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Outline

m The 4 LHC experiments

m The original TDAQ

m Constraints and architectures

m Evolving TDAQ systems
m Physics requirements
m Technology progress
m Interesting fields of R&D
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Interesting Physics at the LHC
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LHC Experimental Environment
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L = 10%cm32s!

~ 70 mb = 70x10-27 cm?

1ne1

Event Rate => 7x108 Hz

Bunch crossings every 25 ns
=> 11.5 events/bc

Filled bunches (2835/3564)
=> 23 events/bc

In Run 1:

BC=50ns
L ..= 7.7x10% cm-2s!
different fill scheme

=> 30-35 events/bc
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LHC Roadmap

2009 . LHC startup, vs 900 GeV

2010 “

2011 Vs=748 TeV, L~6x10%cm?s", bunch spacing 50ns Run 1
2012 ~25 fb
2013 . ) .

ot Lst < Go to design energy, nominal luminosity - Phase 0

2015

2016 Vs=13~14 TeV, L~1x10*cm™s", bunch spacing 25ns

2017 ~75-100 b
2018 LS2 \— Injector + LHC Phase | upgrade to ultimate design luminosity

2019

2020 Vs=14 TeV, L~2x10%cm?s", bunch spacing 25ns

2021 ~350 fb™
2022 1S3 ~ HL-LHC Fhase Il upgrade: Interaction Region, crab cavities?

2023

20307 Vs=14 TeV, L~5x10*cm?s", luminosity levelling ~3000 fb




The 4 Large LHC
Experiments
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CMS
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25m

-----------

Tile calorimeters

. LAr hadronic end-cap and
forward calorimeters
Pixel detector \

Toroid magnets LAr electromagnetic calorimeters

Muon chambers Solenoid magnet | Transition radiation tracker
Semiconductor fracker
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ALICE
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"2012-Aug-02-ALICE 3D v0 with Text (1) 2" by Pcharito - Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons —
http://commons.wikimedia.org/wiki/File:2012-Aug-02-ALICE_3D_vO0_with_Text (1)_2.jpg#mediaviewer/File:2012-Aug-02-ALICE_3D_vO0_with_Text (1)_2.jpg
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TDAQ Systems at the LHC

A story about how they were designed originally and how they are
evolving...
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==
Initial Design Parameters

m When LHC experiments were designed back in the 90’

m Raw data storage capped at ~ 1 PB / year per experiment

high Level-1 trigger

(1MHz)

) LHCb high no. channels

] high bandwidth

_ (Terabits™!)
05 o ATLAS
! O CMS

: HERA-B

1 KLOE CDF II

high data archives
] (PetaBytes)
ALICE

107

Level-1 rate (Hz)
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Synchronization

Data corresponding to the same
y bunch crossing must be
processed together.

But:
Particle TOF >> 25ns

(25 ns = 7.5m)
Cable delay >> 25ns (
Vsignal =1/3c¢c )
Electronic delays

Need to:
Synchronize signals with
programmable delays.

y Provide tools to perform
synchronization (TDCs, pulsers,
LHC beam with few buckets
filled...)
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==
Signal Paths

Level-1 Accept/Reject

Synchronization delay
Level-1 signal distribution

Global Trigger Processor
Regional Trigger Processors

Trigger Primitive Generation

Synchronization delay

Data transportation to Control Room

Detector FrontEnd Digitizer
Particle Time of Fligth
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Timing, Trigger & Control System

TTCvilex
.

