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Introduction

Several beam-based nonlinear dynamics studies during Run 1:

m 2 MDs dedicated to study of non-linear optics at injection (July 2011, June 2012)

m 1 General OMC MD, studied variety of aspects throughout cycle (November 2012)

m Various studies performed parasitically throughout the run
General conclusion:

LHC nonlinear dynamics not particularly well understood...

...but not a critical limitation in Run 1

Talk will summarize measurements done + main discrepancies:
m  Nonlinear dynamics @ injection
m  Nonlinear dynamics @ top energy

m What are the main missing measurements?
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Injection

Nonlinear dynamics at injection
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Nonlinear dynamics at injection

First studies of NL-dynamics: nonlinear chromaticity @ injection

m  Measurements performed with Landau octupoles depowered (July 2011)
(nominal state of machine with errors + corrections, but no extra nonlinearity added)
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m Large second (Q’’) and third (Q’’") order chromaticities observed

m  Order of magnitude greater than expected from model

AQ) [10°]  AQ) [10°]  AQ[ [10°]  AQ) [109]

measured — modelled —1.74+0.1 0.74+0.1 —1.24+0.1 0.6 +0.1
measured —modelled ~ 94% ~ 70% ~ 55% ~ 86%

From July 2011 to November 2012 discrepancy stable




Injection
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Nonlinear dynamics at injection

Beam-based correction of Q" & Q"' demonstrated (July 2011)

m  Used global trims of octupolar & decapolar correctors in arcs
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Q,’[10°] Qy[10°] Q,"[10°] Q,"[10°]

Before —2.1 (0.02)  0.74(0.03) —1.9 (0.06) 0.8 (0.09)
After —0.72(0.02) —0.19(0.02) —0.37(0.05) —0.15(0.04)

m  Corrections fairly effective at reducing |Q’’| and |Q""/|, but some residuals remain

m Q" correction ~ 25 % reduction in decapole corrector powering
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Nonlinear dynamics at injection

Correction of the NL-chromaticity also reduced amplitude detuning
and decoherence

Injection
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Two possible sources of Q’’ discrepancy considered:

m Feed-down from decapoles in arcs

m Hysteresis errors in octupolar correctors
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Nonlinear dynamics at injection

Shifts in Q" & Q" upon correction agreed well with model

Injection

AQ)/[10°] AQ)[10]]  AQ)’[10°] AQ;[10%]

Measured 1.4 +0.03 —0.93 £ 0.04 1.5+ 0.08 —0.97 £ 0.1
Modelled 1.3 —0.90 1.6 —0.91

m Limits contribution of feed-down from decapole correctors

m AQ” ~ 200+ 150 — can make only a small contribution
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Nonlinear dynamics at injection

Octupole correctors in arcs have large hysteresis errors

Injection

m estimates of real octupole field included in simulation

AQ/N10%]  AQ)[10%] AQ)[10°] AQ)[10%

meas-mod —1.84+0.1 06+01 —-1.04+0.1 0.70+0.1
(mod with hyst) — mod —0.5 0.34 +0.006 —0.003

m Octupole corrector hysteresis can explain ~ 60 % of Q;/ and ~ 30 % of Q)’(’ discrepancies

Significant discrepancy in Q still unexplained

Large Q" discrepancy unexplained
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Nonlinear dynamics at injection

Nominal inj’ optics include strongly powered Landau octupoles

m  Q'’ measurements show expected Landau octupole response
m Q' & first order detuning dominated by Landau octupoles

m But discrepancy still non-negligible for nominal optics (~ % of measured value)

Injection

m Detuning measurements performed to large amplitude in 2012:
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Observed large 1%t & 2" order detuning with amplitude



Workshop on Advanced Optics Control, CERN, 5-6 February 2015

Nonlinear dynamics at injection

Simultaneous detuning onto 3" & 4" order resonances with J

Injection
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Nonlinear dynamics at injection

m 2" order detuning qualitatively consistent between model &
measurement

Injection
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= model underestimates the second order detuning...
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Nonlinear dynamics at injection

Unexplained Q' & % discrepancy of bare machine + unexplained second order detuning
have potential to give very different behaviour for different polarity of Landau octupoles

Injection
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Nonlinear dynamics at injection

Large amplitude vertical kicks at nominal optics observed to couple
into horizontal plane

m large vertical kicks at nominal injection optics show significant coupling into horizontal plane (left)

Injection

m  Tune split decreases with vertical kick amplitude, appears to saturate at AQ ~ 0.0015 (right)
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m Qualitatively reproduced in the model

m  Tune split significantly larger than AQ,j, from linear coupling: |C™ | ~ 0.003

Unexpected influence of nonlinear coupling on the beam dynamics
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Nonlinear dynamics at injection
Unexpected octupolar resonance line observed (Studies by Felix Carlier, CERN)

m Large amplitude diagonal kicks after NL-dynamics corrections show large octupole spectral lines

m £(Qx +2Qy) ~ F0.1 corresponding to fi102 & fa020

Injection
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= Spectral line doesn’t appear in model

