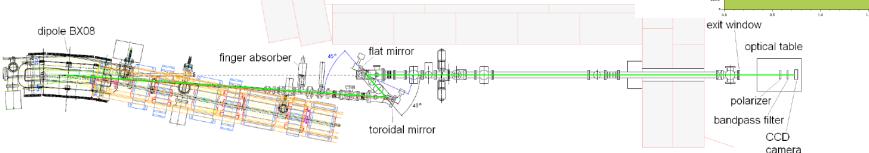
Advanced Optics Control, CERN, 05-06.02.2015



## Emittance monitor status (1)

- Vertical emittance monitors at SLS
  - Synchrotron radiation -> Vertical beam size ->  $\varepsilon_v$
  - Monitor #1\* used for achieving  $\varepsilon_y = 0.9 \text{ pm}^{**}$ ( $\sigma_y \sim 3.6 \mu \text{m}$ ) reaching the resolution limit




\* A. Andersson et al., NIM-A 591, p.437 (2008) \*\* M. Aiba et al., NIM-A 694, p.133 (2012)

Advanced Optics Control, CERN, 05-06.02.2015

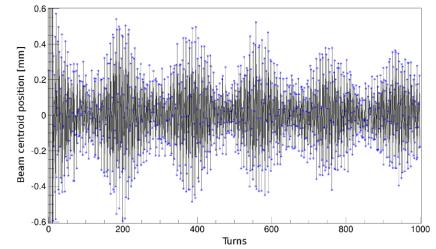


## Emittance monitor status (2)

- Monitor #2 development\*
  - Longer arm to improve the resolution (+ optical table accessible even during operation)
  - Plan A: Toroidal mirror optics  $\rightarrow \lambda$  independent Plan B: Lens optics (as in Monitor #1)
  - Interferometric method is also implemented



- Plan A: small image aberrations from toroid misalignment
- Plan B: clean images, so far  $\varepsilon_v$  =1.3 pm\*\* ( $\sigma_v$  ~4.3  $\mu$ m) measured
- Another vertical emittance tuning campaign is foreseen with Plan B


\* Work supported by TIARA WP6 TIARA-REP-WP6-2012-015 \*\* Á. Saá Hernández et al., ICFA Newsletter 62 (2013)

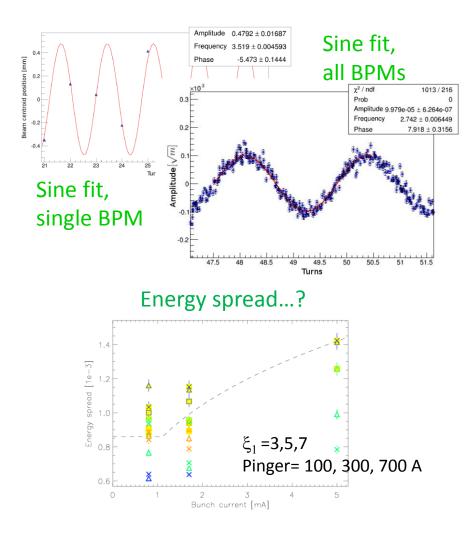
Advanced Optics Control, CERN, 05-06.02.2015



# Energy spread measurement (1)

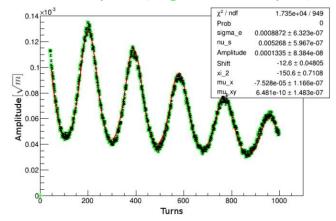
• Energy spread measurement using TBT data\*




- Procedure
  - Merge TBT data from all BPMs
  - Fit (locally) sine function to data to find the envelope of the betatron oscillation
  - Fit theoretical formula\*\* to the envelope

 $\rightarrow$  Energy spread corresponds to one of fitting parameters

\* D. Mayilyan, Master thesis, ETH Zurich (2014) \*\* A. Sargsyan, NIM-A, 638, p.15 (2011)


Advanced Optics Control, CERN, 05-06.02.2015





PAUL SCHERRER INSTITUT

#### Envelop fit (a good example)



Fixed parameters (measured separately):

- 1<sup>st</sup> order chromaticity,  $\xi_1$ Fitting parameters:
- Energy spread
- Amp. dependent tune shift(s)
- 2<sup>nd</sup> order chromaticity
- Synchrotron tune
- Kick amplitude

Advanced Optics Control, CERN, 05-06.02.2015



## Summary

- "Local" LOCO
  - Method to probe the ring optics locally under development
  - First results indicate that Sector 4-5 could be a source that prevents LOCO from converging
- Vertical emittance monitor #2 R&D is on-going
  - Difficulties with Toroidal mirror...
  - Another  $\epsilon_{\rm y}$  tuning campaign is foreseen with Monitor #2 (Plan B)
- Energy spread measurement attempted
  - Using TBT data
  - Measured values depend on chromaticity and kick amplitude...

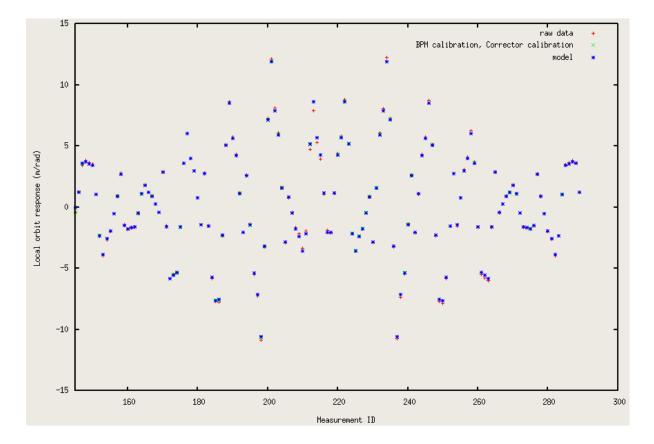


## Back up slides

Advanced Optics Control, CERN, 05-06.02.2015



## Local orbit response matrix analysis (1)

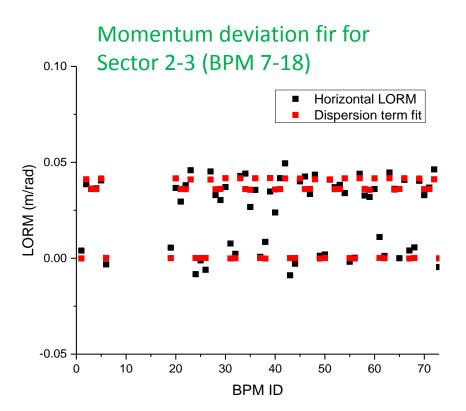

- Procedure
  - BPM calibrations from normal LOCO
  - Momentum deviation found from nonmeasurement section BPMs (not important for vertical plane)
  - Corrector calibrations found from Local response matrix
  - Find best quadrupole setting (corrections) by fitting (SVD)

Advanced Optics Control, CERN, 05-06.02.2015



## Local orbit response matrix analysis (2)

• BPM and corrector calibration for Sector 2-3




Advanced Optics Control, CERN, 05-06.02.2015



### Local orbit response matrix analysis (3)

- Momentum deviation
  - Momentum is slightly varied when the measurement corrector is in a dispersive section
  - Momentum correction (1 Hz) is independent, and there can be residual momentum deviation at the time of measurement
  - Local orbit response data is corrected by finding momentum deviation using the nonmeasurement BPMs

