

Experience with resonance driving (and chromatic) terms at ESRF storage ring

Andrea Franchi on behalf of the ASD Beam Dynamics Group

AOC workshop, CERN, 5-6 January 2015

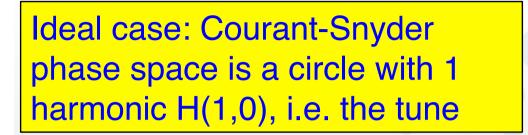
European Synchrotron Radiation Facility

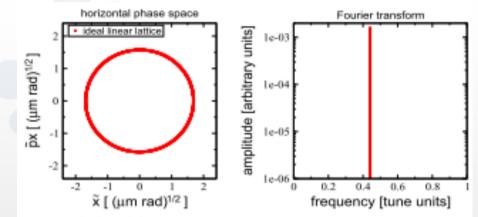
Contents

- from TbT BPM data to resonance driving terms
- from resonance driving terms to magnet strengths
- measuring sextupolar & octupolar fields @ ESRF
- resonance driving terms Vs lifetime => chromatic terms

Contents

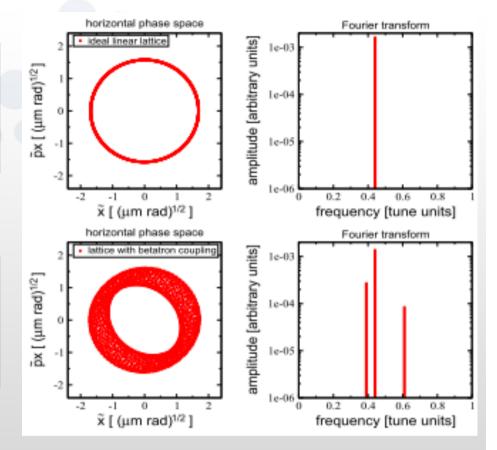
- from TbT BPM data to resonance driving terms
- from resonance driving terms to magnet strengths
- measuring sextupolar & octupolar fields @ ESRF
- resonance driving terms Vs lifetime => chromatic terms





Ideal case: Courant-Snyder phase space is a circle with 1 harmonic H(1,0), i.e. the tune

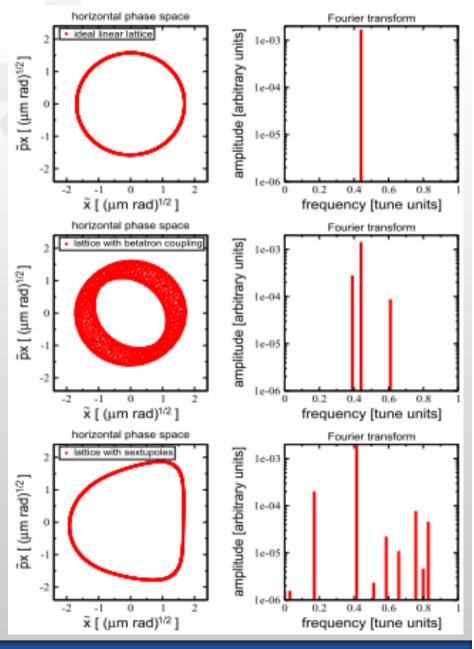
Coupled case: Courant-Snyder phase space contains 3 harmonics H(1,0) & H(0,±1)

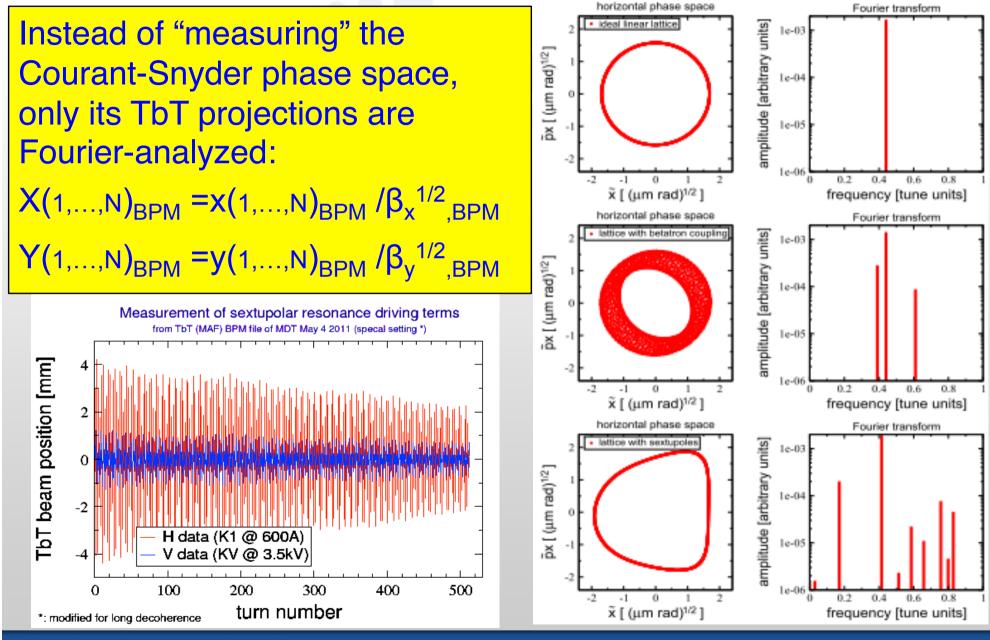


Ideal case: Courant-Snyder phase space is a circle with 1 harmonic H(1,0), i.e. the tune

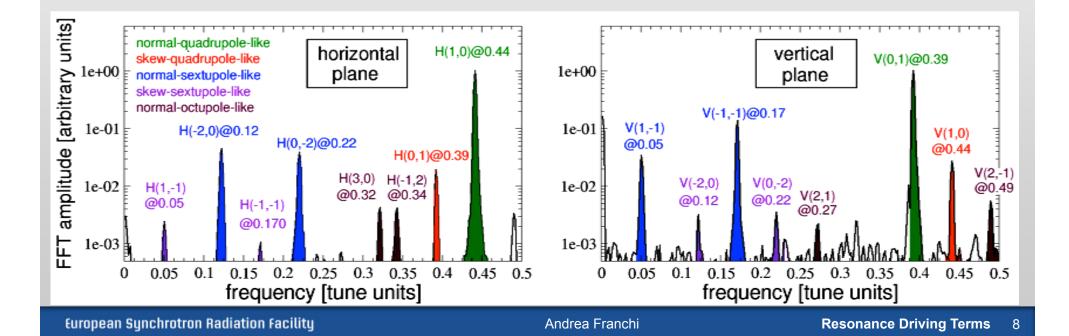
Coupled case: Courant-Snyder phase space contains 3 harmonics H(1,0) & H(0,±1)

Case with strong sextupoles: Courant-Snyder phase space contains several harmonics $H(1,0), H(\pm 2,0), H(0,\pm 2), ...$

