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• Global optics correction by fitting lattice model to data 
- Orbit response matrix data: LOCO 

- Extraction of optics functions from turn-by-turn BPM data 

- Fitting turn-by-turn BPM data directly to model 

• Difficulty with the fitting approach 
- Quadrupole errors predicted by fitting are too big 

• Understanding the problem 

• Solution to the difficulty 

• A method for optics and coupling correction with TBT BPM 

data.  

Outline 
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• Orbit response matrix contains optics information 

Linear Optics from Closed Orbit (LOCO) 

𝑅𝑥𝑥 𝑅𝑥𝑦
𝑅𝑦𝑥 𝑅𝑦𝑦

𝜽𝑥
𝜽𝑦
=
Δ𝒙
Δ𝒚

,  or Rθ = 𝚫𝐗 

Calculation of response matrix  

MΔX + 𝛥𝜃𝑥𝑗 = ΔX,            Δ𝑋 = 𝐼 − 𝑀 −1Δ𝜽𝑥𝑗 

With one turn transfer matrix 𝑀 at the corrector location, and  

Δ𝜽𝑥𝑗 = 0, Δ𝜃𝑗 , 0,0,0,0
′
 for a horizontal kick. Without coupling 

Δx (𝑠) =
𝛽 𝑠 𝛽0Δ𝜃𝑗

2 sin 𝜋𝜈
cos( 𝜓 𝑠 − 𝜓(𝑠0) − 𝜋𝜈) 

The orbit response matrix is an indirect, but significant representation of the optics 

of the machine lattice (including coupling). Therefore fitting orbit response matrix to 

the lattice model can effectively recover the machine optics into the model.  

References: J. Safranek, M. Lee, SLAC-PUB-6442 (1994) 

J. Safranek, NIMA, 388, 27 (1997)  
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• A least-square problem 
- Data include: measured orbit response matrix and dispersion functions.  

- Fitting parameters include: quadrupole strengths (gradients) in model, BPM 

and correction calibration parameters (gains, rolls and crunch). 

 

 

 

 

- Objective function: 

 

 

 

- Solving the least-square problem with an iterative method:   

Fitting ORM data to lattice model 

𝑥𝑚𝑒𝑎𝑠
𝑦𝑚𝑒𝑎𝑠

=
𝑔𝑥 𝑐𝑥
𝑐𝑦 𝑔𝑦

𝑥𝑏𝑒𝑎𝑚
𝑦𝑏𝑒𝑎𝑚

 

Note the difference between 𝑐𝑥 and 𝑐𝑦 accounts for BPM “crunch” 

(deformation from ideal configuration).   

𝑓 𝒑 = 𝜒2 = 
𝑅𝑖𝑗
𝑏𝑒𝑎𝑚 − 𝑅𝑖𝑗

𝑚𝑜𝑑𝑒𝑙 2)

𝜎𝑖
2

𝑖,𝑗

+ 
𝐷𝑥𝑖
𝑏𝑒𝑎𝑚 − 𝐷𝑥𝑖

𝑚𝑜𝑑𝑒𝑙 2

𝜎𝑥𝑖
2 +

𝐷𝑦𝑖
𝑏𝑒𝑎𝑚 − 𝐷𝑦𝑖

𝑚𝑜𝑑𝑒𝑙 2

𝜎𝑦𝑖
2

𝑖

 

where 𝒑 includes all fitting parameters.  

𝑓 𝒑 = 𝒓𝑻𝒓 with residual vector 𝒓. Calculate Jacobian matrix 𝑱 with 𝐽𝑖𝑗 =
𝜕𝑟𝑖

𝜕𝑝𝑗
. 

Solve 𝑱𝚫𝐩 = −𝐫𝐧 at each iteration and move to 𝐩𝑛+1 = 𝐩𝑛 + 𝚫𝐩 

J. Safranek, NIMA, 388, 27 (1997);  
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• Turn-by-turn (TBT) BPM data sample the machine optics 

 

• Beta functions and betatron phase advances can be derived 

from simultaneous TBT BPM data with beam oscillation. 
- P. Castro’s method [1]  

- MIA [2] and ICA [3]  

• Measured beta and phase can be used to fit lattice model [3].  

