Intro

Injection

Top energy

Missing Measurement

Conclusions

Nonlinear puzzles of the LHC

E.H. Maclean (University of Manchester), on behalf of the CERN OMC team and collaborators

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Workshop on Advanced Optics Control, CERN, 5-6 February 2015 Introduction

Several beam-based nonlinear dynamics studies during Run 1:

- 2 MDs dedicated to study of non-linear optics at injection (July 2011, June 2012)
- 1 General OMC MD, studied variety of aspects throughout cycle (November 2012)
- Various studies performed parasitically throughout the run

General conclusion:

LHC nonlinear dynamics not particularly well understood... ...but not a critical limitation in Run 1

Talk will summarize measurements done + main discrepancies:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- Nonlinear dynamics @ injection
- Nonlinear dynamics @ top energy
- What are the main missing measurements?

Intro

Injection

Top energy

Missing Measurement

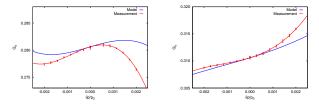
Conclusions

Intro

Injection

Top energy

Missing Measurement:


Conclusions

Nonlinear dynamics at injection

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

First studies of NL-dynamics: nonlinear chromaticity @ injection

 Measurements performed with Landau octupoles depowered (July 2011) (nominal state of machine with errors + corrections, but no extra nonlinearity added)

- Large second (Q'') and third (Q''') order chromaticities observed
- Order of magnitude greater than expected from model

	$\Delta Q_{x}^{\prime\prime}$ [10 ³]	$\Delta Q_y^{\prime\prime}$ [10 ³]	$\Delta Q_{x}^{\prime\prime\prime}$ [10 ⁶]	$\Delta Q_{y}^{\prime \prime \prime}$ [10 ⁶]
measured — modelled <u>measured — modelled</u> measured	$\begin{array}{c} -1.7\pm0.1\\ \sim94\%\end{array}$	$\begin{array}{c} 0.7\pm0.1\\ \sim70\% \end{array}$	$-1.2 \pm 0.1 \ \sim 55\%$	$\begin{array}{c} 0.6\pm0.1\ \sim86\% \end{array}$

From July 2011 to November 2012 discrepancy stable

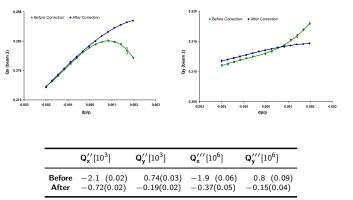
Intro

Injection

- Top energy
- Missing Measurement
- Conclusions

Beam-based correction of Q'' & Q''' **demonstrated** (July 2011)

Used global trims of octupolar & decapolar correctors in arcs


Intro

Injection

Top energy

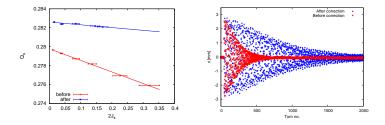
Missing Measurement

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- Corrections fairly effective at reducing |Q''| and |Q'''|, but some residuals remain
- $Q^{\prime\prime\prime}$ correction $\sim 25\,\%$ reduction in decapole corrector powering

Intro


Injection

Top energy

Missing Measurement

Conclusions

Correction of the NL-chromaticity also reduced amplitude detuning and decoherence

Two possible sources of Q'' discrepancy considered:

- Feed-down from decapoles in arcs
- Hysteresis errors in octupolar correctors

Intro

Injection

Top energy

Missing Measurement

Conclusions

Shifts in Q'' & Q''' upon correction agreed well with model

	$\pmb{\Delta Q_x^{\prime\prime}}[10^3]$	$\pmb{\Delta Q_y^{\prime\prime}}[10^3]$	$\pmb{\Delta Q_x^{\prime\prime\prime}}[10^6]$	$\pmb{\Delta Q_y^{\prime\prime\prime}}[10^6]$
Measured Modelled		$^{-0.93\pm0.04}_{-0.90}$	$\begin{array}{c} 1.5\pm0.08\\ 1.6\end{array}$	$^{-0.97\pm0.1}_{-0.91}$

- Limits contribution of feed-down from decapole correctors
- $\Delta Q'' \sim 200 \pm 150 \rightarrow$ can make only a small contribution