I TCI I TCI
FE | DAQ
Controller FE driver
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==
HW Triggers

m Driven by: physics, trigger detectors readout capabilities, on

detector buffering capabilities, overall readout capabilities

oy N
HCAL ECAL RPC CSC DT
energy energy energy hits hits hits
T 1
trigger h
pnmmve segmen
data Reg'onal finder finder
y Cal Tngger Pattern |
DAQ quiet Comp-

Global

track
finder

finput | Cal Trigger |~ _ S ’

i ' \\\xGlbIMLT' L)
v obal Muon Trigger
objects ¥

"{Global Trigger TTC System L%}XE%%L
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In ATLAS/CMS :
* latency budget of ~3 us
* Max readout 100 kHz

In ALICE:

Detectors with very different
latencies in delivering data
& in requiring signal

— Multi-level HW trigger

— Pile-up protection for TPC

In LHBDb:

* Max readout at 1 MHz

e Luminosity kept
artificially low
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Technical Solutions: ATLAS

20 MHz

Calorimeter detector data v v
< Level-1 trigger | O(2 us)

Muon detector data

lect = g
M el PE
S ———— 75 kHz

P SICHL- FISPRUNEic, MR . o IR

~ 1 + 1 ~~

< hwh ]

Detector Readout
O(50 ms) N J 300x1GElnks |
Level-2 — Multi-layered data network
=
a 6 kHz
< 2
~40 x 1 GE links 400 Hz
O(s) =
= Full Event _ Mass
building > Event Filter )—> storage
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ATLAS: The Clever Idea

L2 trigger only
selects data based on
“Regions of Interest”
marked by Ll

- -~ "2 runs at 75 kHz,
rejects > 90% of events
based on ~10% of data

L3 runs at ~6 kHz,
rejects >90% of events
based on full

reconstruction
Areas selected by

First Level Trigger

Overall network bandwidth: ~10 GB/s !

ISOTDAQ 2015, G. Lehmann Miotto
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+
CMS: The Clever Idea

2 stage event
building!

6TP [00) Detector Front-End Drivers ( FED x ~700) [)

Global Trigger
Processor

Front-End Readout Link (FRL x 512) 512 EJ
" 1ststage:
” builds 1 fragment
out of 8 at 75 kHz,
sends it to one RU
” builder

(b4 2 64 FED Builder 8x8 switches S

3
P

2"d stage:
Works at 10 kHz,

1 L1 |64

. . . events to trigger
EVM | [4,RU Buider 1 b4RU Buider2 FIRU Buider g9

e farm.

Each RU builder needs ~10 GB/s aggregate bandwidth!
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Technical Solutions: LHCDb

Detector

Events very small:

veeol sT H oT HRICHH ECaI H HCal g
T Lo L coalesced to
ngger r | i | t t 1 reduce overheads
L0 trigger | —=p e e N e re and message rate
LHc dock t.lc!mmcﬂtl-:lmmc: Elecronicx|jt mctronicx || kctmnic druncl g

ol e bod o4 o

Rcadoul Readout || Readout || Readout || Readout || Readout || Readout
Bo.wd Board Board Board Board Board Board
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----------- READOUT NETWORK

ST
200 - 300 MB/s

SWITCH SWITCH| SWITCH'SWlTCH SWITCH H SWITCH

Y A4 IFIL Tl

clele ||

PiP|P PIP|P|P
ujuju ujujuju

(~80 kHz)

c
P
U

Event data Average event size 55 kB
- = = Timing and Fast Control Signals

R Average rate into farm 1 MHz
T Average rate to tape 4 - 5 kHz
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LHCDb: The Clever Idea

Standard HLT Deferred HLT
1 MHz
Farm Node | Farm Node during Physics Farm Node |nter-fill

Events Events CrverFlow Events

=

Qukpuk Ouakpuk | |I Cuakpuk

—

' v v
|
5 KHz Temporary data storage allows to use the HLT farm
continuously and run at higher L1 rate!

<
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Run 1 — Reality Check

m Some constraints had been over-estimated and some others
under-estimated

m ATLAS/CMS did not manage to run at 100 kHz L1 accept rate
m Both experiments capped at ~75 kHz

m Rejection power of HLT was a bit over-estimated
m Or there is more interesting Physics out there...
m Storage capacity for raw data was under-estimated
m In ATLAS 6 PB were stored in 2012 alone

m Technology evolved in our favor
m Network bandwidth
m Power of FPGAs

=> Technical stop before Run 2 (2013-2014) was an occasion to
redo a lot of things!