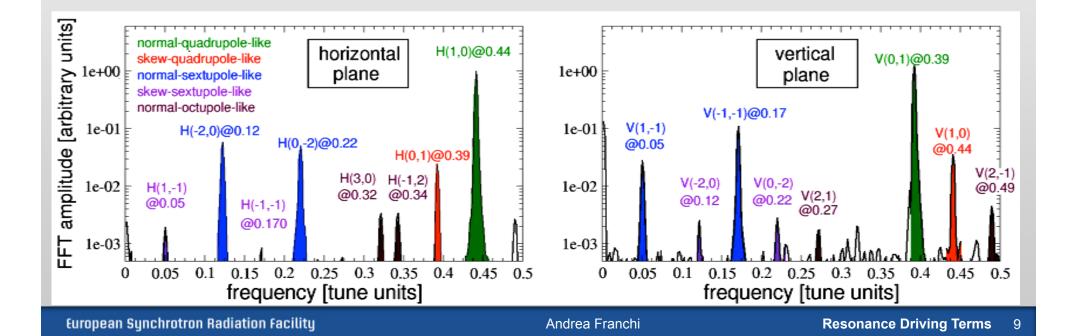


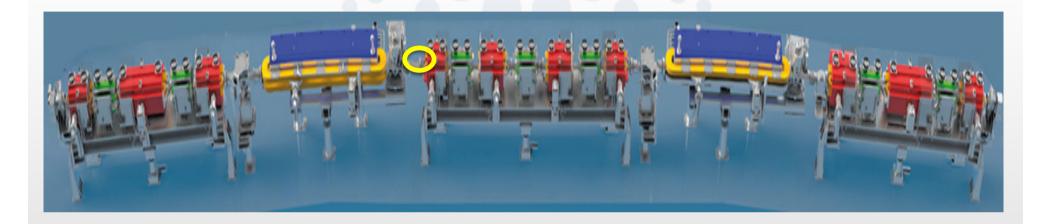


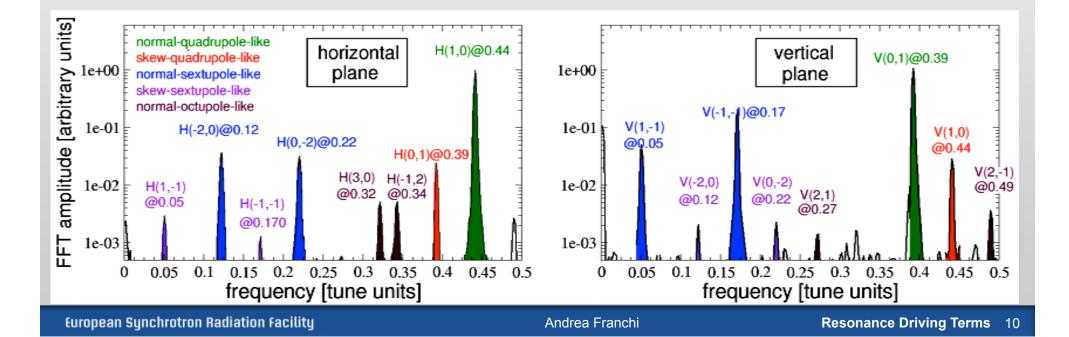
European Synchrotron Radiation Facility

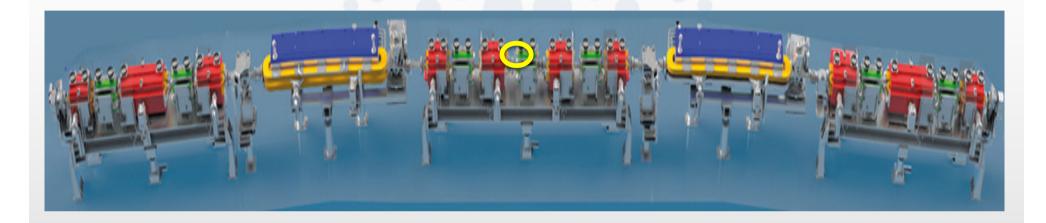


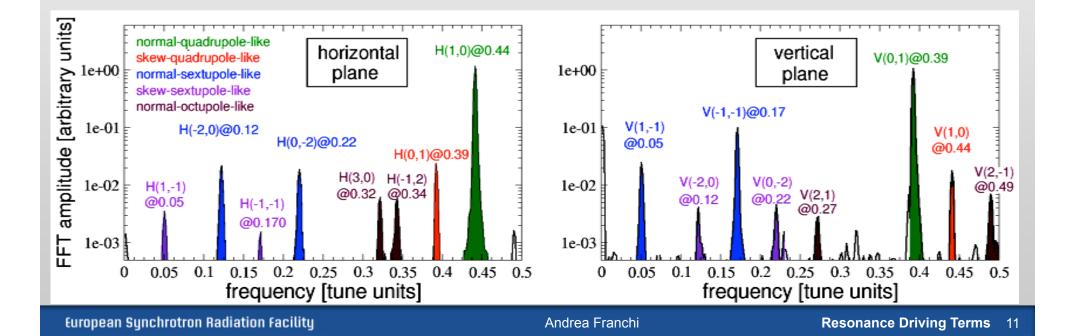








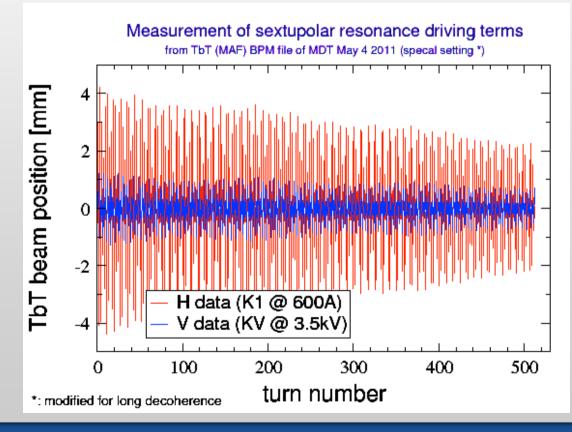




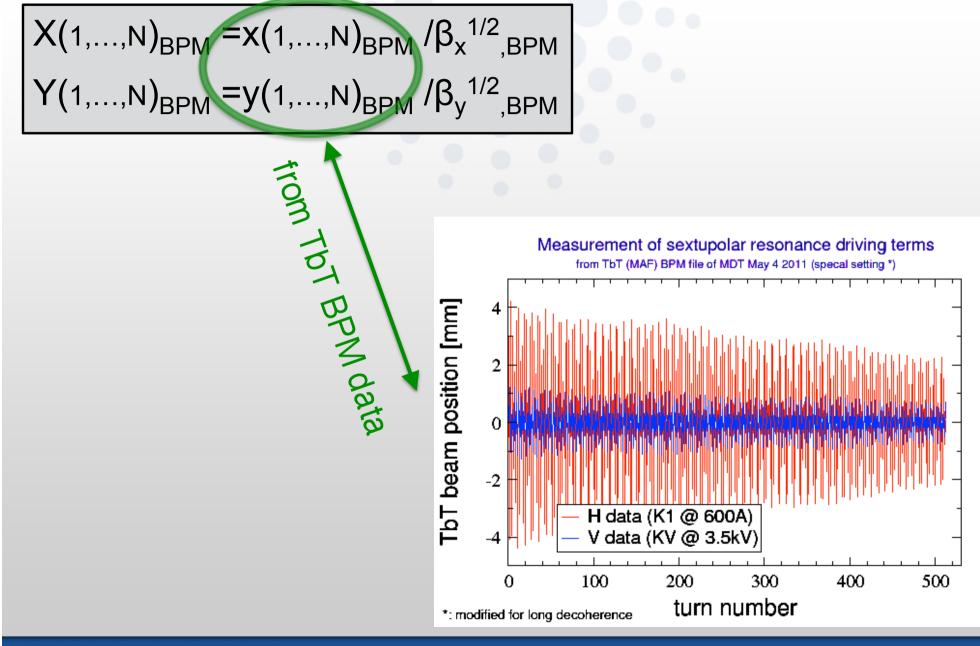
ESRF

$$X(1,...,N)_{BPM} = x(1,...,N)_{BPM} / \beta_x^{1/2}_{,BPM}$$

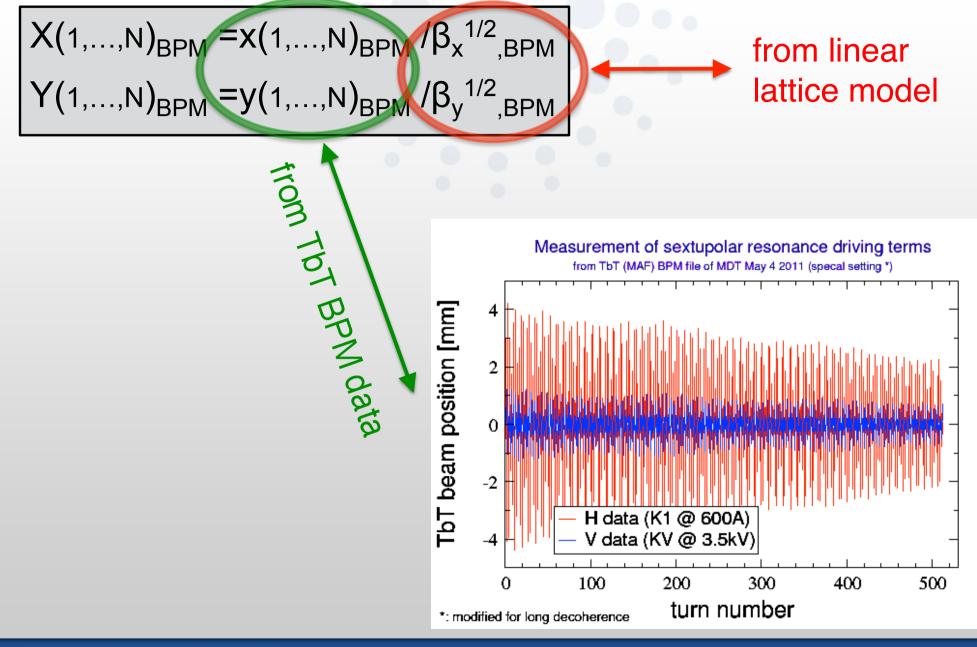
 $Y(1,...,N)_{BPM} = y(1,...,N)_{BPM} / \beta_y^{1/2}_{,BPM}$