(Non-linear model with matching of detuning with amplitude & NL-chromaticity)
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Nonlinear dynamics at injection

Several possible sources have been excluded:

Injection

m  Geometrical BPM nonlinearity:

— Varying terms in BPM nonlinearity could not compensate resonance without significantly
distorting spectrum

— Revised corrections for Run 2 did not eliminate spectral line

m  ‘Surviving line’:
— Certain actions & detuning with amplitude may give small decoherence of specific frequencies
— Measured amplitude detuning + measured kick actions rule out £(Qx + 2Qy) as surviving line

m by errors in arcs & octupole corrector settings:
— response matrix of octupole RDT to octupole correctors could not reproduce observed spectrum
— Strongly indicates by errors in arc dipoles or corrector settings are not the source

+(Q« + 2Q,) octupole spectral lines are not understood
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Nonlinear dynamics at injection

Kicks for amplitude detuning also used for DA measurement (30s DA)

Measurements done before (left) & after (right) turning off Landau octupoles & correcting Q’/, Q"'
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m  Minimization of detuning & NL-chromaticity increased DA
= Nominal optics measurement agrees well with model including known sources

m  Model after correction was matched to measured detuning
(due to known discrepancies, departure from nominal magnetic cycle)
— also shows good agreement for diagonal kick (H & V see only collimators)

Agreement much better than factor 2 margin of safety used-in design
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Nonlinear dynamics at injection

Alternative DA measurement technique also performed during Run 1

m Bunch blown up to large emittance
Injection m DA varied by trims of Nonlinear circuits

m Longer term DA studied via losses as function of time

Bunch intensity vs time for locyypoie correctors=+90 [A] DA vs time f0r loctupoie correctors™*90 [A]
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Analysis is ongoing...
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Nonlinear dynamics at injection

Chromatic coupling measured via momentum dependence of linear
coupling RDTs

m  Measurement & correction demonstrated during General OMC MD (November 2012)

Injection
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m Model & measurement show very good agreement

T.H.B. Persson et al. Phys. Rev. ST Accel. Beams 16, 081003
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Top energy

Nonlinear dynamics at top energy




Top energy

Workshop on Advanced Optics Control, CERN, 5-6 February 2015

Nonlinear dynamics at top energy
Chromatic coupling also studied at " = 0.6 m

m  Again see good agreement with model
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m  Small phase shift: perhaps due to enhancement of errors in IRs at lower 3*

T.H.B. Persson et al. Phys. Rev. ST Accel. Beams 16, 081003
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Nonlinear dynamics at top energy

Correction of chromatic coupling demonstrated at §* = 0.6 m

Top energy 100

|At1001/A9]
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will be included for LHC operation in Run 2

T.H.B. Persson et al. Phys. Rev. ST Accel. Beams 16, 081003
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Nonlinear dynamics at top energy

Chromatic twiss functions checked in 2012 commissioning (8" = 0.6 m)

Characterized by the Montague function (W). &, is relative momentum offset.
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Good agreement of measured Montague function with model
(Large discrepancies in IRs due to poor 3 measurements)

R. Tomds et al. Phys. Rev. ST Accel. Beams 15, 091001
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Nonlinear dynamics at top energy

Large Q' dependence on Landau octupole powering

—> Observed at Flattop and Collision optics

Beam 2: MO current — Beam 2: Q
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m  Systematic closed orbit + systematic misalignments of Landau octupoles explain the observed
dependence of Q’

m 30 % of Beam 1 Q; dependence was result of 1 malfunctioning orbit corrector

Beam 1 Modelled Measured Beam 2 Modelled Measured

Q! 5.6 6.3+0.8 Q! 42 47407
Q, —1.5 —2.34+0.4 Q —1.7 —2.2+0.6

o (Al (MOD, Arc 12)
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Nonlinear dynamics at top energy

Amplitude detuning at top energy

Amplitude detuning is easily studied at injection optics:
— use kicker magnet to destructively excite multiple fresh injections
— not possible at top energy as time for ramp-down + inject + ramp-up impractical

Can kick non-destructively with AC-dipole - but alters detuning measurement:

Top energy

— Direct detuning from nth order multipole measured with AC-dipole is n/2 larger that for free oscillations
— Detuning cross terms unaffected
— verified at injection
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Provides means to study amplitude detuning throughout LHC cycle
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Nonlinear dynamics at top energy
First measurements at 4 TeV demonstrated application at top energy

9Qx

" Fex

m  Other measurements of low quality & comparison not possible

showed a factor 2.5 discrepancy with model

m  Measurements throughout cycle to be performed as part of future commissioning

Top energy
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Details of theory, verification @ injection & first measurements @ 4 TeV found in:
S. White et al. Phys. Rev. ST Accel. Beams 16, 071002
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Nonlinear dynamics at top energy
Nonlinear errors in experimental insertions:
m At small 8% NL-errors in experimental IRs have significant influence on the dynamics

m Expect correction of IR NL-errors to be significant for DA at 3* = 0.4m
(Plot courtesy Rogelio Tomas)