Intro

Injection

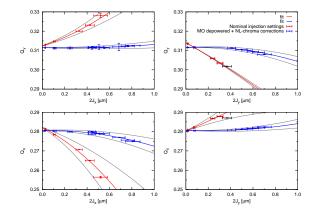
Top energy

Missing Measurement

Conclusions

Octupole correctors in arcs have large hysteresis errors

estimates of real octupole field included in simulation


	$\Delta Q_x^{\prime\prime}[10^3]$	$\Delta Q_y^{\prime\prime}[10^3]$	$\Delta Q_x^{\prime\prime\prime} [10^6]$	$\Delta Q_y^{\prime\prime\prime} [10^6]$
meas-mod (mod with hyst) — mod	$^{-1.8\pm0.1}_{-0.5}$	$\begin{array}{c} 0.6\pm0.1\\ 0.34\end{array}$	$^{-1.0\pm0.1}_{+0.006}$	$\begin{array}{c} 0.70 \pm 0.1 \\ -0.003 \end{array}$

 Octupole corrector hysteresis can explain \sim 60 % of $Q_y^{\prime\prime}$ and \sim 30 % of $Q_x^{\prime\prime}$ discrepancies

Significant discrepancy in Q_x'' still unexplained Large Q''' discrepancy unexplained

Nominal inj' optics include strongly powered Landau octupoles

- Q'' measurements show expected Landau octupole response
- Q'' & first order detuning dominated by Landau octupoles
- But discrepancy still non-negligible for nominal optics (~ ¹/₆ of measured value)
- Detuning measurements performed to large amplitude in 2012:

Observed large 1st & 2nd order detuning with amplitude .

Intro

Injection

- Top energy
- Missing Measurement
- Conclusions

BPM.31L1.B2 0.5 1.0 (mm] à 0.8 0.0 0.6 0 500 1000 0.0 0.2 0.4 Turn no. у 5.0 5.0 BPM.26L1.B2 [mm] ¥ a[×] 0.0 0.0 -5.0 -5.0 0 500 1000 -5.0 0.0 5.0 Turn no. х

Simultaneous detuning onto 3^{rd} & 4^{th} order resonances with J_x

Injection

イロト 不得 トイヨト イヨト э

Intro

Injection

Top energy

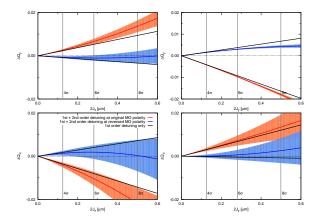
Missing Measurement

Conclusions

2nd order detuning qualitatively consistent between model & measurement

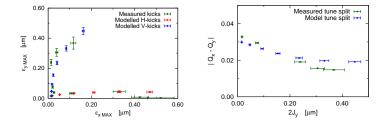
	[unit]	Meas'	$\pm \ \mathrm{err}$	Model	$\pm \mathrm{err}$
$\frac{\partial^2 Q_X}{\partial \epsilon_X^2}$	$[10^9 m^{-2}]$	-60	30	-14	4
$\frac{\partial^2 Q_y}{\partial \epsilon_x^2}$		34	10	18	9
$\frac{\partial^2 Q_y}{\partial \epsilon_x^2}$ $\frac{\partial^2 Q_x}{\partial \epsilon_y^2}$		11	34	-10	10
$\frac{\partial^2 Q_y}{\partial \epsilon_y^2}$		-13	3	-2	5

model underestimates the second order detuning...


Unexplained $Q'' \& \frac{\partial Q}{\partial \epsilon}$ discrepancy of bare machine + unexplained second order detuning have potential to give very different behaviour for different polarity of Landau octupoles

Injection

T--- -----


Missing Measurement

Conclusions

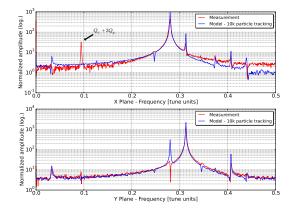
Large amplitude vertical kicks at nominal optics observed to couple into horizontal plane

- large vertical kicks at nominal injection optics show significant coupling into horizontal plane (left)
- Tune split decreases with vertical kick amplitude, appears to saturate at $\Delta Q \sim 0.0015$ (right)

- Qualitatively reproduced in the model
- Tune split significantly larger than ΔQ_{min} from linear coupling: $|C^-| \sim 0.003$

Unexpected influence of nonlinear coupling on the beam dynamics

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの


Intro

Injection

- Top energy
- Missing Measurement
- Conclusions

Unexpected octupolar resonance line observed (Studies by Felix Carlier, CERN)

- Large amplitude diagonal kicks after NL-dynamics corrections show large octupole spectral lines
- $\pm (Q_x + 2Q_y) \sim \mp 0.1$ corresponding to f_{1102} & f_{2020}

Spectral line doesn't appear in model

(Non-linear model with matching of detuning with amplitude & NL-chromaticity)