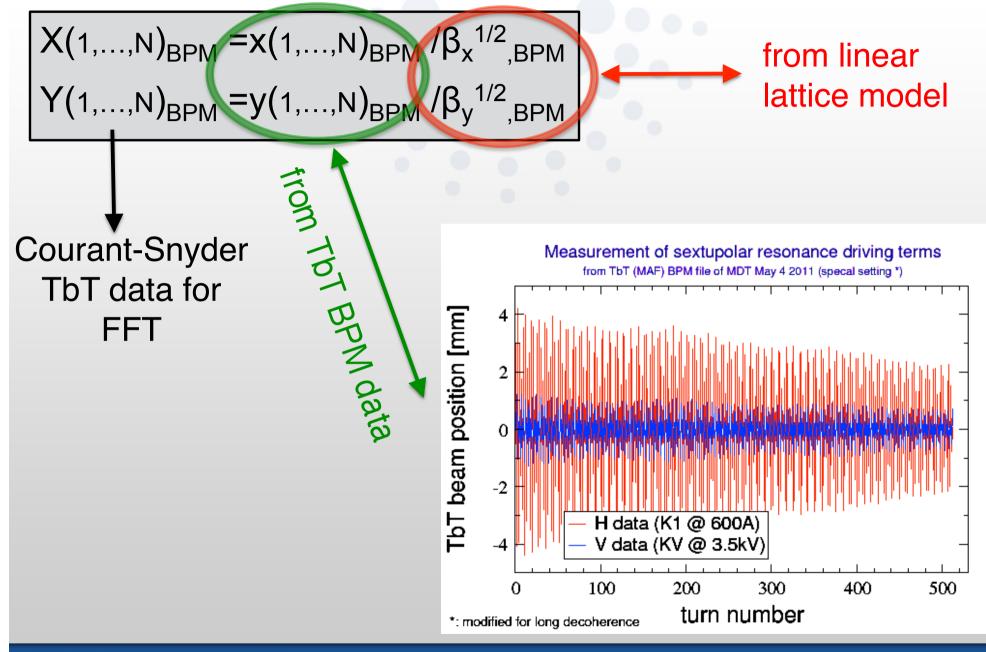


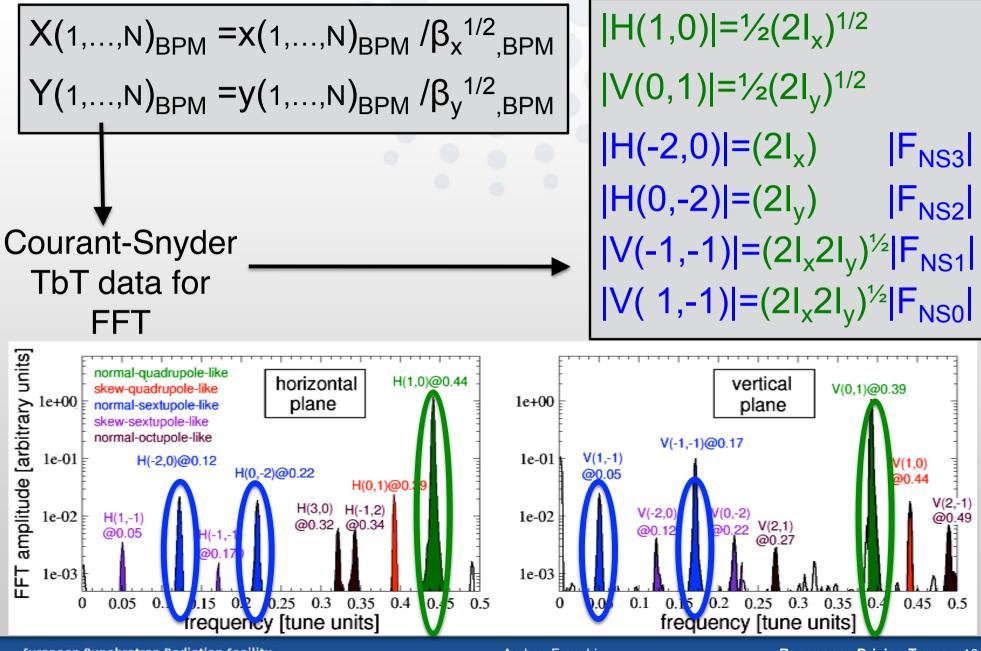
ESRF



ESRF



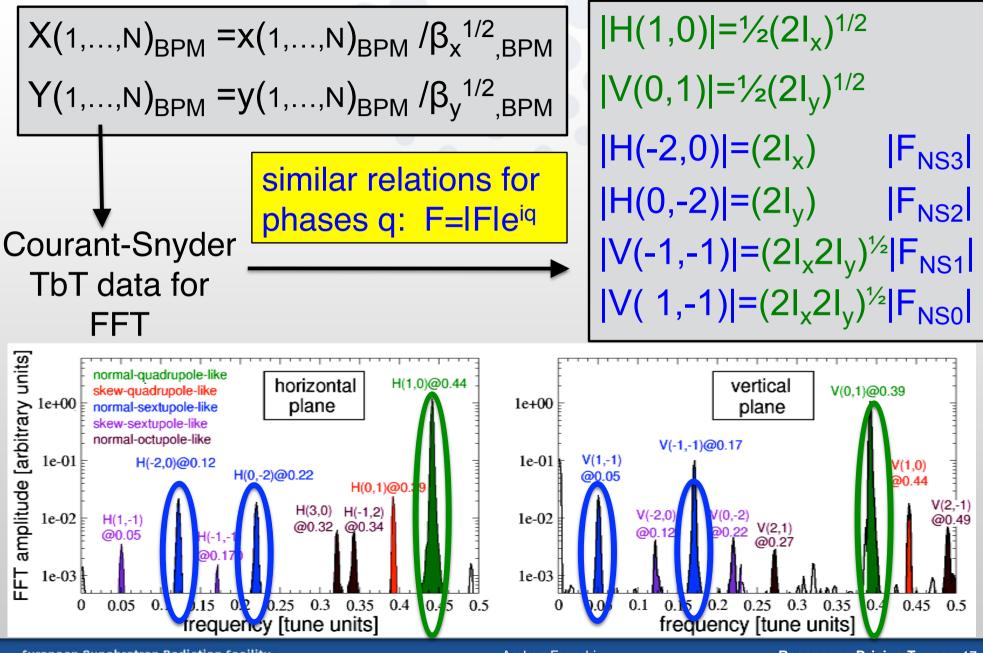




European Synchrotron Radiation Facility

Andrea Franchi

Resonance Driving Terms 16



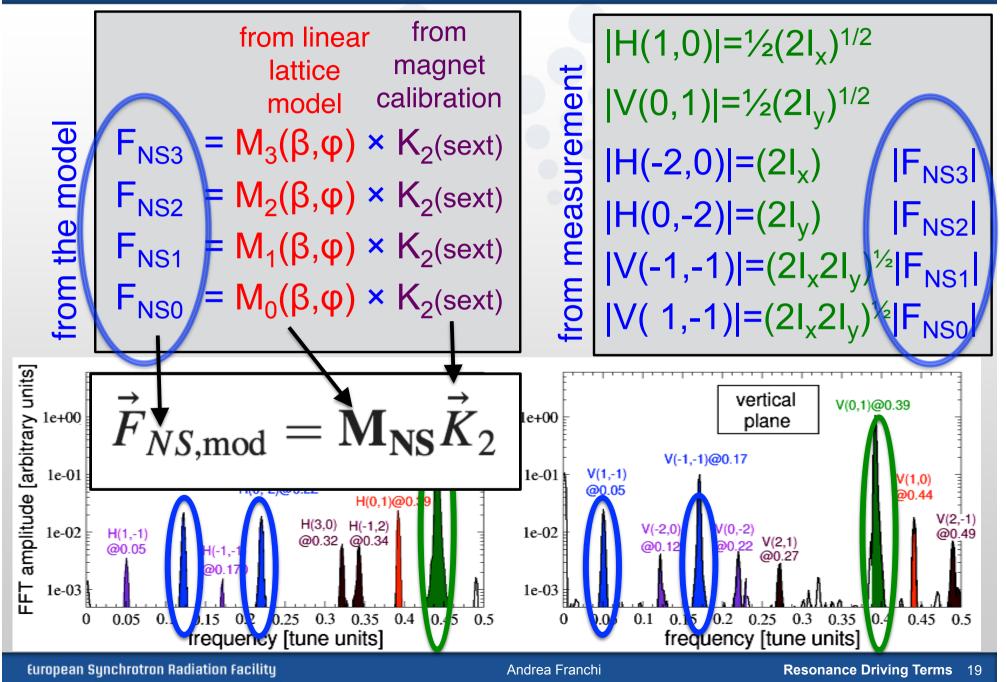
European Synchrotron Radiation Facility

Andrea Franchi

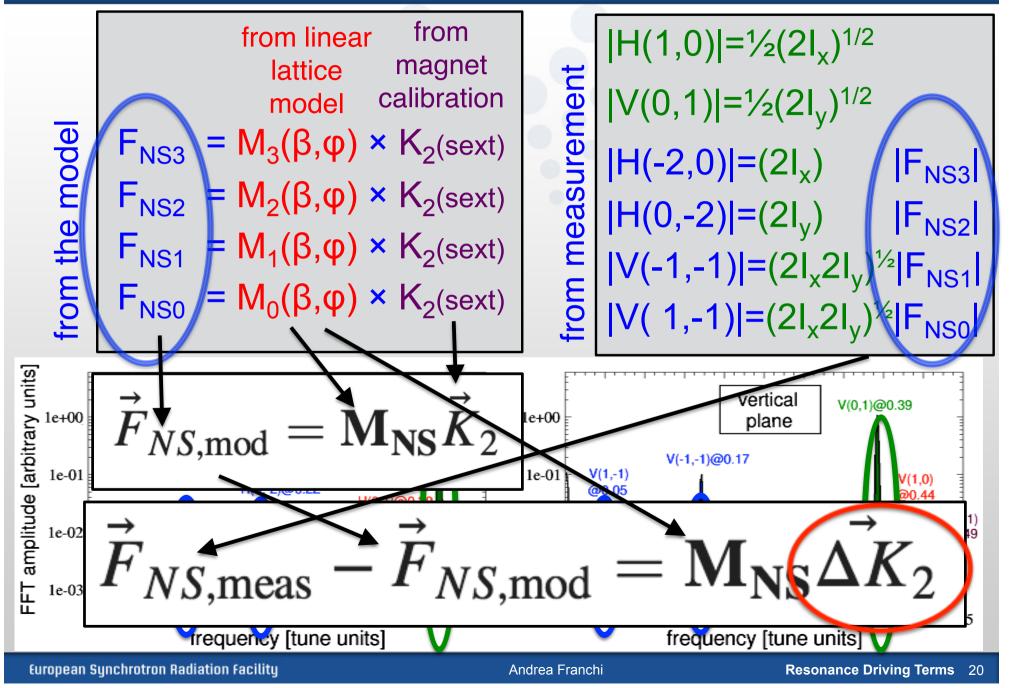
Contents

- from TbT BPM data to resonance driving terms
- from resonance driving terms to magnet strengths
- measuring sextupolar & octupolar fields @ ESRF
- resonance driving terms Vs lifetime => chromatic terms