Top energy
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m  Correction will be essential for the HL-LHC

Calculation of corrections require accurate magnetic model of IRs

— Magnetic measurements model will have to be verified & refined via beam-based studies
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Nonlinear dynamics at top energy

NL-errors in IRs studied via feed-down to unconstrained tune and linear coupling,
under influence of varying closed orbit bumps through IRs

Technique demonstrated for LHC parasitically in IR2
(Spectrometer reversal tests & aperture measurements in 2011)

Top energy
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MAD-X simulation — I
0.004 B
3]
0.002 B
k3
0.000 ! ! ! ! ! ! ! !

-80 -60 -40 -20 0 20 40 60 80
IR2 external crossing angle [urad]

m  Able to measure third & higher order multipoles feeding down to tune and coupling
m Good agreement between model and measurement in IR2

m Dominated by b3 in separation dipoles feeding down to coupling
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Nonlinear dynamics at top energy

...but find large discrepancies with model in IR5 tunes @ 3* = 0.6 m...

(No usable coupling data obtained)
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Nonlinear dynamics at top energy

...and large discrepancies with model in IR1 Beam 2 @ 5* = 0.4m

(No Beam 1 data obtained)
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Discrepancies need to be understood to calculate corrections
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Nonlinear dynamics at top energy

LHCB2: IR1, 60cm
T T
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m b3 correction has no data (no usable coupling data obtained)

m a3 correction worked well in Beam 1 & Beam 2

IR1 @ 3" = 0.6 m showed quite good agreement of tunes
First attempt at correction made for IR1 @ 3" = 0.6 m:

Model (no correction)

ag+bs RDT correction:

Q, model
Qy model —

Q, measured
Qy measured

Model (no correction)

ag+bs+b, RDT correction:

Q, model
Qy model —

Q, measured
Qy measured

m by correction worked well in Beam 2, but in Beam 1 b4 correction fed-down to a3
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Nonlinear dynamics at top energy

Some partially successful corrections achieved in IR1 @ 0.6 m...
...but also some big discrepancies between measurement & model

Several possible sources of discrepancy:

m  Non-closure of closed orbit bumps used for feed-down studies:

Top energy — Could generate feed-down in the arcs which confuses the IR measurement

— Orbit data showed increase in RMS closed orbit in arcs of up to ~ 0.1 mm as bump varied
— Matching of the closed orbit oscillation around the ring showed negligible effect

m Different behaviour of real closed orbit bump compared to model
— Orbit data in IRs (after correcting BPM nonlinearity) showed some discrepancies with model

— Accounting for measured orbit does not explain observed discrepancies

m Beta-beating in the IR influencing feed-down
— Model assumes nominal optics in the IR, but beta-beat is very well corrected
— But may explain much larger tune discrepancy @ 3* = 0.4 m, as no dedicated correction applied
— New techniques for linear optics measurement presented in next talk (A. Langner)
— should reduce measurement uncertainties in IR & allow beta-beat to be included in model

u Difference of real NL-errors with model from magnetic measurements
— Challenge will lie in identifying which multipoles are different & localizing error within IR
— Will require further beam-based studies

Measurement & correction of NL-errors in experimental IRs likely to
be one of the more critical issues for LHC NL-dynamics in Run 2
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Missing Measurements

A relatively wide range of phenomena were studied during Run 1,

but some key features of the beam dynamics remain to be examined:

Missing m Required settings of chromaticity sextupoles to achieve nominal Q’
Measurements known to be different from expectation of magnetic model

— Equivalent to 5-10 units depending on point in cycle
— Q' discrepancy will need to be studied in more detail

= Natural chromaticity

m Local b3 correction in the arcs
— Quality of local b3 correction in arcs never checked with beam

— poor local correction could have sizable impact on DA
(M. Hayes, LHC Project Report 590)

m  Chromatic amplitude detuning
— Depends on bs - could help identify source of Q”’ discrepancy
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Conclusions

A lot of interesting observations of the NL-dynamics made during
LHC Run 1

Some aspects of the beam dynamics have shown a good agreement to our expectations:
m  Chromatic coupling
m  Chromatic variation of twiss functions
m Q' dependence on Landau octupole powering

m  Qualitative reproduction of nonlinear coupling

Conclusions

m Significantly better agreement of DA at nominal injection optics than factor ~ 2 margin of safety
used in the design

Discrepancies between ements and simulation were found in several observables during Run 1:

m  First & second & third order chromaticity

m First & second order detuning with amplitude @ inj’'
m  Amplitude detuning at top energy

m  Octupolar spectral lines @ inj’

m Feed-down from nonlinear errors in experimental insertions

Challenge in Run 2 will be further application & development of methods to identify the sources of
discrepancies & the implementation of corrections
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