Intro

Injection

Top energy

Missing Measurement

Conclusions

▲ロト ▲母 ▶ ▲目 ▶ ▲目 ▶ ● ④ ●

Intro

Injection

Top energy

Missing Measurement

Conclusions

Several possible sources have been excluded:

Geometrical BPM nonlinearity:

 \rightarrow Varying terms in BPM nonlinearity could not compensate resonance without significantly distorting spectrum

→ Revised corrections for Run 2 did not eliminate spectral line

Surviving line':

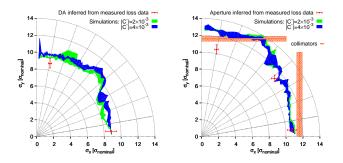
- \rightarrow Certain actions & detuning with amplitude may give small decoherence of specific frequencies
- \rightarrow Measured amplitude detuning + measured kick actions rule out $\pm (Q_x + 2Q_y)$ as surviving line

b₄ errors in arcs & octupole corrector settings:

 \rightarrow response matrix of octupole RDT to octupole correctors could not reproduce observed spectrum

ightarrow Strongly indicates b_4 errors in arc dipoles or corrector settings are not the source

$\pm (Q_x + 2Q_y)$ octupole spectral lines are not understood

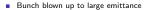

Kicks for amplitude detuning also used for DA measurement (30 s DA)

Measurements done before (left) & after (right) turning off Landau octupoles & correcting Q'', Q'''

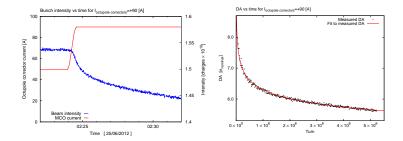
Intro

Injection

- Top energy
- Missing Measurement
- Conclusions


- Minimization of detuning & NL-chromaticity increased DA
- Nominal optics measurement agrees well with model including known sources
- Model after correction was matched to measured detuning (due to known discrepancies, departure from nominal magnetic cycle)
 - \rightarrow also shows good agreement for diagonal kick (H & V see only collimators)

Agreement much better than factor 2 margin of safety_used_in design a contract of safety_used_in desig

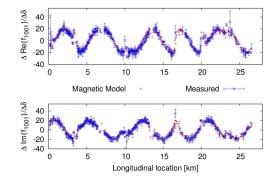

Alternative DA measurement technique also performed during Run 1

Intro

- Injection
- Top energy
- Missing Measurements
- Conclusions

- DA varied by trims of Nonlinear circuits
- Longer term DA studied via losses as function of time

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの


Analysis is ongoing ...

Chromatic coupling measured via momentum dependence of linear coupling RDTs

Measurement & correction demonstrated during General OMC MD (November 2012)

Injection

- Top energy
- Missing Measurement
- Conclusions

Model & measurement show very good agreement

T.H.B. Persson et al. Phys. Rev. ST Accel. Beams 16, 081003 👝 🕞 🖓 🖉 👘 🕞 🖉 🖕 🌫 👘

Intro

Injection

Top energy

Missing Measurements

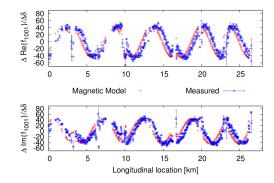
Conclusions

Nonlinear dynamics at top energy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Chromatic coupling also studied at $\beta^* = 0.6 \,\mathrm{m}$

Again see good agreement with model


Intro

Injection

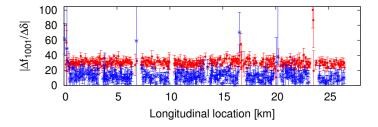
Top energy

Missing Measurements

Conclusions

Small phase shift: perhaps due to enhancement of errors in IRs at lower β*

T.H.B. Persson et al. Phys. Rev. ST Accel. Beams 16, 081003 4 D +


Intro

Injection

Top energy

Missing Measurements

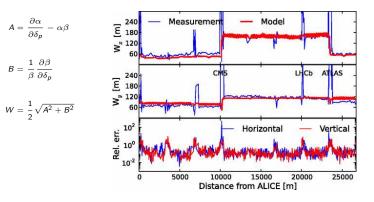
onclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

will be included for LHC operation in Run 2

T.H.B. Persson et al. Phys. Rev. ST Accel. Beams 16, 081003

Chromatic twiss functions checked in 2012 commissioning ($\beta^* = 0.6 \text{ m}$)


Characterized by the Montague function (W). δ_p is relative momentum offset.

.....