from RDTs to magnet strengths

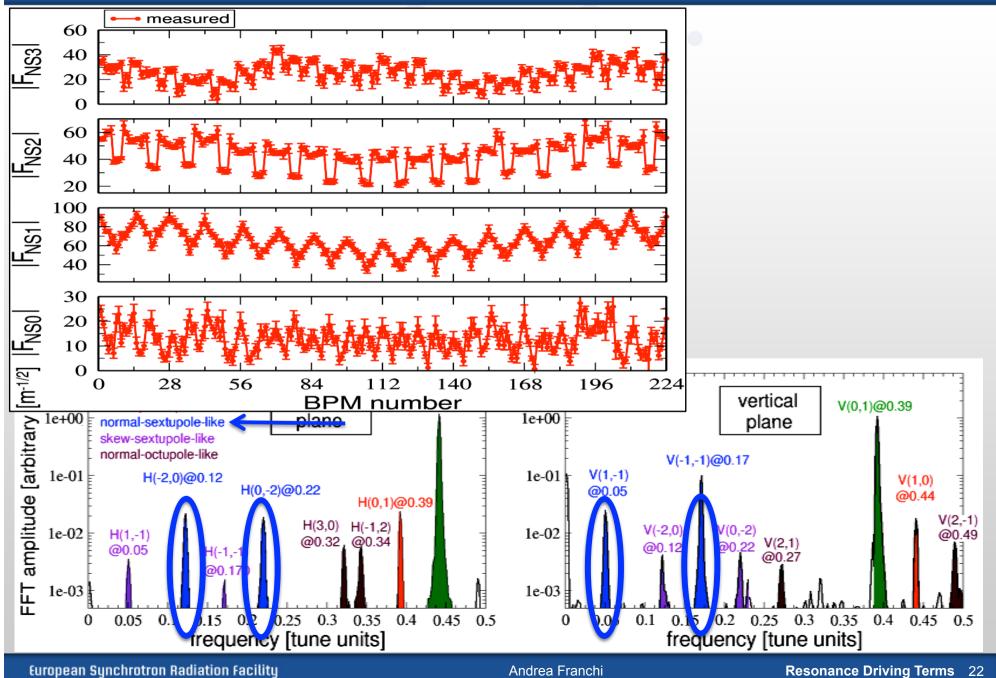


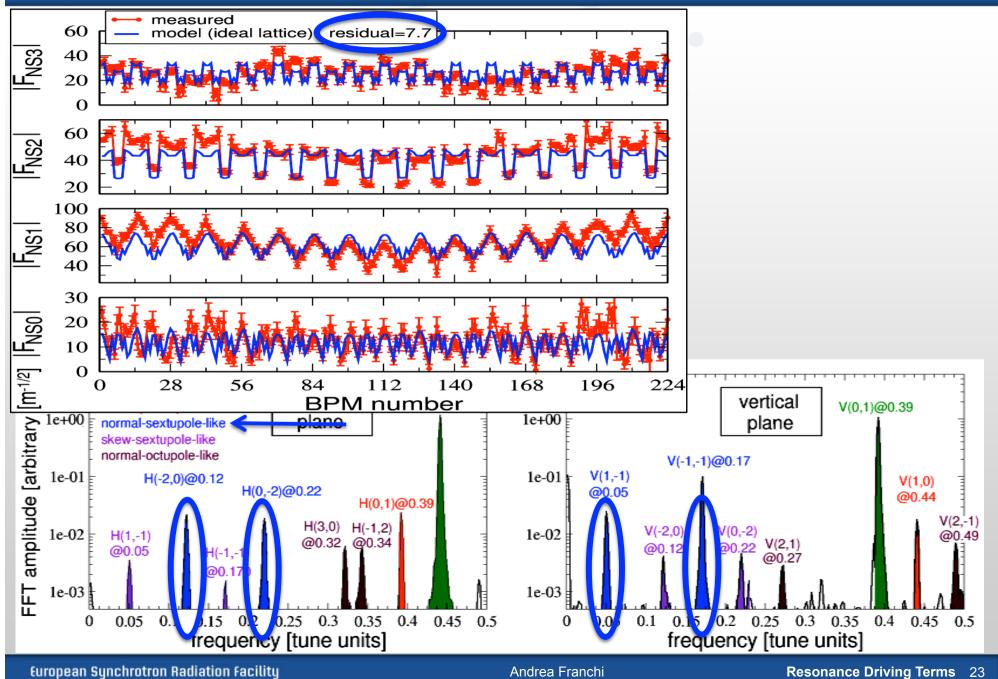
from RDTs to magnet strengths

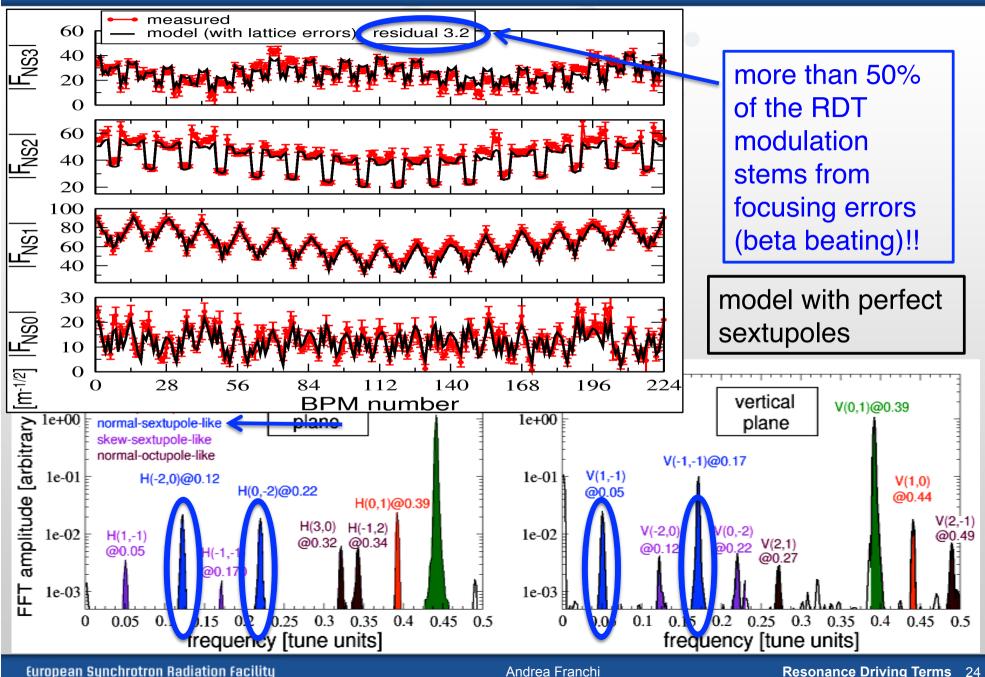


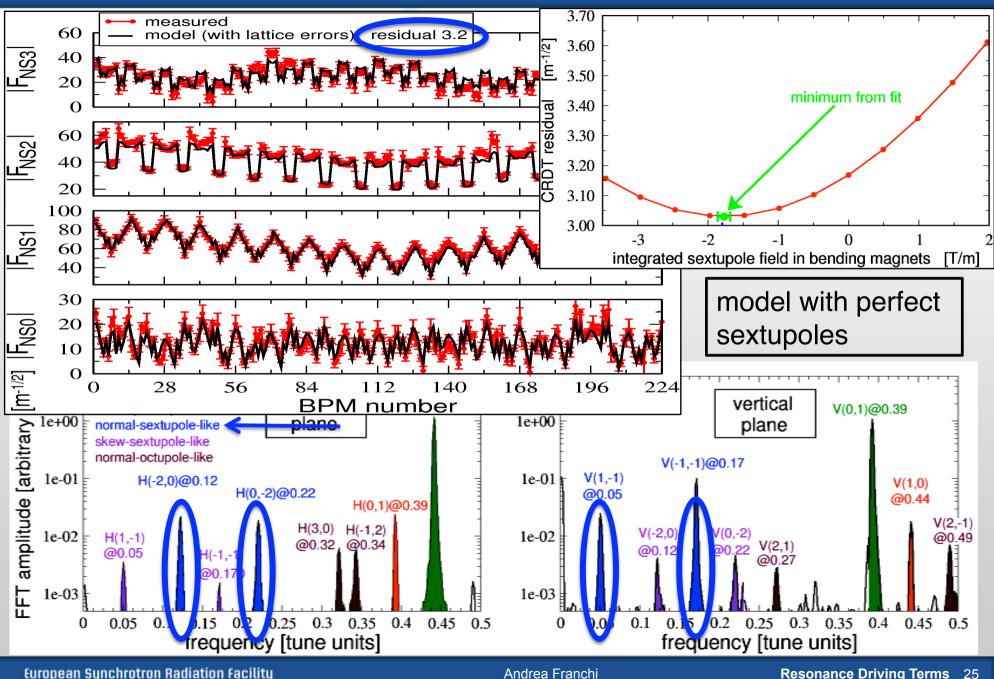
Contents

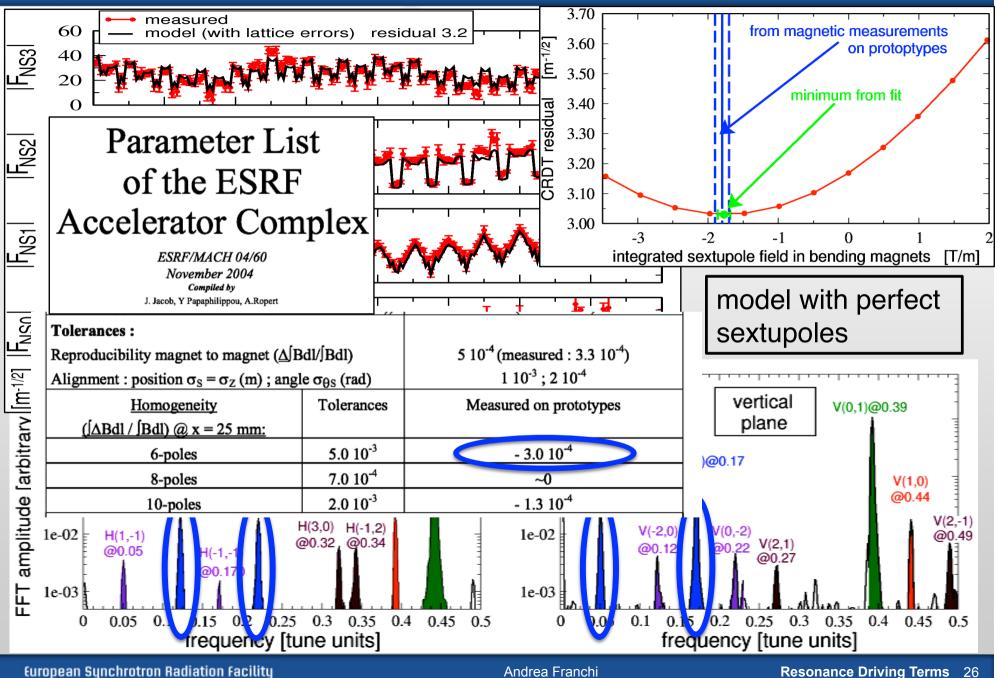
- from TbT BPM data to resonance driving terms
- from resonance driving terms to magnet strengths
- measuring sextupolar & octupolar fields @ ESRF
- resonance driving terms Vs lifetime => chromatic terms

