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• Description of optics measurement method 
(  -function from BPM turn by turn data)   

• Improvements 

• Random/statistical errors 

• Systematic errors 

➡ Better estimate of   -function 

• Application on 2012 measurement data 

• Improvements for betatron coupling control
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• Tight tolerances for   -beat due to  

‣ Available mechanical aperture

Motivation

�

„For the LHC the total tolerance for the β-beat has been 
specified as 14 %.“

–LHC Report  501

• In 2012 a β-beat of up to 100% was observed 
before local corrections



• Run II at 6.5 TeV —> allows for smaller beta* 

➡ Enhances optics errors of triplet magnets 

• More quadrupole magnets in saturation regime 

• Higher damage potential at 6.5 TeV 

➡ Limits maximum excitation amplitude and total 
beam charge 

➡ Reduced signal to noise ratio for optics 
measurement

Motivation



• Measurement of BPM turn-by-turn data 

• Harmonic analysis 

➡ Phase advance of betatron oscillation between BPM

Optics measurement
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• Optimum phase advances 

• Multiples of     should be avoided as the cotangent 
becomes infinite

Optics measurement
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• Phase advances between consecutive BPMs not 
always suited for measurement 

• Previous implementation used only neighboring BPMs 

• Optimum if probed BPM in the middle 

• If probed BPM right/left of other BPMs the optimum is to 
skip one BPM

Situation in the arcs
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FIG. 2. Expected error of a measured �-function at position
s1, depending on the phase advances to the other two BPMs.
The six used phase advances (three BPM combinations each
for horizontal and vertical plane) for a BPM position in IR4
from the neighboring BPM method are indicated by triangles.
Phase advances in the 7-BPMmethod are indicated by circles.

The method that has been used so far takes three
neighboring BPMs for the calculation of the �-functions
at these three BPM positions. In the arcs, where in
general the phase advance between consecutive BPMs
is about ⇡/4, this method is already close to the opti-
mum phase advances, when probing the middle BPM.
However in the case that the probed BPM is not in the
middle of the other two BPMs, the optimum would be
to skip the farther BPM and use instead the next follow-
ing BPM, cf. Fig. 3. In the interaction regions (IRs),

�1,2

�1,3

FIG. 3. In the arcs the phase advance between two consec-
utive BPMs is about ⇡/4. If the blue BPM is probed, it is
better to skip the grey BPM and use the two red BPMs. The
resulting phase advances are approximately �1,2 = ⇡/4 and
�1,3 = 3⇡/4, which is the optimum according to Eq. (3).

the phase advances can be very di↵erent as the optics
do not follow the regular FODO structure of the arcs in
order to fulfill other constraints, e.g., collision point fo-
cusing. For example in the ATLAS and CMS IRs, where
the �-function reaches very high values, the phase ad-
vance between BPMs close to the interaction points (IPs)
is only a few degrees. If in this case only neighboring
BPMs are used, this results in a poor resolution. This

prevented, for instance �⇤ measurements at the IPs in
2012 [3]. An improved algorithm was developed, which
chooses BPM combinations for the measurement depend-
ing on their phase advances. For a probed BPM, three
BPMs upstream and three BPMs downstream are con-
sidered. This results in 15 possible combinations of three
BPMs, from which only three combinations are chosen.
This choice is performed using the model phases to es-
timate the measurement error, in order not to bias the
analysis by using the error of the measured phase ad-
vances. The measured �-function at the probed BPM
position is then the average of the three �-functions from
the di↵erent BPM combinations (�). The higher sensi-
tivity due to this BPM selection is illustrated for a special
situation in IR4 in Fig. 2, where the used phase advances
in the neighboring BPM method (5) and in the 7-BPM
method (�) are shown. Two error sources contribute to

the final error of the measurement �� =
q

�2
�,1 + �2

�,2.

First, the uncertainties of the phase advances are prop-
agated to an error of the �-function using the analytic
equations
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A second error is the standard deviation of the three
�-functions from using di↵erent BPM combinations, cf.
Eq. (5). The second error is sensitive to systematic errors
as a larger error will most likely also increase the standard
deviation of the �-functions. Since the various sources of
systematic errors are di�cult to estimate, this equation
can be used as a figure of merit for the systematic errors.
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The 7 BPM method aims to reduce especially the er-
ror from Eq. (4), since it is most sensitive to the phase
value. On the other hand one has to observe the im-
pact on the error in Eq. (5), since the new method might
introduce other sources of systematic errors, e.g. larger
model uncertainties due to the longer distances between
the BPMs.