Top energy

Missing Measurement

Conclusions

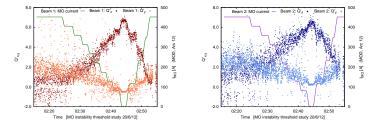
Good agreement of measured Montague function with model

(Large discrepancies in IRs due to poor β measurements)

R. Tomás et al. Phys. Rev. ST Accel. Beams 15, 091001

Large Q' dependence on Landau octupole powering

 \rightarrow Observed at Flattop and Collision optics


Intro

Injection

Top energy

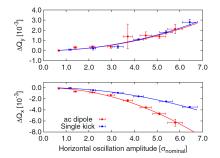
Missing Measurement

Conclusions

- Systematic closed orbit + systematic misalignments of Landau octupoles explain the observed dependence of Q^\prime
- 30 % of Beam 1 $Q'_{\rm x}$ dependence was result of 1 malfunctioning orbit corrector

Beam 1	Modelled	Measured	Beam 2	Modelled	Measured
$Q'_{\chi} Q'_{y}$		$6.3 \pm 0.8 \\ -2.3 \pm 0.4$	$Q'_{j} Q'_{j}$	4.2 -1.7	$\begin{array}{c} 4.7 \pm 0.7 \\ -2.2 \pm 0.6 \end{array}$

・ロト・「聞・ ・ヨト・ ヨー うらぐ


Amplitude detuning at top energy

Amplitude detuning is easily studied at injection optics:

- → use kicker magnet to destructively excite multiple fresh injections
- ightarrow not possible at top energy as time for ramp-down + inject + ramp-up impractical

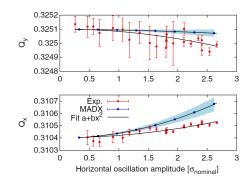
Can kick non-destructively with AC-dipole - but alters detuning measurement:

- \rightarrow Direct detuning from n^{th} order multipole measured with AC-dipole is n/2 larger that for free oscillations
- \rightarrow Detuning cross terms unaffected
- \rightarrow verified at injection

Provides means to study amplitude detuning throughout LHC cycle $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

Intro

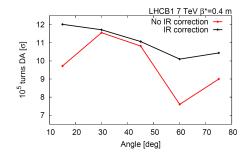
Injection


Top energy

Missing Measurement

Conclusions

First measurements at $4 \,\mathrm{TeV}$ demonstrated application at top energy


- $\frac{\partial Q_X}{\partial \epsilon_x}$ showed a factor 2.5 discrepancy with model
- Other measurements of low quality & comparison not possible
- Measurements throughout cycle to be performed as part of future commissioning

- Intro
- Injection
- Top energy
- Missing Measurements
- Conclusions

Nonlinear errors in experimental insertions:

- At small β* NL-errors in experimental IRs have significant influence on the dynamics
- Expect correction of IR NL-errors to be significant for DA at $\beta^* = 0.4 \,\mathrm{m}$ (Plot courtesy Rogelio Tomás)

Correction will be essential for the HL-LHC

Calculation of corrections require accurate magnetic model of IRs

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

ightarrow Magnetic measurements model will have to be verified & refined via beam-based studies

Intro

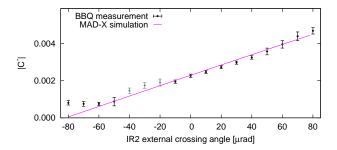
Injection

Top energy

- Missing Measurements
- Conclusions

NL-errors in IRs studied via feed-down to unconstrained tune and linear coupling, under influence of varying closed orbit bumps through IRs

Intro


Injection

Top energy

Missing Measurements

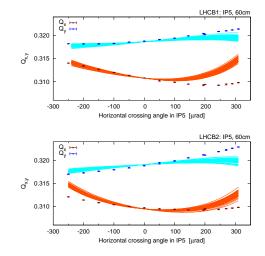
Conclusions

Technique demonstrated for LHC parasitically in IR2 (Spectrometer reversal tests & aperture measurements in 2011)

- Able to measure third & higher order multipoles feeding down to tune and coupling
- Good agreement between model and measurement in IR2
- Dominated by b₃ in separation dipoles feeding down to coupling

...but find large discrepancies with model in IR5 tunes **Q** $\beta^* = 0.6 \,\mathrm{m...}$

(No usable coupling data obtained)


Intro

Injection

Top energy

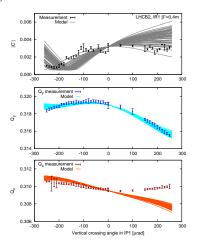
Missing Measurements

Conclusions

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

...and large discrepancies with model in IR1 Beam 2 @ $\beta^* = 0.4 \,\mathrm{m}$