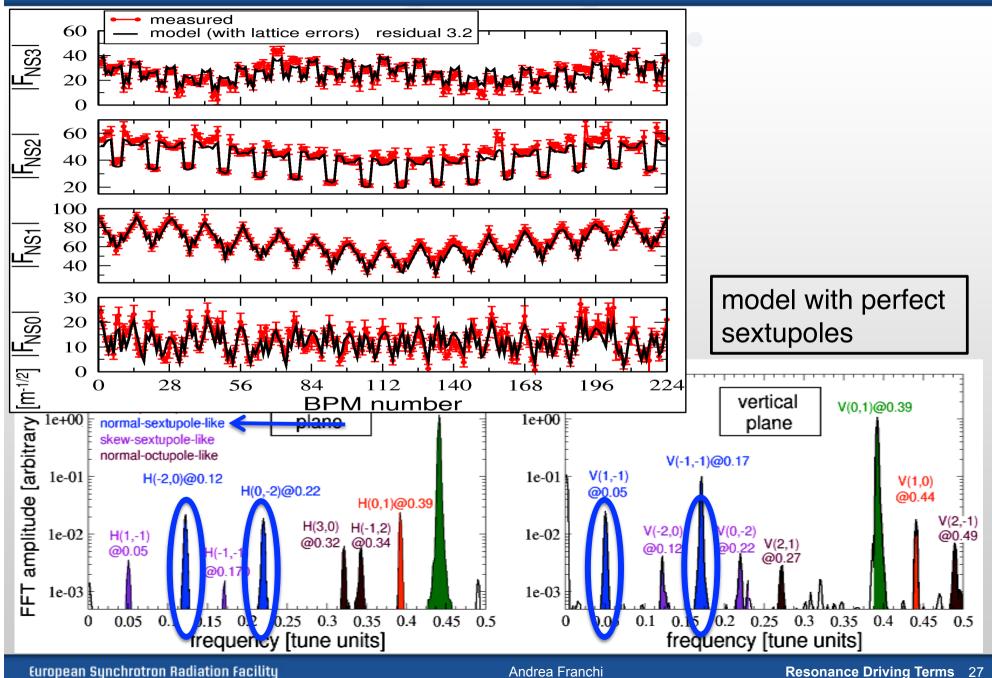


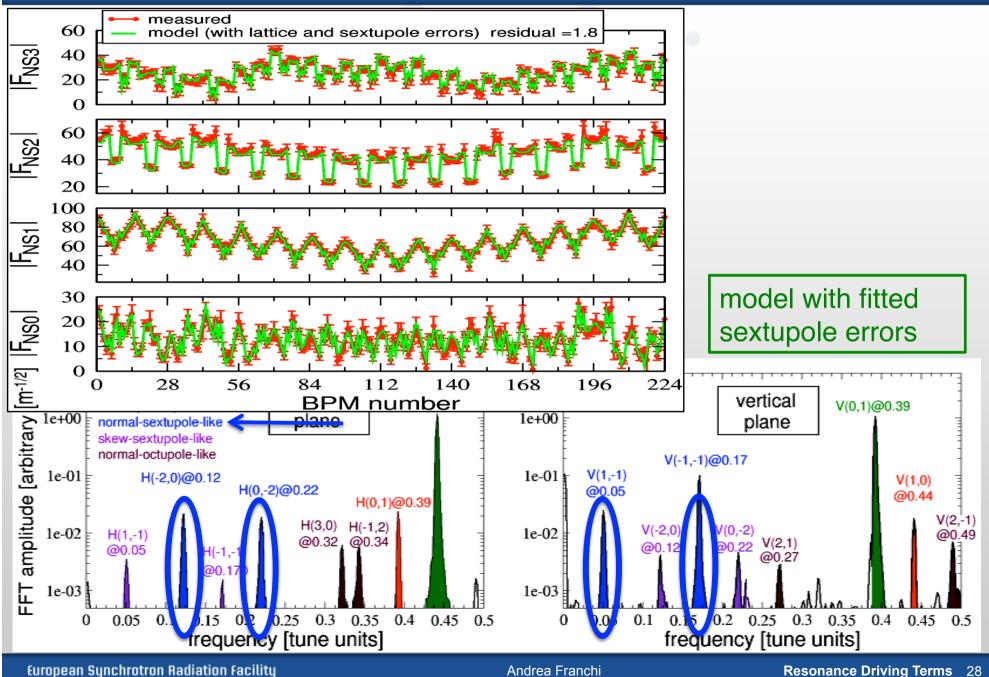


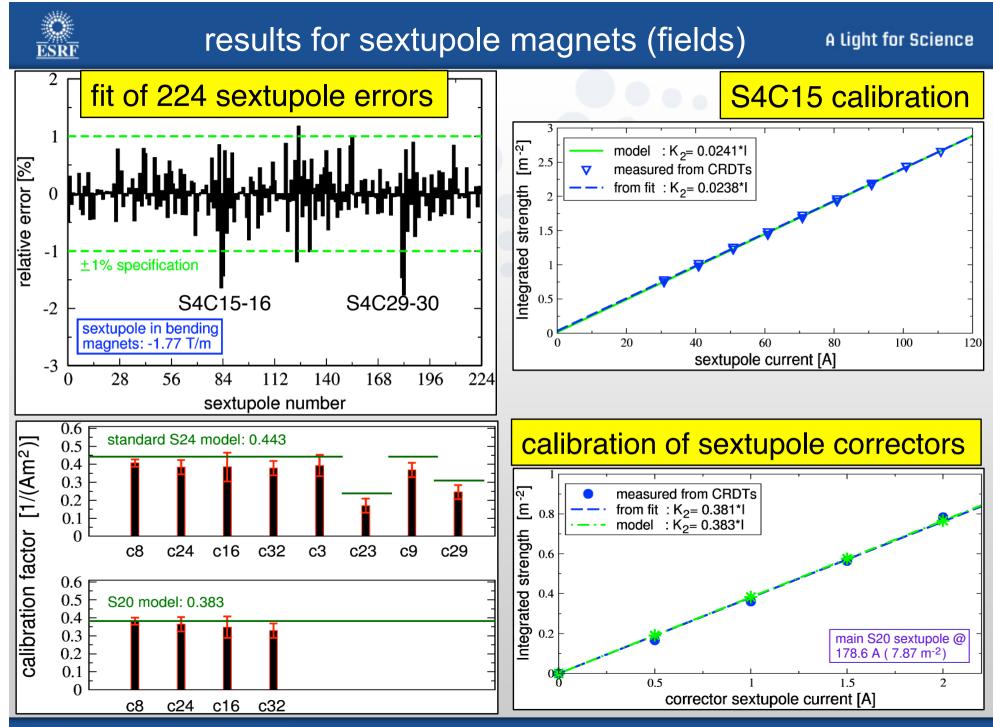






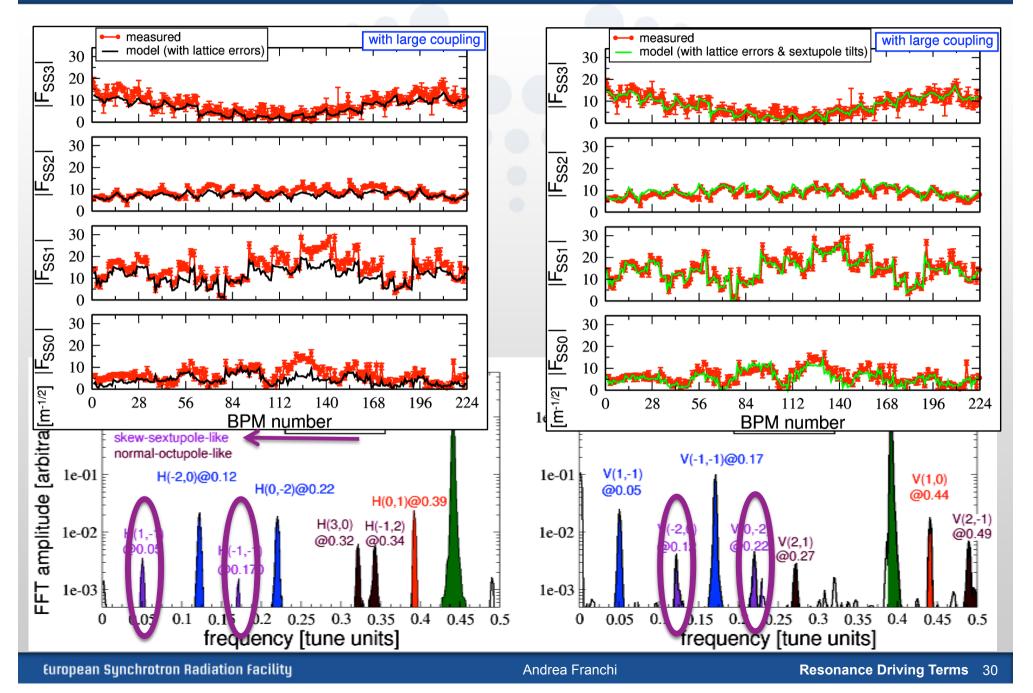


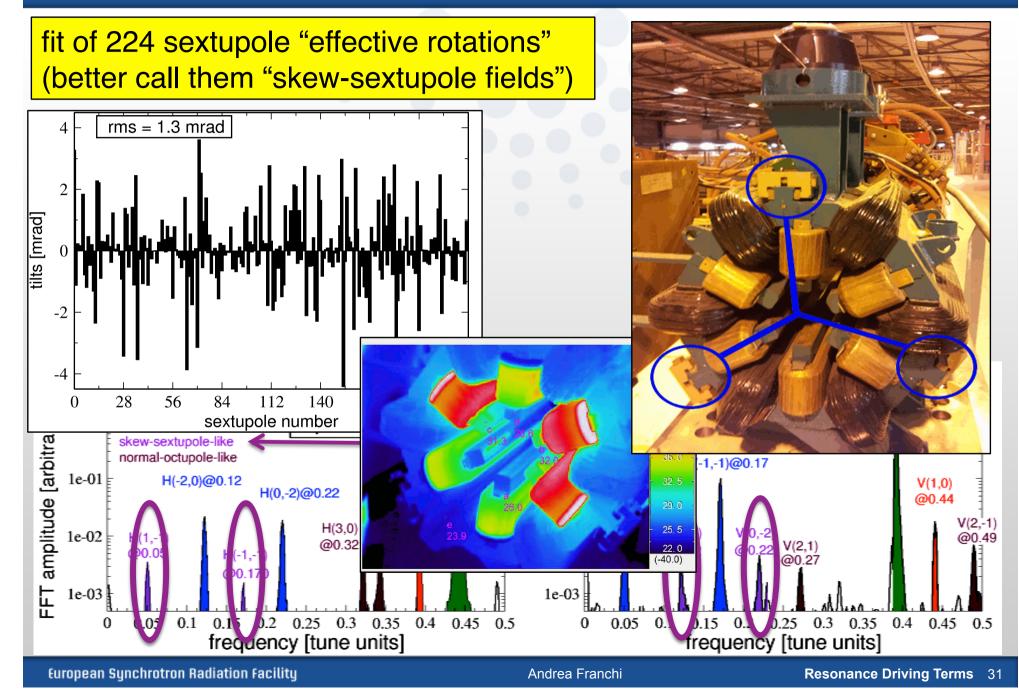




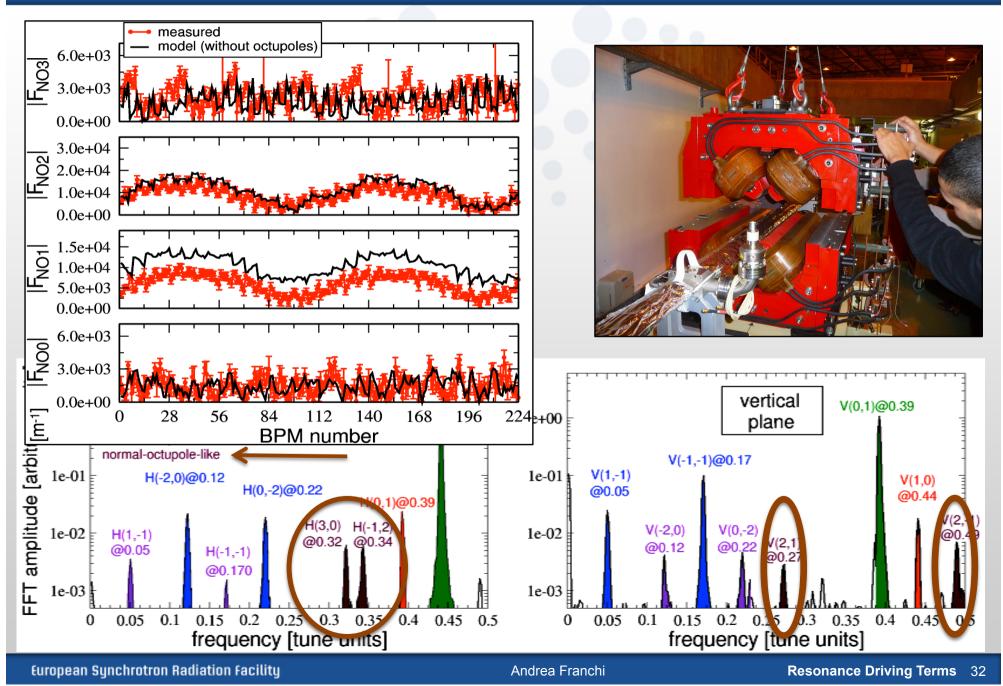
European Synchrotron Radiation Facility

Andrea Franchi

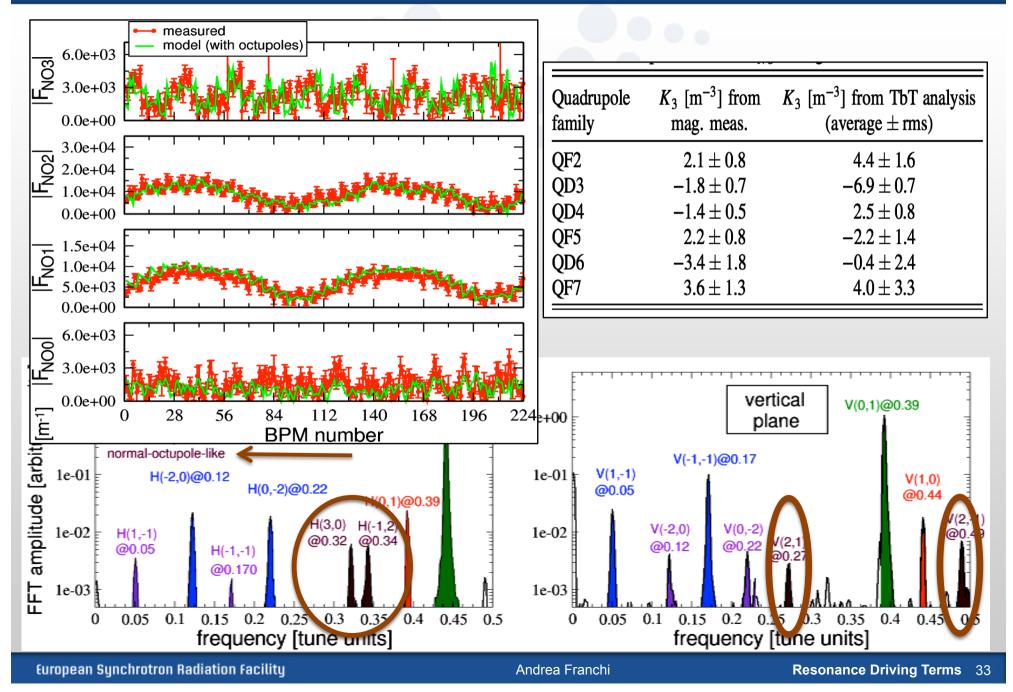




results for octupolar magnetic fields



results for octupolar magnetic fields

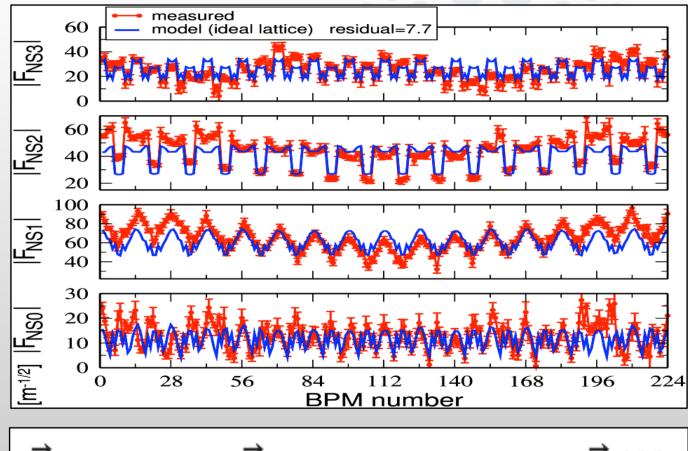


Contents

- from TbT BPM data to resonance driving terms
- from resonance driving terms to magnet strengths
- measuring sextupolar & octupolar fields @ ESRF
- resonance driving terms Vs lifetime => chromatic terms

correction of resonance driving terms & lifetime A Light for Science

sextupole correctors (12 at the ESRF SR) may be used to retrieve the ideal RDTs:

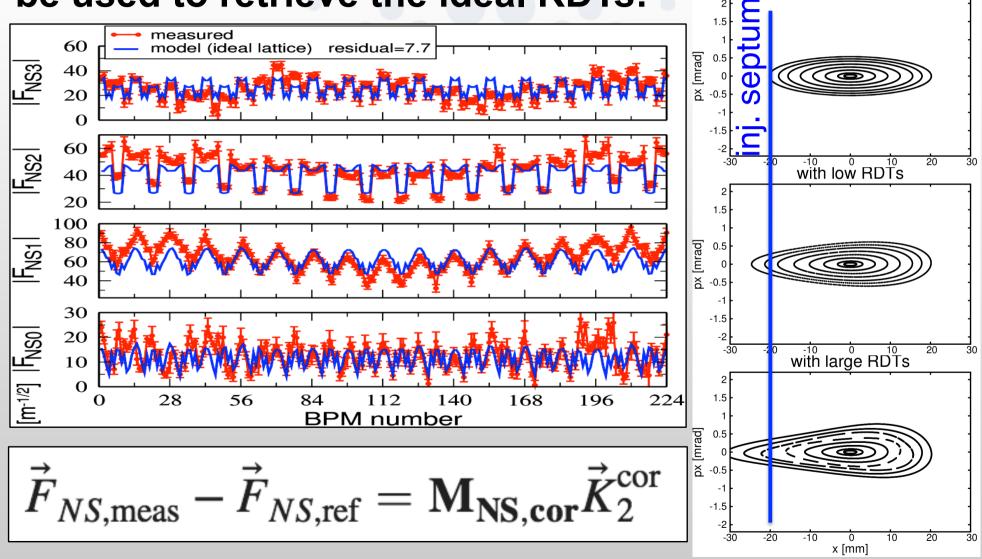


$$\vec{F}_{NS,\text{meas}} - \vec{F}_{NS,\text{ref}} = \mathbf{M}_{\mathbf{NS},\mathbf{cor}} \vec{K}_2^{\text{cor}}$$

European Synchrotron Radiation Facility

correction of resonance driving terms & lifetime A Light for Science

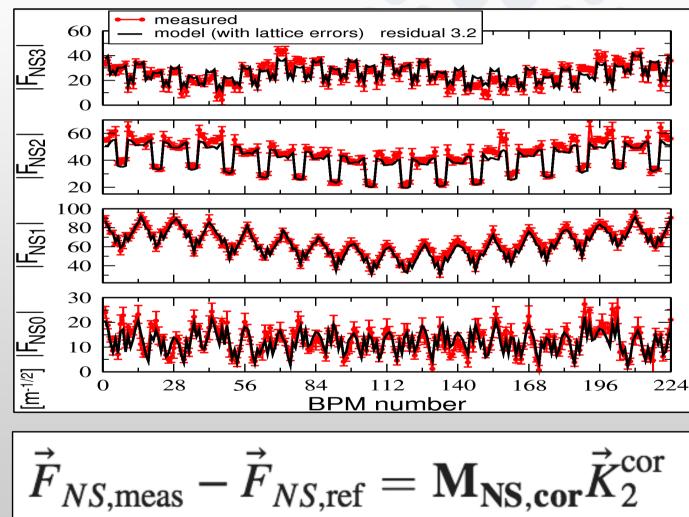
sextupole correctors (12 at the ESRF SR) may be used to retrieve the ideal RDTs:



European Synchrotron Radiation Facility

correction of resonance driving terms & lifetime A Light for Science

sextupole correctors (12 at the ESRF SR) may be used to retrieve the ideal RDTs:



WARNING

- most (50%) of the RDT beating is due to focusing (i.e. quad) errors and not to sextupoles
- Correcting these RDTs with sext. correctors will break the sextupole 16-fold periodicity

sextupole correctors (12 at the ESRF SR) may be used to retrieve the ideal RDTs:

hypothesis: the more "matched" the RDTs, the larger the dynamic aperture, and (hopefully) the longer the lifetime

sextupole correctors (12 at the ESRF SR) may be used to retrieve the ideal RDTs:

hypothesis: the more "matched" the RDTs, the larger the dynamic aperture, and (hopefully) the longer the lifetime

filling pattern P= 6.03 GeV/c	lifetime correctors OFF	lifetime manual correction	lifetime RDT correction	
1 mA/bunch Iow chroma	16.2 h	24.2 h	22.4 h	Touschet.
6 mA/bunch large chroma	2.5 h	3.2 h	2.0 h	Touschet.

sextupole correctors (12 at the ESRF SR) may be used to retrieve the ideal RDTs:

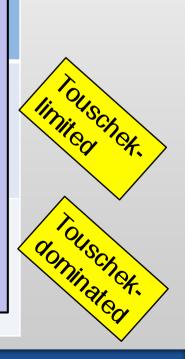
hypothesis: the more "matched" the RDTs, the larger the dynamic aperture, and (hopefully) the longer the lifetime

Observations:

RDTs <-> on-momentum dynamic aperture

Touschek lifetime <-> off-momentum dynamic aperture & energy acceptance

Sextupoles -> RDTs and chromatic terms



Sextupole strengths K₂ drive (linearly): RDTs

	from linear from
	lattice magnet
	model calibration
F_{NS3}	= $M_3(\beta, \phi) \times K_2(\text{sext})$
F_{NS2}	= $M_2(\beta, \phi) \times K_2(\text{sext})$
F _{NS1}	= $M_1(\beta, \phi) \times K_2(\text{sext})$
F _{NS0}	= $M_0(\beta, \phi) \times K_2(\text{sext})$

$$\vec{F}_{NS,\mathrm{mod}} = \mathbf{M}_{\mathrm{NS}}\vec{K}_2$$

Sextupole strengths K₂ drive (linearly): RDTs, lin. chroma

$$\begin{cases} Q'_x = -\frac{1}{4\pi} \sum_{w=1}^W \left(K_{w,1} - K_{w,2} D_{w,x} + J_{w,2} D_{w,y} \right) \beta_{w,x} \\ Q'_y = +\frac{1}{4\pi} \sum_{w=1}^W \left(K_{w,1} - K_{w,2} D_{w,x} + J_{w,2} D_{w,y} \right) \beta_{w,y} \end{cases}$$

Sextupole strengths K₂ drive (linearly): RDTs, lin. chroma, chromatic beating

$$\begin{cases} \left. \frac{\partial \beta_x(s)}{\partial \delta} \right|_{\delta=0} \simeq + \frac{\beta_x(s)}{2\sin\left(2\pi Q_x\right)} \sum_{w=1}^W \left(K_{w,1} - K_{w,2}D_{w,x} + J_{w,2}D_{w,y}\right) \beta_{w,x} \cos\left(\left|2\Delta \phi_{x,w}^{(s)}\right| - 2\pi Q_x\right) \right. \\ \left. \left. \frac{\partial \beta_y(s)}{\partial \delta} \right|_{\delta=0} \simeq - \frac{\beta_y(s)}{2\sin\left(2\pi Q_y\right)} \sum_{w=1}^W \left(K_{w,1} - K_{w,2}D_{w,x} + J_{w,2}D_{w,y}\right) \beta_{w,y} \cos\left(\left|2\Delta \phi_{y,w}^{(s)}\right| - 2\pi Q_y\right) \right. \end{cases}$$

Sextupole strengths K₂ drive (linearly): RDTs, lin. chroma, chromatic beating, second-order dispersion

$$\begin{cases} h_{w,10002} = \frac{1}{2} \left[-K_{w,0} - J_{w,1} D_{w,y} + K_{w,1} D_{w,x} - \frac{1}{2} K_{w,2} \left(D_{w,x}^2 - D_{w,y}^2 \right) + J_{w,2} D_{w,x} D_{w,y} \right] \sqrt{\beta_{w,x}} \\ h_{w,00102} = \frac{1}{2} \left[J_{w,0} - J_{w,1} D_{w,x} - K_{w,1} D_{w,y} + \frac{1}{2} J_{w,2} \left(D_{w,x}^2 - D_{w,y}^2 \right) + K_{w,2} D_{w,x} D_{w,y} \right] \sqrt{\beta_{w,y}} \end{cases}$$

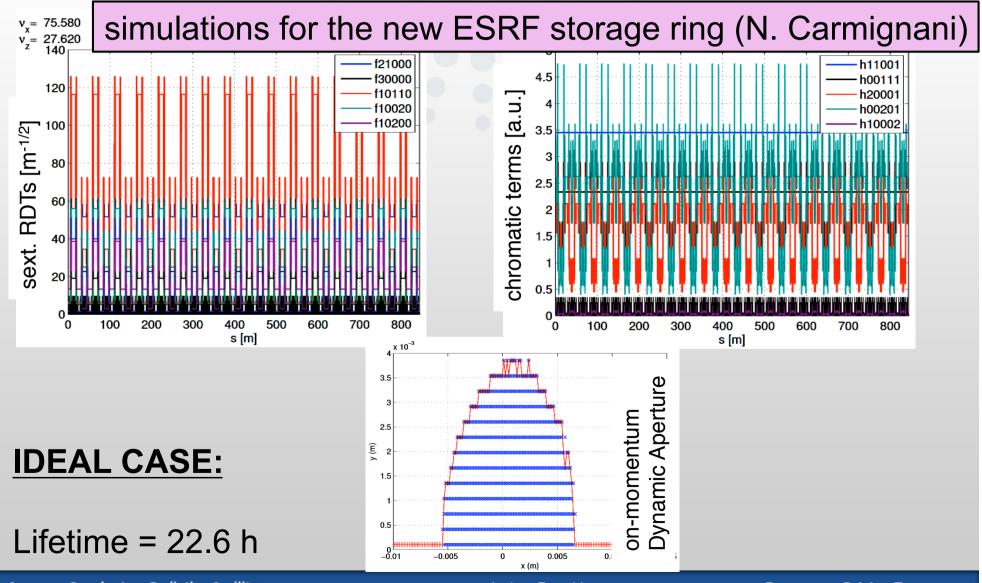
Sextupole strengths K₂ drive (linearly): RDTs, lin. chroma, chromatic beating, second-order dispersion & chromatic coupling