III. MODEL PRECISION

The calculation of �-functions from the phase advances
requires knowledge of the optics model, cf. Eq. (1). Fur-
thermore the 7-BPM technique, which was described in
the previous section, will also use BPMs which are fur-
ther away from the probed BPM. Therefore model un-
certainties play a more important role. In this section
the benefit of considering measured quadrupolar errors
(b2) of the LHC dipoles [11] in the model for the op-
tics measurement is studied. For example, for injection
optics at 4 TeV, including the dipole b2 errors and the



• Phase advances are irregular and can be very 
small 

• Using neighboring BPM will result in large 
uncertainties

Situation in the interaction regions (IRs)

Sketch of phase advances in IR4



• Increase the range from which BPM combinations 
are chosen 

• Choose BPM combinations with good phase 
advances

Improvements



• Consider more     from different BPM combinations 

• Minimize          (least squares)

N-BPM method
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• Uncertainty of the phase advance derived as 
standard deviation of     measurement files

Statistical error
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•        is a correction for small 
sample sizes from Student  
t-distribution 

• Amount of measurements is 
always limited due to beam time
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• All phase advances that share one BPM are 
correlated 

• Uncertainty of phase advance from standard 
deviation of all measurement files 

• Not possible for single phase uncertainty since the 
value is arbitrary and may vary from measurement 
to measurement

Statistical error
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• Ansatz for single 
phase uncertainty 

• Therefore

Statistical error
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• For a probed BPM with      the covariance matrix is 

• This can be transformed to a covariance matrix for 
the different   -functions

Statistical error
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• Test of error bars in a simulation show good 
agreement

Statistical error
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• Improve the accuracy of the optics model 

➡ Include measured dipole b2 errors

Systematic errors

�i =
✏ijk cot(�i,j) + ✏ikj cot(�i,k)

✏ijk
M11(i,j)

M12(i,j)
+ ✏ikj

M11(i,k)

M12(i,k)



• We consider the following perturbations of the 
optics model 

• Uncertainty of dipole b2 errors  

• Quadrupole gradient uncertainty 

• Longitudinal displacement of quadrupoles  

• Transverse displacement of sextupoles 

Systematic errors
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• Monte-Carlo 
Simulation using 
MADX for deriving 
the covariance 
matrix 

➡  

Systematic errors

Vsyst



• Final covariance matrix 

• Computation of systematic covariance matrix time 
consuming for large ranges of BPMs 

• How many BPM combinations should be regarded?

Systematic errors

Vij = Vij,stat + Vij,syst
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• Simulation of optics measurement under realistic conditions 

• Scan of using different amount of BPM combinations  
which are chosen from different range of BPMs 

• Accuracy: average relative shift from true value 

• Precision: average relative spread

Uncertainty from simulated measurement
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• Significant improvement in the error bars 

• Especially systematic errors were overestimated in 
the past

2012 measurement re-analysis
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• Motivated by emittance study during the ramp 

• Propagation of optical functions to in this case beam wire scanners 

• New analytic equations for error propagation 

Beta-function during the ramp
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Betatron coupling control
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Improved control of the betatron coupling in the Large Hadron Collider
T. Persson and R. Tomás
Phys. Rev. ST Accel. Beams 17, 051004

• An approximative        can be 
calculated from the resonance 
driving terms 

• A new improved formula 
(Eq(2)) has been implemented 
which better relates the  
          to the

|C�|
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https://journals.aps.org/prstab/abstract/10.1103/PhysRevSTAB.17.051004


• Two BPMs are used for deriving the resonance driving terms  

• Error propagation shows an optimum phase advance between both BPMs of  

• Pairing BPMs with optimal phase advance improves resolution by a factor of 
3 for the LHC

Betatron coupling control

Improved control of the betatron coupling in the Large Hadron Collider
T. Persson and R. Tomás
Phys. Rev. ST Accel. Beams 17, 051004

f1001 and f1010
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https://journals.aps.org/prstab/abstract/10.1103/PhysRevSTAB.17.051004


• LHC run at 6.5 TeV requires more precise optics 
measurements and corrections 

• Detailed error analysis for systematic and random 
errors for   -measurement 

• Re-analyzing 2012 data demonstrates better 
resolution 

• Significant better resolution in coupling 
measurement

Summary
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Thank you for your attention!