(No Beam 1 data obtained)


Intro

Injection

Top energy

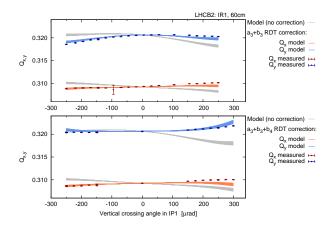
Missing Measurements

Conclusions

Discrepancies need to be understood to calculate corrections

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

IR1 @ $\beta^* = 0.6 \,\mathrm{m}$ showed quite good agreement of tunes First attempt at correction made for IR1 @ $\beta^* = 0.6 \,\mathrm{m}$:


Intro

Injection

Top energy

Missing Measurements

Conclusions

b₃ correction has no data (no usable coupling data obtained)

a₃ correction worked well in Beam 1 & Beam 2

• b_4 correction worked well in Beam 2, but in Beam 1 b_4 correction fed-down to a_3

Some partially successful corrections achieved in IR1 @ $0.6 \,\mathrm{m...}$...but also some big discrepancies between measurement & model

Several possible sources of discrepancy:

- Non-closure of closed orbit bumps used for feed-down studies:
 - \rightarrow Could generate feed-down in the arcs which confuses the IR measurement
 - \rightarrow Orbit data showed increase in RMS closed orbit in arcs of up to $\sim 0.1\,\mathrm{mm}$ as bump varied
 - \rightarrow Matching of the closed orbit oscillation around the ring showed negligible effect

Different behaviour of real closed orbit bump compared to model

 \rightarrow Orbit data in IRs (after correcting BPM nonlinearity) showed some discrepancies with model \rightarrow Accounting for measured orbit does not explain observed discrepancies

Beta-beating in the IR influencing feed-down

- \rightarrow Model assumes nominal optics in the IR, but beta-beat is very well corrected
- ightarrow But may explain much larger tune discrepancy @ $eta^*=$ 0.4 m, as no dedicated correction applied
- \rightarrow New techniques for linear optics measurement presented in next talk (A. Langner)
- \rightarrow should reduce measurement uncertainties in IR & allow beta-beat to be included in model

Difference of real NL-errors with model from magnetic measurements

- ightarrow Challenge will lie in identifying which multipoles are different & localizing error within IR
- → Will require further beam-based studies

Measurement & correction of NL-errors in experimental IRs likely to be one of the more critical issues for LHC NL-dynamics in Run 2_{\pm}

Intro

Injection

Top energy

Missing Measurements

Conclusions

Workshop on Advanced Optics Control, CERN, 5-6 February 2015 Missing Measurements

Intro

Injection

Top energy

Missing Measurements

Conclusions

A relatively wide range of phenomena were studied during Run 1, but some key features of the beam dynamics remain to be examined:

・ロット 4 目 > ・ 4 日 > ・ 日 ・ うらう

 Required settings of chromaticity sextupoles to achieve nominal Q' known to be different from expectation of magnetic model

- \rightarrow Equivalent to 5-10 units depending on point in cycle
- $\rightarrow Q'$ discrepancy will need to be studied in more detail
- Natural chromaticity
- Local b₃ correction in the arcs
 - \rightarrow Quality of local b₃ correction in arcs never checked with beam
 - \rightarrow poor local correction could have sizable impact on DA (*M. Hayes*, LHC Project Report 590)
- Chromatic amplitude detuning
 - \rightarrow Depends on b_5 could help identify source of $\mathit{Q}^{\prime\prime\prime}$ discrepancy

A lot of interesting observations of the NL-dynamics made during LHC Run $1\,$

Intro

- Injection
- Top energy
- Missing Measurements
- Conclusions

Some aspects of the beam dynamics have shown a good agreement to our expectations:

- Chromatic coupling
- Chromatic variation of twiss functions
- Q' dependence on Landau octupole powering
- Qualitative reproduction of nonlinear coupling
- Significantly better agreement of DA at nominal injection optics than factor \sim 2 margin of safety used in the design

Discrepancies between measurements and simulation were found in several observables during Run 1:

- First & second & third order chromaticity
- First & second order detuning with amplitude @ inj'
- Amplitude detuning at top energy
- Octupolar spectral lines @ inj'
- Feed-down from nonlinear errors in experimental insertions

Challenge in Run 2 will be further application & development of methods to identify the sources of discrepancies & the implementation of corrections

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @