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Status and Introduction of the PS 

 

• Started operation in 1959 

• 100m radius 

• 100 combined function 
 magnets 

 

• Each magnet consists  
of 10 blocks: 5 F and 5 D  
(cell: FDODF) 

 

• Tunes are controlled with: 
- LEQ at low energy 
- PFW at high energy 

• Injection kinetic energy 1.4GeV. 
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Coil system: main circuit and auxiliary coils 

Narrow circuit 

B 

B 

Wide circuit 

I8L 

Thermographic inspection of PFW 
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Coil system contributions 

 

 

 

 

 

 

 
IFW 

IDN 

IFN IDW 

I8L 

– Hyperbolic pole shape 
– Only dipolar and quadrupolar field at low field 

level 

– Iron saturation 
– Sextupolar and higher order 

components at high field level 

Main coil 

Pole-face windings + and figure-of eight loop 

– 5-Current Mode 
 

– Un-balanced N and W circuit current 
generate octupolar and higher 
components 
 

– Non-linearities at high field  
(iron saturation) 
 

– Field probably up to decapole 
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Regular lattice optics (FDODF) 
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• Regular β functions between 12m and 22m. 

• Dx between 2.2m and 3.8m. 

 

 

 



Current Situation in the PS 
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• Loss maps showed a 

relatively strong skew 

sextupolar resonances 

 

 

• Similar situation at high 

energy (using PFW) and 

after re-alignment of the 

machine. 

 

 

 
Current working area 

Measured at 2GeV 



Orbit correction by magnet tilting 
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-Some magnets are rotated (3 per plane) to correct orbit and maximize aperture 

-Unfortunately some of the resonances are enhanced  
   and prediction is still not sufficiently precise  

Before align. 

After align. 
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Measurement of octupolar errors 

• To measure and localize an octupolar error: 

• Vary the amplitude of a localized bump 

• Measure the tune shift w.r.t. the bump amplitude 

 

 

• To test this method: a horizontal bump was introduced in the sections 53-

57, as well as a fake octupolar errors.  

 

The measurement was carried out: 

  - without octupoles  

  - with a single octupole located in the middle of the closed bump  

  - with a single octupole located outside the closed bump  
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From the fit: 
K3=35.6 m-3 

Expected value of K3=37.9 m-3 

From the fit: 
K3=37.5 m-3 
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No octupolar 
component for the 
bare machine 

Measured at 2GeV 



Measurement of octupolar errors 

• Successful identification and localization of the excited octupolar error. 

• No octupolar error was measured in the main magnets at low energy 
(over 4 straight sections).   

   agreement with high order chromaticity & no excitation of the  
       4Q resonance 

   

•   

 

 

 

 

 

 

• This method could be applied to a running bump in the whole machine to 
localize octupolar errors. 
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Chromaticity measurement, 
bare machine at 2GeV 
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Resonance Driving Terms 

• 43 shoe box pickups located at the end of every magnet numbered 

x0,x3,x5,x7, with a respective phase advance of 67.5°, 45° and 45° and 

100µm resolution. 

 

• Turn by turn data available (5000 turns with the current acquisition 

system). 

 

• Challenges: 

 No vertical kicker 

 Horizontal kickers available are too strong at low energy 

 Large natural chromaticity (Q’~-6)  very fast decoherence 

 

• Transverse feedback has been prepared to be used as AC-dipole after 

the winter shutdown. 
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Resonance Driving Terms 
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• Injection missteering: Injection bump (tune variation)  only 80 turns 

available at injection (~6% noise and peaks merged) 
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Resonance compensation 

• The bare machine (only main magnets powered) measurements show relatively strong 

skew sextupolar resonances (2Qx+Qy=19 and 3Qy=19). 

• As a proof of principle, we tried to compensate each of these resonances during the 2013 

run. 
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• 2D calculation including Gaussian distribution of the 
position of the coils and the shape of the iron with up 
to 22 DOFs per magnet (OPERA) were performed. 

 
• 1000 models per magnet type (4 types) and current 

level have to be calculated. Performed for momentum 
of 2.14 GeV/c, 2.78 GeV/c, 14 GeV/c, 26 GeV/c. 

Coils can be displaced, no rotation: 
Main coils (2 x 4 DOFs),  = 3 mm 
F8 (2 x 4 DOFs),  = 1 mm 
PFW (2 x 2 DOFs),  = 0.7 mm 
 
Iron is displaced in y-direction,          
 = 0.02/3 mm 

Kinetic energy: 1.4GeV 
Reference radius 
 r = 10 mm 
Vacuum chamber: 140x70mm 
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  These errors were randomly distributed on the magnets in the PTC model to 
 compute the driving terms of each of the resonances. 

Resonance compensation 
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Summary & Conclusion 

• Measurement of octupolar errors showed that the bare machine has very 

small octupolar errors. 

 

• Resonance Driving Terms measurements planned in 2015 with an AC 

Dipole. 

 

• A successful implementation of resonance compensation was achieved 

but further investigations are needed to a better understand the source of 

of these errors. 
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