Turn-by-turn BPM data for optics calibration 

The beam coordinates at turn 𝑛, 𝑋𝑛 = 𝑥, 𝑥
′, 𝑦, 𝑦′ 𝑛

𝑇 , is given by 

 𝑋𝑛+1 = 𝑀𝑋𝑛 

[1] P. Castro, et al, PAC 93 

[2] Chun-xi Wang, et al. PRSTAB 6, 104001 (2003) 

[3] X. Huang, et al, PRSTAB, 8, 064001, (2005) 

This approach can be extended to include coupling (see details below).  
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• The raw measured TBT data can be fitted against model 

prediction.  
- Simple case: one quadrupole 

 

 

 

 

 

 

 

 

- Transport line and storage ring cases are similar.  

Another way of using TBT BPM data for optics correction 

The angle coordinate can be determined from two BPMs with known 

optics in between (such as a drift).  

𝑥1′ =
𝑥1−𝑥0

𝐿0
, 𝑦1′ =

𝑦1−𝑦0

𝐿0
. 

TBT data at BPM 2 can be compared to predictions based on (𝑥1, 𝑥1′, 
𝑦1, 𝑦1′) and the model between BPM 1, 2.  

X. Huang, et al, PRSTAB, 13, 114002, (2010) 

Fitting parameters include quadrupole 

strengths and BPM gains and rolls.  
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Experiment with TBT data for a section of SPEAR3  

8 BPMs on SPEAR3 were  converted to 

have turn-by-turn capability for the 

experiment.  

X and y motion are simultaneously excited. 

Fitting 5 quadrupole parameters. Errors 

were added to initial values.   

 Results: the 3 upstream quads are very well 

determined. The 2 downstream quads are 

not well constrained.  

LOCO results may be better in this case because it uses 

data from full ring. It is used here as a reference.  



8 X. Huang, Advanced Optics Control, CERN, Feb. 2015 

Simulation with full ring for SPEAR3 

Simulated data: 0.5% of random quad error (rms) were added to model. Skew quad 

error of rms 0.001 m−2. Gaussian errors of 50 microns added to data. Initial excitation 

of 2 mm for both planes. Using 200 turns of data for fitting.  

Fitting parameters: 72 quads and 13 skew quads.  

The seeded errors to quads, skew quads and BPM 

parameters are all successfully recovered.   
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• When fitting optics model to orbit response matrix data, it often 

happens the predicted Δ𝐾 is too large. 

- It can be too large to be reasonable. Sometimes iterative fitting won’t work since the 

second iteration lattice has no closed orbit.  

- It can happen even in simulation without random noise in data (Fermilab Booster [1]). 

- More common for other rings is that optics correction with the fitted Δ𝐾 fails. 

• Causes of the difficulty: correlation between fitting parameters.    

Difficulty with global optics fitting 

[1] X. Huang, et al, PAC’05, (2005) 

Large correlation between two parameters indicates that their effects on  the 

objective function are similar and thus hard to resolve.  

21

21
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JJ

JJ
T

Correlation of two 

parameters 

𝐉𝑖 is the column in the Jacobian 

matrix for parameter 𝑖.   
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Correlation between quadrupole parameters 
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• Large excursion of the fitting solution 

• Large error bars to the fitting solution 

 

Symptoms with coupled fitting parameters 

Noise sea 

𝜒2 

𝑝 

The solution may take a large step in Δ𝒑 to chase 

a small reduction of 𝜒2.  
Solutions that do not differ significantly in 𝜒2 (as 

compared to noise) should be deemed equivalent.   
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• Cutting off singular values in matrix inversion 

• Removing fitting parameters 

• Adding constraints to fitting parameters[1-2] 

- This is the preferred approach. It works better, probably because it is more 

“gentle”, allowing the solution Δ𝒑 to develop along the otherwise prohibited 

directions.  

