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Outline
● Introduction

– What is DAQ?
– Overall framework

● Basic DAQ concepts
– Digitization, Latency
– Deadtime, De-randomization

●  Scaling up
– Readout and Event Building
– Buses vs Network

● Do it yourself
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Introduction
● Data AcQuisition is not an exact science
● DAQ is an alchemy of physics, electronics, 

networking, hacking and experience
–  …, money and manpower matter as well

● Aim of this lesson is to introduce 
the basic DAQ concept avoiding 
as many technological details 
as possible 
– The following lectures will 

cover these aspects

● I'll mostly refer to DAQ in High-Energy Physics
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Trigger and DAQ

Overview
● Overall the main role of T & DAQ is to process the 

signals generated in a detector and saving the 
interesting information on a permanent storage

trigger
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decisions

raw data

Storage

data
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Results

design
feedback

Trigger

DAQ

trigger decisions
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Trigger & DAQ
● Trigger

– Either selects interesting events 
or rejects boring ones, in real time

– i.e. with minimal controlled latency
● time it takes to form and distribute its decision

● DAQ
– Gathers data produced by detectors: Readout
– Possibly feeds several trigger levels
– Forms complete events: Event Building
– Stores event data: Data Logging
– Provides Run Control, Configuration and 

Monitoring facilities

Data 
Flow
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Trigger, DAQ and Controls

Detector Channels

Front End Electronics

Readout Network/Event Building
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Basic DAQ: periodic trigger
● Es: measure temperature at a fixed frequency

– ADC performs analog to digital conversion, 
digitization (our front-end electronics)

– CPU does readout and processing

● System clearly limited by the 
time  to process an “event”
– ADC conversion + CPU processing + Storage 

● The DAQ maximum  sustainable rate is 
simply the inverse of  e.g.: 
– = 1 ms   R = 1/ = 1 kHz

ADC CardT sensor CPU
   Physical View

disk
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Basic DAQ: periodic trigger

Processing

ADC

disk

● Es: measure temperature at a fixed frequency
– ADC performs analog to digital conversion, 

digitization (our front-end electronics)
– CPU does readout and processing

● System clearly limited by the 
time  to process an “event”
– ADC conversion + CPU processing + Storage 

● The DAQ maximum  sustainable rate is 
simply the inverse of  e.g.: 
– = 1 ms   R = 1/ = 1 kHz

TRIGGER

ADC CardT sensor CPU
   Physical View

disk


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Basic DAQ: periodic trigger

ADC CardT sensor CPU
   Physical View

Processing

ADC

disk

● Es: measure temperature at a fixed frequency
– ADC performs analog to digital conversion, 

digitization (our front-end electronics)
– CPU does readout and processing

● System clearly limited by the 
time  to process an “event”
– ADC conversion + CPU processing + Storage 

● The DAQ maximum  sustainable rate is 
simply the inverse of  e.g.: 
– = 1 ms   R = 1/ = 1 kHz
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Basic DAQ: “real” trigger

Processing

ADC

disk

TRIGGER


 
=

 1
 m

s

● Events asynchronous and 
unpredictable
– E.g.: beta decay studies  

● A physics trigger is needed
– delay compensate for 

trigger latency 
– Discriminator: generate an output 

signal only if amplitude of input pulse 
is grater than a certain threshold
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trigger latency 
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signal only if amplitude of input pulse 
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● Stochastic process
– Fluctuations in time between events

● Let's assume for example
– a process rate f = 1 kHz, i.e. = 1 ms 

– and, as before,  = 1 ms

Basic DAQ: “real” trigger

Processing

ADC

disk

start

interrupt

delay

TRIGGER


 
=

 1
 m

s
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● Stochastic process
– Fluctuations in time between events
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Probability of time (in ms) 
between events for average 
decay rate of f=1kHz → =1ms

Probability of time (in ms) 
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decay rate of f=1kHz → =1ms
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● Stochastic process
– Fluctuations in time between events

● Let's assume for example
– a process rate f = 1 kHz, i.e. = 1 ms 

– and, as before,  = 1 ms

Basic DAQ: “real” trigger
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disk
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interrupt

delay

f = 1 kHz
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s

Probability of time (in ms) 
between events for average 
decay rate of f=1kHz → =1ms

Probability of time (in ms) 
between events for average 
decay rate of f=1kHz → =1ms

What if a trigger is 
created when the 
system is busy?
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Basic DAQ: “real” trigger
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disk
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delay
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● Busy logic avoids triggers 
while the system is busy in 
processing
– E.g.: using an AND port and 

a latch (flip-flop)
● a bistable circuit that changes 

state (Q) by signals applied to 
the control inputs (SET, CLEAR) 

● Which (average) DAQ rate 
can we achieve now?
– Reminder: with a clock trigger 

and = 1 ms the limit is 1 kHz  
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Deadtime and efficiency
● Definitions 

– f average rate of physics phenomenon (input)

–  average rates of DAQ (output)

–  deadtime, the time the system requires to process an 
event, without being able to handle other triggers

– the probability that DAQ is busy   P[busy] = 
– the probability that DAQ is free    P[free] = 1 - 

● Therefore:

ν = f P [ free ] ⇒ ν = f (1−ν τ) ⇒ ν=
f

1+ f τ
< f

ϵ =
N saved

N tot

=
1

1+ f τ
< 100%
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Deadtime and efficiency
● Due to stochastic fluctuations 

– DAQ rate always < physics rate

– Efficiency always < 100% 

● So, in our specific 
example

ϵ =
1

1+ f τ
< 100%

∣ f=1kHz
τ=1ms

→ ∣ ν=500 Hz
ϵ=50%

ν =
f

1+ f τ
< f

Probability of time (in ms) 
between events for average 
decay rate of f=1kHz → =1ms

Probability of time (in ms) 
between events for average 
decay rate of f=1kHz → =1ms
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Deadtime and efficiency

ϵ=
N saved

N tot

=
1

1+ f τ

ν=
f

1+ f τ

● In order to obtain ~100% ( i.e.: ~f )   f << 1   <<  
– E.g.: ~99% for f = 1 kHz  < 0.1 ms > 100 kHz
– To cope with the input signal fluctuations, 

we have to over-design our DAQ system by a factor 10. 

● How can we mitigate this effect?
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De-randomization
● Input fluctuations can be absorbed 

and smoothed by a queue 
– A First In First Out can provide a ~steady 

and de-randomized output rate

– It introduces additional latency to the data path
– The effect of the queue depends on its depth  

(ms),  f (Hz)

(ms),  (Hz)

ms

ms

Inter-arrival time 
distribution

Inter-arrival time 
distribution

FIFO
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De-randomization
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● Input fluctuations can be absorbed 
and smoothed by a queue 
– A First In First Out can provide a ~steady 

and de-randomized output rate

– It introduces additional latency to the data path
– The effect of the queue depends on its depth  

(ms),  f (Hz)

(ms),  (Hz)

ms

ms

Inter-arrival time 
distribution

Inter-arrival time 
distribution

FIFO
FIFO
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Queuing theory

● Efficiency vs traffic intensity () for different queue depths
–  > 1, the system is overloaded

–  << 1, the output is over-designed

–  ~ 1, using a queue, high efficiency can be obtained even w/ moderate depth

● Analytic calculation possible for very simple systems only
– Otherwise MonteCarlo simulation is required 

(ms),  f (Hz)

(ms),  (Hz)

ms

ms

Inter-arrival time 
distribution

Inter-arrival time 
distribution

FIFO


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De-randomization summary

 

 

ADC

disk

TRIGGER

f = 1 kHz
= 1 ms 

NOT

AND

BUSY
LOGIC

Processing

start

data
ready

busy (full) FIFO

● Almost 100% efficiency with 
minimal deadtime achievable if
– ADC is able to operate at rate >> f
– Data processing and storing 

operate at a rate ~ f 

● The FIFO decouples the 
low latency front-end from 
the data processing
– Minimize the amount of 

“unnecessary” fast components

● Could the delay be replaced 
with a “FIFO”?
– Analog pipelines → Heavily used 

in LHC DAQs

delay


 
=

 1
 m

s
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De-randomization summary
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Collider setup
● Particle collisions are 

synchronous
– So, do we still need 

de-randomization buffers?

● Trigger rejects 
uninteresting events
– Good events are 

unpredictable

● Even if collisions are 
synchronous, the time 
distribution of triggers is 
random
– De-randomization is still 

needed
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Outline
● Introduction

– What is DAQ?
– Overall framework

● Basic DAQ concepts
– Digitization, Latency
– Deadtime, De-randomization

●  Scaling up
– Readout and Event Building
– Buses vs Network

● Do it yourself
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Adding more channels

storage

Processing

ADC

TRIGGER
1 channel

● Adding more channels requires a hierarchical structure 
committed to the data handling and conveyance

Front-End

Readout

Event Building

Event Filtering

Event Logging

data extraction
data formatting
data buffering

event assembly
event buffering

event rejection
event buffering

file storage
file buffering

data digitization
data buffering
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data buffering
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Adding more channels
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Processing

Processing
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● Buffering usually needed at every level

data digitization
data buffering



Andrea.Negri@unipv.it Intro to DAQ 38

Readout Topology
● Reading out data or building events out of many channels 

requires many components
– In the design of our hierarchical 

data-collection system, we have 
better define “building blocks”

– Eg: readout crates, event 
building nodes, daq slices ...

● How to organize the interconnections inside the building blocks 
and between building blocks?
– Two main classes: bus or network

● Warning: buses and network are generic concepts that can be easily 
confused with their most common implementations 

data
sources

data
processors

Processing

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC
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Buses
● Examples: VME, PCI, SCSI, Parallel ATA, …

– local, external, crate, long distance, ...

● Devices connected via a shared bus
– Bus → group of electrical lines

● Sharing implies arbitration
– Devices can be master or slave
– Devices can be addresses 

(uniquely identified) on the bus

Select Line

Device
1

Device
2

Device
3

Device
4

Data Lines

MASTERSLAVE
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Bus facts
● Simple :-)

– Fixed number of lines (bus-width)
– Devices have to follow well defined interfaces

● Mechanical, electrical, communication, ...

● Scalability issues :-(
– Bus bandwidth is shared among all the devices
– Maximum bus width is limited
– Maximum bus frequency is inversely proportional to 

the bus length
– Maximum number of devices depends on bus length
– On the long term, other “effects” might limit the 

scalability of your system
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Network
● Examples: 

– Telephone, Ethernet,
 Infiniband, …

● All devices are equal
– Devices communicate directly 

with each other sending messages
– No arbitration, simultaneous 

communications

● In switched networks, switches move 
messages between sources and 
destinations
– Find the right path
– Handle congestions (two messages with 

the same destination at the same time)
● The key is .... buffering
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Network
● Networks scale well 

– They are the backbones of LHC DAQ systems 
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Outline
● Introduction

– What is DAQ?
– Overall framework

● Basic DAQ concepts
– Digitization, Latency
– Deadtime, De-randomization

●  Scaling up
– Readout and Event Building
– Buses vs Network

● Do it yourself



Andrea.Negri@unipv.it Intro to DAQ 46

● Study the trigger properties
– Periodic or stochastic, continuous or bunched

● Consider the needed efficiency
– It is good to keep operation margins, but avoid over-sizing

● Identify the fluctuation sources and size adequate 
buffering mechanisms
– Watch out: (deterministic) complex systems introduce 

fluctuations: multi-threaded software, network 
communications,  ...

● An adequate buffer is not a huge buffer
– Makes your system less stable and 

responsive, prone to divergences and 
oscillations. Overall it decreases reliability

DAQ Mentoring
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DAQ Mentoring
● Keep it simple, keep under control the number of free 

parameters without losing flexibility
– Have you ever heard about SUSY phase-space scans? Do you 

really want something like that for your DAQ system?

● Problems require perseverance
– Be careful, a rare little glitch in your 

DAQ might be the symptom of a 
major issue with your data

● In any case, ...
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