$$\begin{cases} f_{10011}(s) = \frac{d}{d} \frac{f_{1001}(s)}{d\delta} \bigg|_{\delta=0} - \frac{\sum_{w=1}^{W} (J_{w,1} - K_{w,2}D_{w,y} - J_{w,2}D_{w,x}) \sqrt{\beta_{w,x}\beta_{w,y}} e^{i(\Delta\phi_{w,x}^{(s)} - \Delta\phi_{w,y}^{(s)})} + F_{1001}(s, J_1) \\ f_{10101}(s) = \frac{d}{d} \frac{f_{1010}(s)}{d\delta} \bigg|_{\delta=0} - \frac{\sum_{w=1}^{W} (J_{w,1} - K_{w,2}D_{w,y} - J_{w,2}D_{w,x}) \sqrt{\beta_{w,x}\beta_{w,y}} e^{i(\Delta\phi_{w,x}^{(s)} + \Delta\phi_{w,y}^{(s)})} + F_{1010}(s, J_1) \\ f_{10101}(s) = \frac{d}{d} \frac{f_{1010}(s)}{d\delta} \bigg|_{\delta=0} - \frac{\sum_{w=1}^{W} (J_{w,1} - K_{w,2}D_{w,y} - J_{w,2}D_{w,x}) \sqrt{\beta_{w,x}\beta_{w,y}} e^{i(\Delta\phi_{w,x}^{(s)} + \Delta\phi_{w,y}^{(s)})} + F_{1010}(s, J_1) \\ f_{10101}(s) = \frac{d}{d} \frac{f_{1010}(s)}{d\delta} \bigg|_{\delta=0} - \frac{\sum_{w=1}^{W} (J_{w,1} - K_{w,2}D_{w,y} - J_{w,2}D_{w,x}) \sqrt{\beta_{w,x}\beta_{w,y}} e^{i(\Delta\phi_{w,x}^{(s)} + \Delta\phi_{w,y}^{(s)})} + F_{1010}(s, J_1) \\ f_{10101}(s) = \frac{d}{d} \frac{f_{1010}(s)}{d\delta} \bigg|_{\delta=0} - \frac{\sum_{w=1}^{W} (J_{w,1} - K_{w,2}D_{w,y} - J_{w,2}D_{w,x}) \sqrt{\beta_{w,x}\beta_{w,y}} e^{i(\Delta\phi_{w,x}^{(s)} + \Delta\phi_{w,y}^{(s)})} + F_{1010}(s, J_1) \\ f_{10101}(s) = \frac{d}{d} \frac{f_{1010}(s)}{d\delta} \bigg|_{\delta=0} - \frac{\sum_{w=1}^{W} (J_{w,1} - K_{w,2}D_{w,y} - J_{w,2}D_{w,x}) \sqrt{\beta_{w,x}\beta_{w,y}} e^{i(\Delta\phi_{w,x}^{(s)} + \Delta\phi_{w,y}^{(s)})} + F_{1010}(s, J_1) \\ f_{10101}(s) = \frac{d}{d} \frac{f_{1010}(s)}{d\delta} \bigg|_{\delta=0} - \frac{\sum_{w=1}^{W} (J_{w,1} - K_{w,2}D_{w,y} - J_{w,2}D_{w,x}) \sqrt{\beta_{w,x}\beta_{w,y}} e^{i(\Delta\phi_{w,x}^{(s)} + \Delta\phi_{w,y}^{(s)})} + F_{1010}(s, J_1) \\ f_{1010}(s) = \frac{d}{d} \frac{f_{1010}(s)}{d\delta} \bigg|_{\delta=0} - \frac{\sum_{w=1}^{W} (J_{w,1} - K_{w,2}D_{w,y} - J_{w,2}D_{w,x}) \sqrt{\beta_{w,x}\beta_{w,y}} e^{i(\Delta\phi_{w,x}^{(s)} + \Delta\phi_{w,y}^{(s)})} + F_{1010}(s, J_1) \\ f_{1010}(s) = \frac{d}{d} \frac{f_{1010}(s)}{d\delta} \bigg|_{\delta=0} - \frac{\sum_{w=1}^{W} (J_{w,1} - K_{w,2}D_{w,y} - J_{w,2}D_{w,x}) \sqrt{\beta_{w,x}\beta_{w,y}} e^{i(\Delta\phi_{w,x}^{(s)} + \Delta\phi_{w,y}^{(s)})} + F_{1010}(s, J_1) \\ f_{1010}(s) = \frac{d}{d} \frac{f_{1010}(s)}{d\delta} \bigg|_{\delta=0} - \frac{\sum_{w=1}^{W} (J_{w,1} - K_{w,2}D_{w,y} - J_{w,2}D_{w,y}) \sqrt{\beta_{w,x}\beta_{w,y}} e^{i(\Delta\phi_{w,x}^{(s)} + \Delta\phi_{w,y}^{(s)})} + F_{1010}(s, J_1) \\ f_{101}(s) = \frac{d}{d} \frac{f_{1010}(s)}{d\delta} \bigg|_{\delta=0} - \frac{\sum_{w=1}^{W} (J_{w,1} - J_{w,1}) + F_{1010}(s, J_1) + F_{1010}(s, J_1)} + F_{1010}(s, J_1) + F_{1010}(s$$

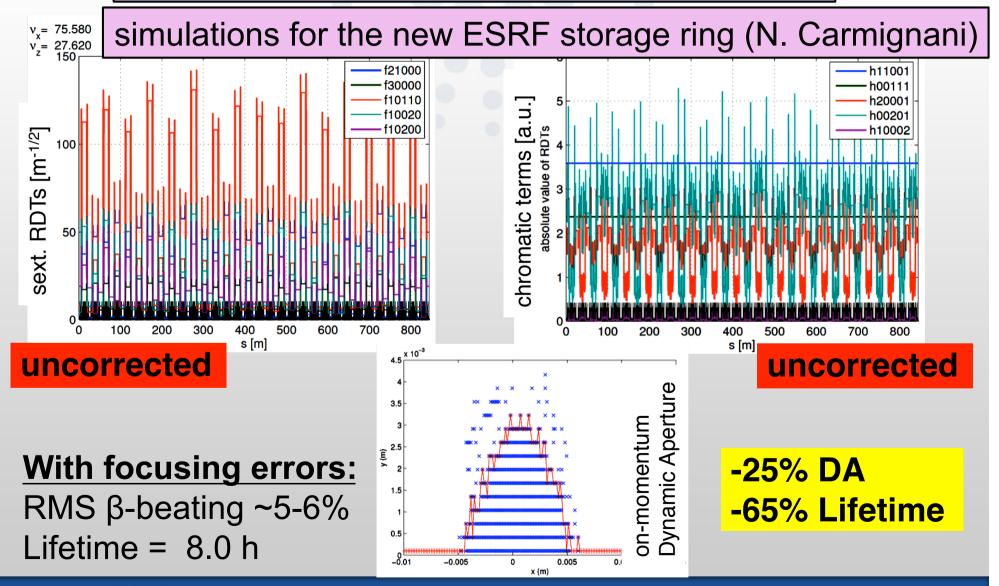
Sextupole strengths K₂ drive (linearly): RDTs, lin. chroma, chromatic beating, second-order dispersion & chromatic coupling

During the RDT correction at the ESRF only lin. chroma was kept constant, while other chromatic terms were left unconstrained (and not measured) : could this explain the loss of lifetime?

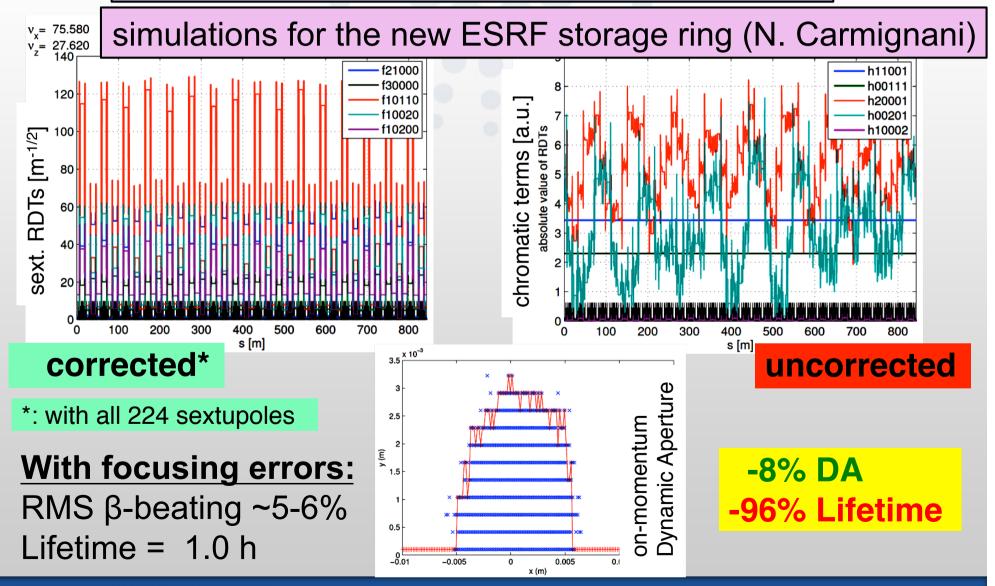
Simulations for the new ESRF storage ring ->



European Synchrotron Radiation Facility

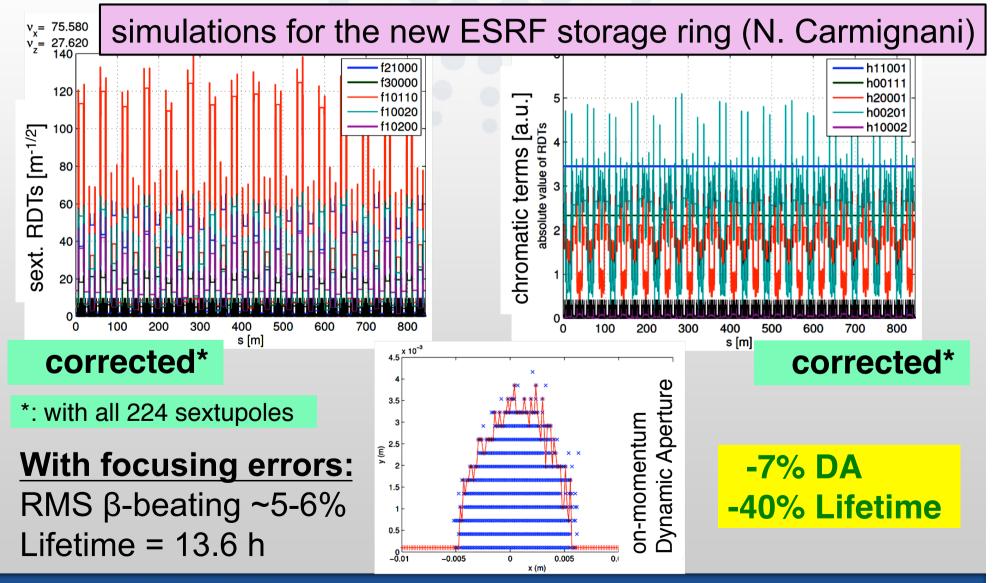


European Synchrotron Radiation Facility

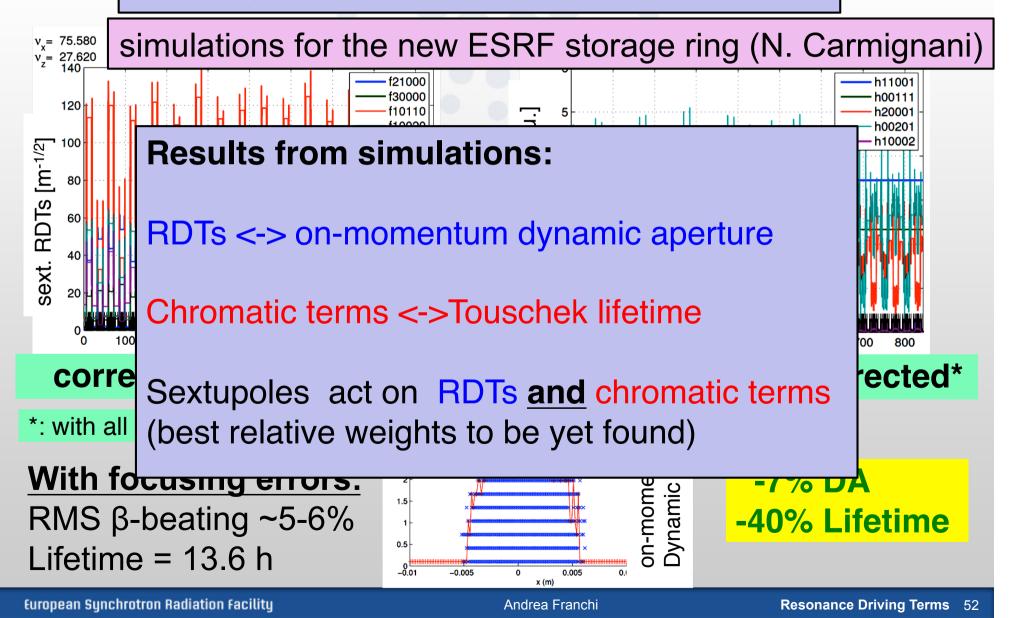


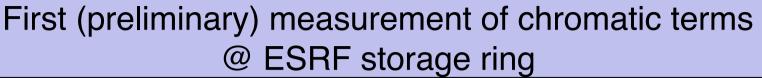
European Synchrotron Radiation Facility

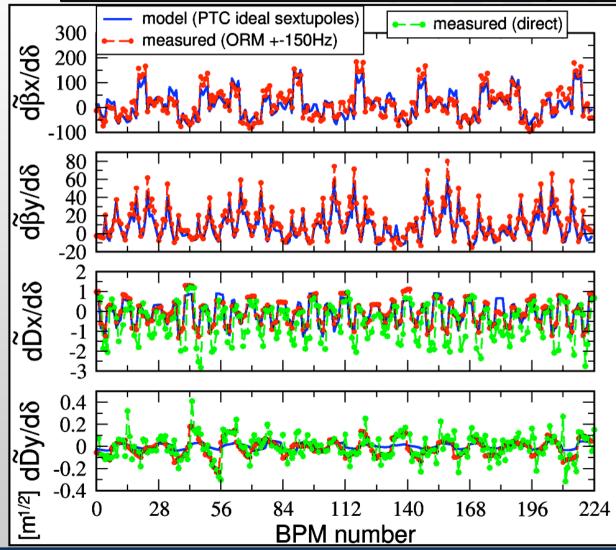




European Synchrotron Radiation Facility





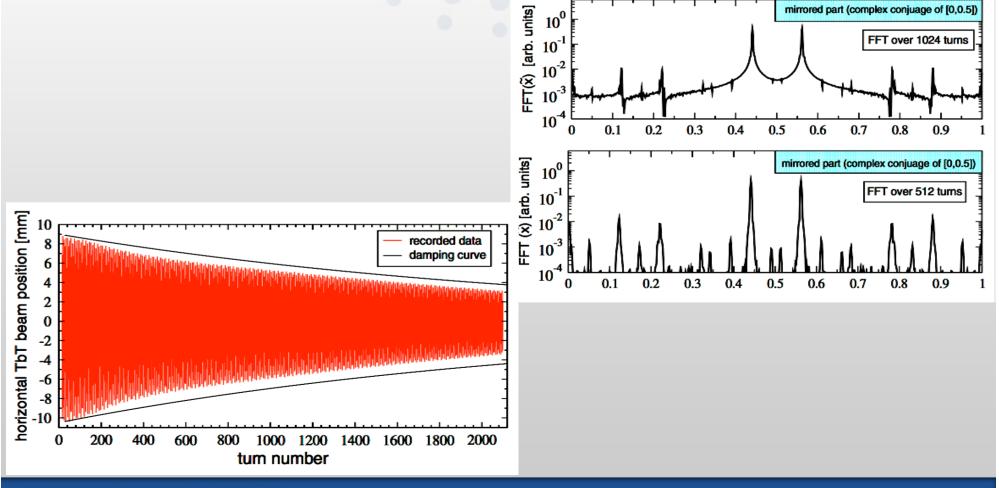


- chromatic beating from two offmomentum orbit response matrices (sextupole errors to be yet included)
- Same measurement from TbT BPM data ongoing
- 2nd-order dispersion directly measured but poor fit without sextupole errors

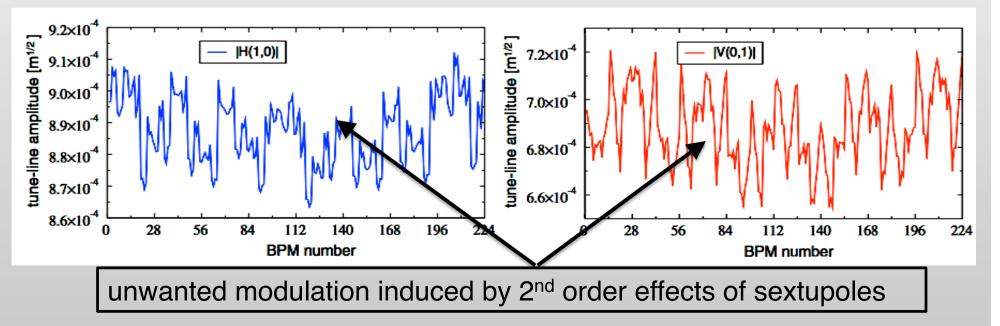
- The harmonic analysis of turn-by-turn BPM data provides a direct measurement of the resonant driving terms (RDTs, i.e. the β-functions of the nonlinear lattice)
- RDTs are a powerful tool to check linear and nonlinear lattice models, and for beam-based calibration of nonlinear magnets
- Correcting RDTs (alone) seems not effective in improving beam lifetime, specially for Touschekdominated beams: simultaneous correction of RDTs and chromatic terms looks promising
- Anybody got a ring with large number of sextupole correctors to perform tests?

EXTRA SLIDES

 Enough turns with suitable BPM data are needed to increase FFT resolution Vs. radiation damping (check FFT background noise)

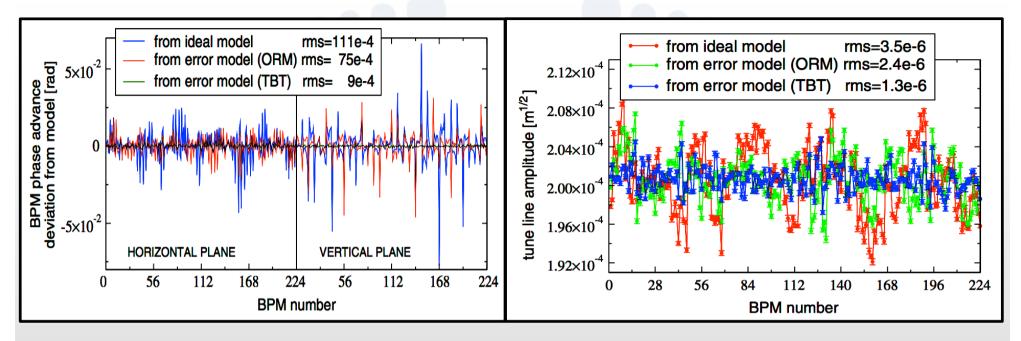


- Enough turns with suitable BPM data are needed to increase FFT resolution Vs. radiation damping (check FFT background noise)
- Large kicker strength to increase FFT resolution Vs. second & higher-order contribution to RDTs (checks are possible, simulations and data analysis)



Extra slides: some precautions

A light for Science

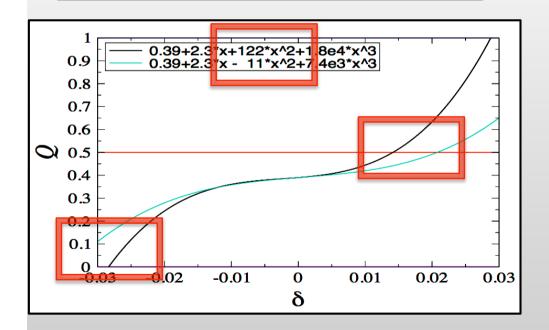


 linear model (β,φ) needs to be robust otherwise model & measured RDTs get corrupted (check BPM phase advance and invariance of tune line amplitude)

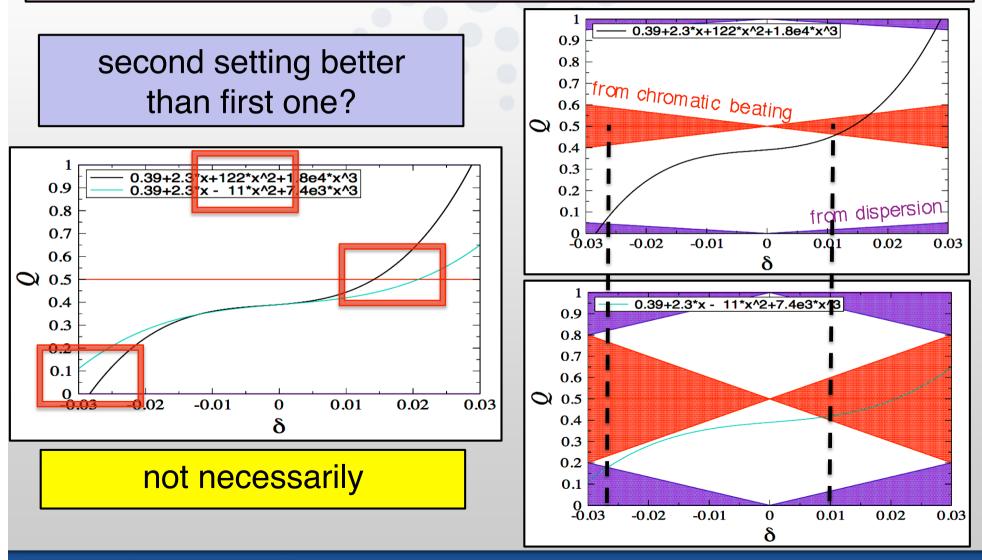
- Enough turns with suitable BPM data are needed to increase FFT resolution Vs. radiation damping (check FFT background noise)
- Large kicker strength to increase FFT resolution
 Vs. second & higher-order contribution to RDTs (checks are possible, simulations and data analysis)
- linear model (β,φ) needs to be robust otherwise model & measured RDTs get corrupted (check BPM phase advance and invariance of tune line amplitude)
- Magnet calibration Vs cycling at different currents

"optimizing" global parameters without looking at the chromatic terms may result in poorer lifetime

second setting better than first one?



"optimizing" global parameters without looking at the chromatic terms may result in poorer lifetime



"optimizing" global parameters without looking at the chromatic terms may result in poorer lifetime

second setting better than first one?



A light for Science

"optimizing" global parameters without looking at the chromatic terms may result in poorer lifetime

second setting better than first one?

not necessarily