ISOTDAQ 2015, G. Lehmann Miotto
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Changes in ATLAS

Calorimeters Muon detectors
l.' ‘ * * Introduce Topological
: Barrel End . . .
Pre-processor | trigger at Ll to improve selection
* * trigger trigger
Cluster Jet / Energy 1.1 Miion
Processor Processor e Introduce Fast Tracker (FTK) to be able to
i Lical i ety perform fast tracking information to sw
: Interface ' 1 7
— e selection algorithms (25 ps)
Procesor_1417"" | Topontertace
. (O, LTI |
et TR D —
/ \ Level-1 trigger | O(2 us)
100 kHz

Use single data network (100 GB/s)
and HLT farm
=> simplified data flow

Increase rate of data to permanent
storage

ISOTDAQ 2015, G. Lehmann Miotto

RoI-based trigger-driven e AUEESETKS

data-collection Multi-layered data K : <] kHz>
; A
25 kHz equivalent |
70 x 10 GE links
0(200 ms) <

Mass
storage

Rol based
Event building

High-Level Trigger
(Combined L2 & EF)
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Changes in LHCDb

1 MHz

|
Farm Node

\
Events,

|

|

. S
| Selecte

|

|

Events Events

Localdisk
Buffe

I
v
For DQ only

12.5 KHz

onditions
DB

HLT decoupled from data flow via
local temporary storage!

ISOTDAQ 2015, G. Lehmann Miotto



+
Changes in CMS

Timing, Trigger and Contral (TTC) front-end distribution system

—-| Detector Front-End Drivers { FED x ~700 )

Trigger Throttle System (TTS). Fast Merging Module (FMM)

|
. New
FEDs
] 3

Input: old FED copper Slink, new FED 6-Gbs optical

576 Front-End Readout Optical Link (FEROL-PClx)

Patch panels

= 185m OM3 Data to Surface ~ (2 x) 576 x 10 GbE links (5.8 Tbs)

Mo |

—

48 x 12 (10/40 GbE)

40 GhE |-
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Data backbone (10/40 GbE) - Storage Manager

E 56 Gbps IB-FOR

§ 72 x 64 (56 Gbps) [ InfiniBand-FDR Event Builder 72 x 84 (3.5 Tbs )

o .

£ 56CbpsIB-FOR . .

2 u|[Bu [BU] BU a Bu |[BU

J.G8 1 &5

3 o eoE &= S CCTE gy agp booe SE L1 S|_s[

o 36 x 40 GBE 4 ~15000 cores | 36 x 40GBE switch b ar b 38

§ r"ﬂ [l‘b‘n'n
10 GbE

‘€

3

w FU PCs

CMS DAQ completely

refurbished:

- Elimination of myrinet

- Single event builder
InfiniBand Clos
network (200 GB/s)

DAQ and HLT decoupled via
intermediate shared
temporary

storage!



Towards the Future

m Experiments upgrade every time the conditions provided by
the accelerator change

m Preparations start well in advance

m The 4 LHC TDAQ systems are already planning major upgrades
m ALICE & LCHb will upgrade for Run 3
m CMS and ATLAS will mainly upgrade for Run 4

m Guiding Principles
m Physics goals
m Accelerator conditions
m Technology reach
m Cost

m The constraints being fixed, it’s always a matter of finding the
clever idea(s)...

ISOTDAQ 2015, G. Lehmann Miotto
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Synchronization — From TTC to PON

TTCrx TTCrx TTCrx
Det. Det. Det.
Module | Module| Module
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Trigger

unit

Y 1:128

Bidirectional

High bandwidth

High split ratio
Scalable

Software partitioning
Commercial components
TTC legacy compatible

ONU

Detector
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The PON Principle

o PON=Passive Optical Network
o Fiber To The Home (FTTH) technology
o 1single fiber, 2 directions
o 2 wavelengths (one up, one down)
o Downstream (OLT ->ONUs): ONU = Optical Network Unit
o high bandwidth broadcast OLT = Optical Line Terminal
Upstream (ONUs -> OLT) :
o Time Domain Multiplexing
o bandwidth shared between ONUs
o 1G-PON and 10G-PON versions

O

Passive

1577nm Iy Splltte:

L
:mn:.z. , Y

=g :---naﬁi_\' %%
< 1:32:

1270nm
64,128

| Up to 10km @ 1:128 |




==
LHCDb

m Substantial increase in physics reach only possible with massive
increase in read-out rate

m Geometry (spectrometer) and comparatively small event-size
malke it possible — and the easiest solution — to run trigger-free,
reading every bunch-crossing

m Note: ? 1 | LHCD Trigger | - oo _
m Any increase beyond -3 - T4, V .
1 MHz requires = 08F -
change of all = i )
front-end electronics 0.6 - ]
m To keep data-size - -
reasonable, 0.4+ -
all detectors must - .
zero-suppress at 02 ﬁ( _
the front-end F Knn
0 M " M i A A " PR " A .

0 10 20 30
LLT-hadron rate (MHz)
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LHCDb — Requirements for Run 3

m Event rate 40 MHz
m of which ~ 30 MHz have protons

m Mean nominal event size 100 kBytes ‘{3 ﬂﬁ
m Readout board bandwidth up to 100 Gbits/s i | 40 MHz
m to match DAQ links of 2018
DAQ
m CPU nodes up to 4000
. . B 40 MHz
m actual requirements are probably less, but provide for :
sufficient power, cooling and connectivity to accommodate LLT: p.ely,
a wide range of implementations hadrons

B 540 MHz

m Output rate to permanent storage 20 to 100 kHz

m In one number:

m 8800 (# VL) * 4.48 GDbit/s (wide mode) l 20 kHz

=> 40 Tbps

ISOTDAQ 2015, G. Lehmann Miotto 2 G B/ S



The evolution of Network Interconnects

PCle Gen4

PCle Gen3 EDR (100 Gb/s) 159 apENIC ~ ©€Xpected

available HCA expected
140 Chelsio T5  S*Pected \ 128

(40 GbE) l \ e
120
100 \ 100

100 S

80 M /

3
5 64 /
e

60 oA
0 o A /

40 |32 - o

20 10 40 Mellanox FDR

*“7 Mellanox 40 GbE
NIC

2008 2012 2013 2014 2015 2016 2017
-s-Ethernet InfiniBand x4 PCle x8
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+Readout Architecture

[aa]

Detector front-end electronics 2 =

o B

D
C/\/\__\J\/\/\\/\J\J/\Jj %
8800 2 NP NN NN =Ny S
Versatile Link "] \\\/‘/\::\\’/ L 3
[=]

subfarm

switch .
- -
storage

Eventfilter Farm
~ 80 subfarms

Point 8 surface
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+LHCb: sSummary

m The trigger-free readout of the LHCDb detector requires

m new, zero-suppressing front-end electronics
m a 40 Tbit/s DAQ system

m This will be realized by
m a single, high performance, custom-designed FPGA card (PCle40)

m A PC based event-builder using 100 Gbit/s technology and data centre-
switches

m LHCD is confident that all inherent challenges can be met at a
reasonable cost

m R&D ongoing on network, versatile links, ...

ISOTDAQ 2015, G. Lehmann Miotto



==
ALICE in Run 3

m Focus of ALICE upgrade on physics probes
requiring high statistics

m Target Luminosity
m Pb-Pb recorded luminosity = 10 nb-! (50 kHz)

= pp (@5.5 TeV) recorded luminosity > 6 pb-! (200 kHz) 1TB/s ‘ 50 kHz
m Minimum bias physics: x100

m Triggered physics : x10

m Optimize use of detectors:

m Continuous readout
m Different busy times ‘

m Different latency times -

75 GB/s

ISOTDAQ 2015, G. Lehmann Miotto



ALICE DAQ

37

TPC Data
1 TB/s

Raw data

250 GB/s

Analysis
on
Grid/Cloud

125 GB/s

Permanent

Detectors electronics Trigger and
e - clock
—
Data Sample n+1
R D | Data Samplen =mom oo
aw Data Input
P Data Samplen-1
v Vv A 4
FLPs Buffering
=
Raw data 8l T T
o Processed,
Data Reduction 0 data._
: Calibration 0
Local Processing . it
—— —> T
1 Tagging 1
1 1
1 Raw data sample Time slicingcould actually 1
1 e occur before, e.g. onthe 1
L 1 e front-end or receiving part 1
1 1
1 Sub Time Frame
. . - - Y
Frame dispatch I [ * N . J’ |
1 v
Pro—
1 Data aggregation
b— Full Time Frame
Full Time Frame
(— \L - (_ -1
h 4 1 Information
. - Global reco
Global Processing P — ~3p| Calibration 1 ___>_JI from CCDB
full detector
Tracks/Tracklets eadd = 1
i - Drift time 1
1 Data Reduction 1 1
1 1
1 1
1 ---*--------.
— 1 1
1 Compressed Time Frame : :
1 e
1 Data storage Up to date AGD 1 1
1
1 1
I local Storage || == === ———————— 1
Storage 1 (active raw data) Fully Compressed Time Frame !
1 + latest AOD)
1 v 1
! i
= : Compressed Time Frame Fully Compressed Time Frame, AOD 1
1 1
H EPNs v 1
. 1 Final 1
Event Building e —— reconstruction . Calibration 2 L— _____!
(asynchronous) < Event building {onall eventsso far)
Tagging
Data Reduction 2
Permanent

1
Offloading peaks 1
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Well connected
T1/HPC sites

Storage
(archive)

Storage
(archive)

80 GB/s




ALICE DAQ

m Event input: 1 TB/s

m Aim at x100 compression

m Partial event building

m Compression start at each

FLP and continues once =

Detector 'g‘:l:tnt: Peak Output to Local | Avg. Output to
System Data Storage Computing
(GBytels) (GBytels) Center (GByte/s)
TPC

1000 50.0 8.0

TRD 81.5 10.0 1.6
ITS 40 10.0 1.6
Others 25 125 2.0
Total 1146.5 82.5 13.2

2500 DDL3s
in total

10 Gb/s

10 Gb/s

ITS
event in EPN .
—  TPC
m Later compression stages [/ trD
perform calibration that is
fed in into earlier stages L
PHO
m Compression preserves .
ability to re-calibrate
offline | Muon

FTP

ISOTDAQ 2015, G. Lehmann Miotto

~ 250 FLPs
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* Event building & Continuous Readout

Eis By Ey B Bin
~——> FLP
10 x 10 Gb/s 40
Bout
va > FLP =~> EPN |——>
40 Gb/s
. > FLP —>
=> EPN — E,
—> FLP ——> i
'm
s NetwQrk
Time frame for the continuous detector readout
TPC FLP subEventSize = 20 MB / 200 = 0.1 MB =3 EPN |—> E.+2
TPC drift time 100 us, 5 overlapping events at 50 kHz !
Nb event frame >> Nb event at the “borders” —>
Number events >> ~4 (@50 kHz)
1000 events — 100 MB timeframe / FLP
256 FLPs — ~25 GB timeframe / EPN —
= EPN —> E..
FLP Buffer usage
- Input buffer for partial timeframes aggregation LS
- Data waiting to be processed
- Data processing buffers
- _Output buffer for timeframes being sent to EPNs . /~1250 EPNs

ISOTDAQ 2015, G. Lehmann vionirst Level Processors Event Processing Nodes



ALICE: Summary

m Abandon HW trigger in classical sense

m Varied latencies, busy and readout policies for different
detectors

m DAQ/HLT will compress data, not select them
m Goal is to achieve a x100 compression

m Option of recording only results of reconstruction
m ALICE online and offline integrated into a single workflow

m A lot of research on viable computing platforms, algorithms
and data structures optimizations

ISOTDAQ 2015, G. Lehmann Miotto



+
ATLAS & CMS for Run 4

ATLAS Simulation, 14 TeV
— WH -
0.8 — SUSY-direct-gauging |
B ———— tr }

m Maintaining current physics sensitivity at
HL-LHC challenging for trigger

Acceptance fraction

m EWK, top (and Higgs) scale physics remain :
critical at HL-LHC oer

m 100kHz L1 bandwidth cannot fit interesting

physics events at 13-14 TeV, 5x103¢cm2s! Sy
m Increasing p; thresholds reduces signal efficiency 4

m Trigger on lepton daughters from H->ZZ at
pr~ 10-20 GeV

m Thresholds risk to increase beyond energy
scale of interesting processes

o0 10 20 30 40 50 60 70 80 90 10
true muon P, [GeV/c]

m Backgrounds from HL-LHC pileup reduces the ability to trigger on
rare decay products

m Leptons, photons no longer appear isolated and are lost in QCD
backgrounds

m Increased hadronic activity from pileup impacts jet pr and MET
measurements

ISOTDAQ 2015, G. Lehmann Miotto



+
ATLAS & CMS L1 Tracking Trigger

m Reduces leptonic trigger rate

m Validate calorimeter or muon trigger object, e.g. discriminating
electrons from hadronic (1M, -> yy) backgrounds in jets

m Addition of precise tracks to improve precision on pr
measurement, sharpening thresholds in muon trigger

m Degree of isolation of e, v, ortcandidate

m Requires calorimeter trigger to work at finest granularity to
reduce electron trigger rate

m Other triggers

m Primary z-vertex location within 30 cm luminous region derived
from projecting tracks found in trigger layers

m Provide discrimination against pileup events in multiple object
triggers, e.g. in lepton + jet triggers

ISOTDAQ 2015, G. Lehmann Miotto



==
CMS

| ——
Level 1 — Detector Front-Ends
Trigger . T T T T 1 LT T out 40 MHz
J, T — 1 0 d L [Systems 100 kHz — 750 kHz
Event Control
i d
Manager || P Builder Network | M%ll]‘ o
— W W W | Filter 2 Tbps — ~50 Tbps
— T 1 | {kHz—~75kHz
Computing Services

m Ll tracking trigger calculated stand-alone, combined with
calorimenter & muon trigger data regionally

m After regional correlation stage, physics objects transmitted to
global trigger

m L]l trigger latency = 12.5 us

ISOTDAQ 2015, G. Lehmann Miotto



==
ATLAS

Calorimeter detectors &b & Other Detectors
Tile—p Muon detectors A A
(inc. RPC-BI & MDT) N [T
Level-0 calorimeter Level-0 muon ‘ Ea FEJ " |i|§_ FE
et eHEFEX | Eodesp | | J Bael_| Detector m Divide Ll Trigger into
. | Read-Out
|MIL—WL| | LO/L1 of latency 6/30
Jt‘%@ FELIX sec;
[ Topology |~ cTP | l rate < 1 MHz/400 kHz
Level-0 (< 6 ps) LO Central trigger EEufdéta h
Network m HLT output 5-10 kHz
LicCalo L1Track Data handling / m IOusescal.&pn
| Doyt aeiam Triggers, which
p—— generate track trigger
L1 Glabal —= L1 Central | DataFlow L_ seeds
Level1 (= 24 ps)
Fast Tracker m L] uses Track Trigger
| (FTK+) Stk 1 and more fine-grained
calorimeter trigger
information.
Event Filter
| SubFarm Output |
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+
ATLAS & CMS: Summary

m ATLAS & CMS still need a hardware trigger

m Ultra low mass, low power and high speed optical links could
change this -> R&D

m L] tracking triggers enable “Run 1” thresholds

m Technically challenging and strongly coupled to tracker design
-> R&D

m L1 global, calorimeter and muon triggers need upgrade to
be able to exploit this

m Also challenging due to the large data rates -> R&D

m Evolution of processing power of processors and co-
processors critical for HLT

m If we do not find clever solutions processing times in the HL-LHC
era will explode -> R&D

ISOTDAQ 2015, G. Lehmann Miotto



+
Summary & Outlook

m The TDAQ systems of all four large experiments have a
fascinating upgrade programme

m ALICE & LHCD are already designing the new systems in
order to use them from 2019 onwards

m New physics reach
m Elimination of classic HW trigger stage

m CMS & ATLAS are in a phase of R&D in order to understand
how to cope with HL-LHC and preserve the interesting
physics

m In all cases, we rely on your clever ideas to find the best
solutions within the constraints!

ISOTDAQ 2015, G. Lehmann Miotto



Backups
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+ 48
Timing, Trigger & Control at LHC .

LHC sync
Clock, Orbhit

Level 1 trigger

L1 trigger &
. commands
TTC TTC » TTC
----------------- X 31 - 32 “partitions”
(ECAL, Tracker, ...)
> |—> |—>
Local control
Fan Out to
Front End
vy 2 A/
To Front End To Front End To Front End
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==
TTC Encoding: 2 Channels

=t 249501 ns o=
m Channel A: A CHANNEL B CHANNEL
m One bit every 25ns y 0 v 0 v
m constant latency required LEYEL-1
. . REJECT 0 1
m Used to read out pipelines y 0 y ¥
m For distribution of LV11-accept
1 0
m Channel B: o A X : f
m One Bit every 25 ns ML y }'{ v J'{ y

m Synchronous commands

m Arrive in fixed relation to LHC Orbit signal
m Asynchronous commands

m No guaranteed latency or time relation
m “Short” broadcast-commands (Bunch Counter Reset, LHC-Orbit)
m “Long” commands with addressing scheme

m Serves special sub-system purposes
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+Long-distance optical fibres

m Most compact system achieved by
locating all Online components in
a single location

m Power, space and cooling
constraints allow such an
arrangement only on the surface:
containerized data-centre

m Versatile links connecting detector

to readout-boards need to cover
300 m

ISOTDAQ 2015, G. Lehmann Miotto
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tLong distance versatile link lab tests

m Various optical fibres tested

show good optical power margin

and very low bit error rates

m For critical ECS and TFC signals
Forward Error Correction

(standard option in GBT)

gives additional margin
m On DAQ links expect < 0.25 bit

errors / day / link in 24/1
operation
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BER
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PCle40

m Up to 48 bi-directional optical I/Os (VL)

m Up to 100 Gbit/s I/0 to the PC (PCle Gen3 x 16 card)

m Designed by CPP Marseille. Firmware and production support by
INFN Bologna, LAPP and CERN

m Universal building block for DAQ, ECS and TFC

Minipods

Arria_10
72 links

5
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==
Network building & testing

m Core network will require a 500 port 100 Gbit/s device 2
this will be available

m Internally probably a Clos (like) topology = need to carefully
verify blocking factors and protocol

m Large scale tests require large system

m Can test opportunistically in HPC sites
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+
LHC: A Discovery Machine
___|Beams |Energy

LEP efe 200 GeV
LHC pp 14 TeV
LHC PbPb 1312 TeV

LHCb
TT40 TT41
EE; [:)SE; -..'iiiiEEIH!I!!!’. f<\";ti;:inos
CNGS
Gran Sasso
Fast Al

LINAC 2

~ LINAC 3
Ions
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+Current and future DAQ

Mazx. inst. luminosity 4 x 10732 2 x 10A33
Event-size (mean - zero-suppressed) [kB] ~ 60 (LO accepted) ~ 100
Event-building rate [MHz] 1 40
# read-out boards ~ 330 400 - 500
link speed from detector [Gbit/s] 1.6 4.5
output data-rate / read-out board [Gbit/s] 4 100
# detector-links / readout-board up to 24 up to 48
# farm-nodes ~ 1000 1000 - 4000
# links 100 Gbit/s (from event-builder n/a 400 - 500
PCs)

final output rate to tape [kHz] 5 20 - 100
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