Status and challenges of Crab waist interaction region for FCC-ee (one quarter of the ring)

A. Bogomyagkov

Budker Institute of Nuclear Physics Novosibirsk

Advanced optics control workshop 5-6 February, 2015 CERN

	Z	W	Н	tt
Energy [GeV]	45	80	120	175
Perimeter [km]	100			
Crossing angle [mrad]	30			
Particles per bunch [10 ¹¹]	1	4	4.7	4
Number of bunches	29791	739	127	33
Energy spread [10 ⁻³]	1.1	2.1	2.4	2.6
Emittance hor. [nm]	0.14	0.44	1	2.1
Emittance ver. [pm]	1	2	2	4.3
β_x^*/β_y^* [m]	0.5 / 0.001			
Luminosity / IP				
$[10^{34} cm^{-2} s^{-1}]$	212	36	9	1.3
Energy loss / turn [GeV]	0.03	0.3	1.7	7.7

• Very small β^* leads to high beta in quadrupoles.

- Therefore high nonlinear chromaticity.
- Energy acceptance is limited.
- Strong sextupoles to correct chromaticity limit DA.
- Effect of sextupole length limits DA.
- Kinematic term limits DA.
- Quadrupole fringes with high beta limit DA.
- Strong crab sextupoles limit DA.

- Very small β^* leads to high beta in quadrupoles.
- Therefore high nonlinear chromaticity.
- Energy acceptance is limited.
- Strong sextupoles to correct chromaticity limit DA.
- Effect of sextupole length limits DA.
- Kinematic term limits DA.
- Quadrupole fringes with high beta limit DA.
- Strong crab sextupoles limit DA.

- Very small β^* leads to high beta in quadrupoles.
- Therefore high nonlinear chromaticity.
- Energy acceptance is limited.
- Strong sextupoles to correct chromaticity limit DA.
- Effect of sextupole length limits DA.
- Kinematic term limits DA.
- Quadrupole fringes with high beta limit DA.
- Strong crab sextupoles limit DA.

- Very small β^* leads to high beta in quadrupoles.
- Therefore high nonlinear chromaticity.
- Energy acceptance is limited.
- Strong sextupoles to correct chromaticity limit DA.
- Effect of sextupole length limits DA.
- Kinematic term limits DA.
- Quadrupole fringes with high beta limit DA.
- Strong crab sextupoles limit DA.

- Very small β^* leads to high beta in quadrupoles.
- Therefore high nonlinear chromaticity.
- Energy acceptance is limited.
- Strong sextupoles to correct chromaticity limit DA.
- Effect of sextupole length limits DA.
- Kinematic term limits DA.
- Quadrupole fringes with high beta limit DA.
- Strong crab sextupoles limit DA.

- Very small β^* leads to high beta in quadrupoles.
- Therefore high nonlinear chromaticity.
- Energy acceptance is limited.
- Strong sextupoles to correct chromaticity limit DA.
- Effect of sextupole length limits DA.
- Kinematic term limits DA.
- Quadrupole fringes with high beta limit DA.
- Strong crab sextupoles limit DA.

- Very small β^* leads to high beta in quadrupoles.
- Therefore high nonlinear chromaticity.
- Energy acceptance is limited.
- Strong sextupoles to correct chromaticity limit DA.
- Effect of sextupole length limits DA.
- Kinematic term limits DA.
- Quadrupole fringes with high beta limit DA.
- Strong crab sextupoles limit DA.

- Very small β^* leads to high beta in quadrupoles.
- Therefore high nonlinear chromaticity.
- Energy acceptance is limited.
- Strong sextupoles to correct chromaticity limit DA.
- Effect of sextupole length limits DA.
- Kinematic term limits DA.
- Quadrupole fringes with high beta limit DA.
- Strong crab sextupoles limit DA.

Final Focus layout

Final Focus layout: sketch of solenoids

Interaction Region optical functions: Old

Interaction Region optical functions: New

A. Bogomyagkov (BINP)

FCC-ee crab waist IR and the arc

Final Focus Telescope: New

A. Bogomyagkov (BINP)

Y Chromaticity Correction Section

X Chromaticity Correction Section

A. Bogomyagkov (BINP)

Chromaticity Correction Telescope

CRAB, MS, DS sections

A. Bogomyagkov (BINP)

Before the achromatic bend at the crab sextupole each beam is diverging at \pm 4.4 mrad. Energy loss $\Delta U = 0.11$ GeV

	L	В	ϕ
	[m]	[T]	[mrad]
B0	10.5	0.06	1
B1	10.5	0.21	3.7
B2	10.5	0.21	3.8
B3	14.5	0.21	5.2
B4	14.5	0.21	5.2
B5	14.5	0.03	0.6
B6	14.5	0.01	0.2
B7	14.5	-0.13	-3.2
B8	14.5	-0.13	-3.2
B9	14.5	-0.11	-2.8
B10	10.5	0.06	1

Interaction Region layout: New

	L	В	ϕ
	[m]	[T]	[mrad]
B0	10.5	0.06	1
B1	10.5	0.17	3
B2	14.5	0.17	4.2
B3	15	0.22	5.6
B4	15	0.22	5.6
B5	21.5	0.06	2.2
B6	10.5	0.04	0.7
B7	14.5	-0.11	-2.7
B8	14.5	-0.11	-2.7
B9	21.5	-0.05	-1.8

Old synchrotron radiation fans from S. Glukhov

New synchrotron radiation fans from S. Glukhov

Chromaticity: Montague functions, {124.54; 84.57}

How does it work (chromaticity estimations)?

Montague functions first order

$$b_{y,1} = \frac{1}{\beta_y} \frac{\partial \beta_y}{\partial \delta},$$

$$a_{y,1} = \frac{\partial \alpha_y}{\partial \delta} - \frac{\alpha_y}{\beta_y} \frac{\partial \beta_y}{\partial \delta}$$

Montague functions second order

$$\begin{aligned} b_{y,2} &= \frac{1}{\beta_y} \frac{\partial^2 \beta_y}{\partial \delta^2} \,, \\ a_{y,2} &= \frac{\partial^2 \alpha_y}{\partial \delta^2} - \frac{\alpha_y}{\beta_y} \frac{\partial^2 \beta_y}{\partial \delta^2} \,. \end{aligned}$$

Chromaticity

$$\begin{aligned} \frac{\partial \varphi_y}{\partial \delta} &= \frac{1}{2} \int_0^{\Pi} \beta_y (K_1 - K_2 \eta_0) ds, \\ \frac{\partial^2 \varphi_y}{\partial \delta^2} &= -2 \frac{\partial \varphi_y}{\partial \delta} - \int_0^{\Pi} \beta_y K_2 \eta_1 ds + \frac{1}{2} \int_0^{\Pi} \beta_y b_{y,1} (K_1 - K_2 \eta_0) ds, \\ \frac{\partial^3 \varphi_y}{\partial \delta^3} &= 6 \frac{\partial \varphi_y}{\partial \delta} - \int_0^{\Pi} \beta_y (K_1 - K_2 \eta_0) (a_{y,1}^2 + b_{y,1}^2) ds + \\ &+ 3 \int_0^{\Pi} \beta_y (K_2 \eta_1 - K_2 \eta_2) ds + \frac{3}{2} \int_0^{\Pi} \beta_y b_{y,2} (K_1 - K_2 \eta_0) ds. \end{aligned}$$

Final Focus Telescope: beta chromaticity

Parameters of one quarter of the ring

	tt
Energy [GeV]	175
Perimeter [m]	24655.9
Momentum compaction	5.7 · 10 ⁻⁶
Emittance hor. [nm]	1.3
Energy spread [10 ⁻³]	1.6
β_x^*/β_y^* [m]	0.5 / 0.001
Energy loss / turn [GeV]	2.12

- Closed ring is ready.
- 2 At the end of IR the distance between the beams is 0.72 m.
- Synchrotron radiation fans are shifted away from IP.
- A knob is created to control third order chromaticity in vertical plane.
- Energy acceptance [-3.1%;+1.9%].
- Further optimization of energy acceptance should be done numerically together with DA optimization.