Solutions to the coupled-parameter problem  

 
 k

kk

K

Kw 22

2

2

0

2 1




At every iteration, solve for Δ𝒑 with extra constraints, such as 

Δ𝐾𝑘 = 0. 
These constraints are not strict, but with certain pre-specified weights. 

Equivalently, for the iteration, the objective is modified to   

[1] X. Huang, et al, PAC’05, (2005) 

[2] X. Huang, et al, ICFA beam dynamics newsletter, 44, (2007). 

Note the global minimum is not changed by the constraints, only the convergence path. 
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Constraints in math terms 

The least-square problem:      to minimize 

 𝑓 𝒑 = 𝜒2 =  
1

𝜎𝑖
2 (𝑦𝑖 − 𝑦 𝑥𝑖; 𝒑)

2 = 𝒓𝑇𝒓𝑖  

With residual vector 𝒓, 𝑟𝑖 = (𝑦𝑖−𝑦(𝑥𝑖; 𝒑))/𝜎𝑖. 

Solving the LS with iteration: 

𝑓 𝒑 = 𝑓 𝒑0 + Δ𝒑 ≈ 𝒓0
𝑇𝒓0 + 2Δ𝒑𝑱

𝑇𝒓0 + Δ𝒑
𝑇𝑱𝑇𝑱Δ𝒑 

Condition 
𝜕𝑓

𝜕𝒑
= 0 leads to (the normal equation) 

𝑱𝑇𝑱Δ𝒑 = −𝑱𝑇𝒓0 
(This is equivalent to solving 𝑱Δ𝒑 = −𝒓0 with SVD, but computationally easier) 

The constraints are additional conditions that extends the Jacobian matrix and 

the residual vector:  

𝑱𝑛 =
𝑱
𝑫

,  𝒓𝑛 =
𝒓0
𝟎

 

where elements of matrix 𝐷 is zero except 𝐷𝑘𝑘 =
𝑤𝑘

𝜎Δ𝐾
 for parameter 𝑘. The new 

normal equation (with constraints) is essentially modified to 

(𝑱𝑇𝑱 + 𝑫T𝑫)Δ𝒑 = −𝑱𝑇𝒓0 

The matrix 𝑫 can be different if other types of constraints are imposed. 
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The Levenberg-Marquadt algorithm for fitting 

The L-M method for fitting  

(𝑱𝑇𝑱 + 𝜆𝑫T𝑫)Δ𝒑 = −𝑱𝑇𝒓0 
With diagonal matrix 𝐷, 𝐷𝑖𝑖 = 𝑱𝑖 . Parameter 𝜆 is adjusted after every iteration. It 

tends to zero when the solution approaches the minimum.   

So with 𝜆 at fixed value, the L-M method is another way of applying constraints. 

Changing 𝜆 is to change the weight.  

 

This is more convenient since one needs not to manually choose the constraints.  

Both the Gauss-Newton with manual constraints method and the L-M method (with 

fixed, changeable weight factor 𝜆) are implemented in the Matlab LOCO code[1].   

[1] G. Portmann, et al, ICFA newsletter, 44 (2007) 
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Illustration of the effects by the constraints 

The rms relative change of gradients vs. the residual χ2 for real SPEAR3 

data set. Green: no constraints; Blue: with constraints. Point 0 is located 

at ( 2 × 106, 0).  

Equivalent solutions with small Δ𝐾 are more 

reasonable and are preferred for optics correction.  
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𝝌𝟐 contribution of parameters 

Solution 3 (no constraint) Solution 3’ (w/ constraint) 

Calculation of 𝜒2 contribution for an individual parameter or a group of parameters: 

put all other parameters at the fitted values except the parameter(s) in question, 

which is set to the initial values; then find the change to 𝜒2. 

Without constraints (left), the sum of contributions of all quads is much larger than  

the total contribution of these quads. This indicates cancellation (fighting) between 

the quadrupoles.  
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• For optics correction, fit data only with knobs that you can or 

plan to use in correction.  
- These knobs may include quads on group power supplies (combined knob). 

- For optics “measurement”, one may use more quadrupole knobs in fitting to 

more fully extract information from data. 

• Adjust the weight of constraints (𝜆 in L-M method) so that 

quadrupole parameters result in significant 𝜒2 reduction, but 

with reasonable predicted Δ𝐾/𝐾 (typically < 1%).  
- Stop fitting iteration when 𝜒2 change becomes small, then apply correction 

and take new data. 

 

 

Practical considerations for optics correction 

Do not wait until fitting converges. The global minimum in the fitting problem may 

not be suitable for optics correction because of large, unrealistic errors. 
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A new method to simultaneously correct optics and 

coupling with TBT BPM data 

𝑥 𝑛 = 𝐴cos 2𝜋𝜈1𝑛 + 𝜓1 + 𝐵sin 2𝜋𝜈1𝑛 + 𝜓1 + 𝑎cos 2𝜋𝜈2𝑛 + 𝜓2 + 𝑏sin 2𝜋𝜈2𝑛 + 𝜓2  

𝑦 𝑛 = 𝑐 cos 2𝜋𝜈1𝑛 + 𝜓1 + 𝑑 sin 2𝜋𝜈1𝑛 + 𝜓1 + 𝐶cos 2𝜋𝜈2𝑛 + 𝜓2 + 𝐷sin 2𝜋𝜈2𝑛 + 𝜓2  

Amplitude and phase advances of the normal mode components in 𝑥 and 𝑦 can be 

constructed with the ICA mode coefficients.  

Normal modes can also be obtained from the transfer matrix (obtained with model) 

Turn by turn BPM data are decomposed to normal modes with Independent 

Component Analysis (ICA) 

𝑋 = 𝑥, 𝑥′, 𝑦, 𝑦′ 𝑇,   
𝑋𝑛+1 = 𝑇𝑋𝑛   
𝑋 = 𝑃Θ,  
Θ𝑛+1 = 𝑅Θ𝑛. 
 

Θ =
−

2𝐽1cosΦ1

2𝐽1sinΦ1

2𝐽2cosΦ2

− 2𝐽2sinΦ2

 

𝑅 =
𝑅1 0
0 𝑅2

 

𝑅1,2 =
cosϕ1,2 sinϕ1,2
−sinϕ1,2 cosϕ1,2

 

Matrix P can be found with Y. Luo’s approach (PRSTAB 7, 124001, 2004) or with Sagan-Rubin approach 

(PRSTAB 2, 074001, 1999).  

Hence 

  𝑥 = 𝑝11 2𝐽1cosΦ1+𝑝13 2𝐽2cosΦ2 − 𝑝14 2𝐽2sinΦ2 

𝑦 = 𝑝31 2𝐽1cosΦ1 − 𝑝32 2𝐽1sinΦ1 + 𝑝33 2𝐽2cosΦ2 

Fitting the lattice model with quadrupole and skew quadrupole parameters to  

reproduce the amplitude and phase advances of ICA. 
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Simulation with SPEAR3 model 
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For SPEAR3, a test case is generated by adding quadrupole and skew quad errors 

to the ideal lattice. BPM rolls are also added. Tracking one particle for 1100 turns, 

with initial offset of x=2 mm and y=1mm, respectively.  

 

Dispersion functions are also included in fitting.  
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Before fitting 
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After fitting 
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Comparison of phases 
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Fitting parameters 
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• Global optics can be obtained by fitting lattice model to data that sample 

the machine optics. 

• For many machines correlation between quadrupole parameters makes 

the fitting problem degenerate or poorly constrained.  

• Imposing constraints on parameter deviation in each iteration helps 

finding more reasonable equivalent solutions that are suitable for optics 

correction. 

- This method was implemented in Matlab LOCO since 2007 and has benefitted many 

storage rings.  

• A new method that uses ICA to obtain normal modes can simultaneously 

correct optics and coupling with in TBT BPM data. 

Summary 


