

TDAQ at the LHC Experiments

G. Lehmann Miotto

Outline

- The 4 LHC experiments
- The original TDAQ
 - Constraints and architectures
- Evolving TDAQ systems
 - Physics requirements
 - Technology progress
 - Interesting fields of R&D

Interesting Physics at the LHC

 $\sigma_{tot} \approx 100 \text{ mb}$

1:100000000

 σ_{Higgs} is down here!

LHC Experimental Environment

=> 30-35 events/bc

6 LHC Roadmap LHC startup, √s 900 GeV 2009 2010 $\sqrt{s}=7+8$ TeV, $L\sim6x10^{33}$ cm⁻²s⁻¹, bunch spacing 50ns 2011 Run 1 2012 ~25 fb⁻¹ 2013 Go to design energy, nominal luminosity - Phase 0 LS1 2014 2015 2016 $\sqrt{s}=13\sim14$ TeV, $L\sim1x10^{34}$ cm⁻²s⁻¹, bunch spacing 25ns 2017 ~75-100 fb⁻¹ Injector + LHC Phase I upgrade to ultimate design luminosity 2018 LS2 2019 $\sqrt{s}=14$ TeV, $L\sim 2x10^{34}$ cm⁻²s⁻¹, bunch spacing 25ns 2020 2021 ~350 fb⁻¹ HL-LHC Phase II upgrade: Interaction Region, crab cavities? 2022 LS3 2023 - - -√s=14 TeV, L~5x10³⁴cm⁻²s⁻¹, luminosity levelling 2030? ~3000 fb⁻

The 4 Large LHC Experiments

ISOTDAQ 2015, G. Lehmann Miotto

ISOTDAQ 2015, G. Lehmann Miotto

Chambers (**RPC**)

Resistive Plate Chambers (RPC)

ISOTDAQ 2015, G. Lehmann Miotto

"2012-Aug-02-ALICE 3D v0 with Text (1) 2" by Pcharito - Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons – http://commons.wikimedia.org/wiki/File:2012-Aug-02-ALICE_3D_v0_with_Text_(1)_2.jpg#mediaviewer/File:2012-Aug-02-ALICE_3D_v0_with_Text_(1)_2.jpg

+ LHCb

TDAQ Systems at the LHC

A story about how they were designed originally and how they are evolving...

┿

+ Initial Design Parameters

When LHC experiments were designed back in the 90'

Raw data storage capped at ~ 1 PB / year per experiment

+ Synchronization

Data corresponding to the same bunch crossing must be processed together.

But:Particle TOF >> 25ns
(25 ns \approx 7.5m)Cable delay >> 25ns $v_{signal} \approx 1/3 c$)Electronic delays

<u>Need to:</u> Synchronize signals with programmable delays.

Provide tools to perform synchronization (TDCs, pulsers, LHC beam with few buckets filled...)

+ Timing, Trigger & Control System

+ HW Triggers

 Driven by: physics, trigger detectors readout capabilities, on detector buffering capabilities, overall readout capabilities

In ATLAS/CMS :

- latency budget of \sim 3 μ s
- Max readout 100 kHz

In ALICE:

Detectors with very different latencies in delivering data

- & in requiring signal
- \Rightarrow Multi-level HW trigger
- \Rightarrow Pile-up protection for TPC

In LHBb:

- Max readout at 1 MHz
- Luminosity kept artificially low

Technical Solutions: ATLAS

+ ATLAS: The Clever Idea

Overall network bandwidth: ~10 GB/s !

+ CMS: The Clever Idea

2 stage event building!

1st stage: builds 1 fragment out of 8 at 75 kHz, sends it to one RU builder

2nd stage: Works at 10 kHz, serves complete events to trigger farm.

Each RU builder needs ~10 GB/s aggregate bandwidth!

ISOTDAQ 2015, G. Lehmann Miotto

Technical Solutions: LHCb

ISOTDAQ 2015, G. Lehmann Miotto

+ LHCb: The Clever Idea

Standard HLT

Deferred HLT

+ Run 1 – Reality Check

- Some constraints had been over-estimated and some others under-estimated
 - ATLAS/CMS did not manage to run at 100 kHz L1 accept rate
 - Both experiments capped at ~75 kHz
 - Rejection power of HLT was a bit over-estimated
 - Or there is more interesting Physics out there...
 - Storage capacity for raw data was under-estimated
 - In ATLAS 6 PB were stored in 2012 alone
- Technology evolved in our favor
 - Network bandwidth
 - Power of FPGAs

=> Technical stop before Run 2 (2013-2014) was an occasion to redo a lot of things!

Changes in ATLAS

- Use single data network (100 GB/s) and HLT farm
 => simplified data flow
- Increase rate of data to permanent storage

- Introduce Topological trigger at L1 to improve selection
- Introduce Fast Tracker (FTK) to be able to perform fast tracking information to sw selection algorithms (25 μs)

Changes in LHCb

HLT decoupled from data flow via local temporary storage!

+ Changes in CMS

CMS DAQ completely refurbished:

- Elimination of myrinet
- Single event builder InfiniBand Clos network (200 GB/s)

DAQ and HLT decoupled via intermediate shared temporary storage!

+ Towards the Future

- Experiments upgrade every time the conditions provided by the accelerator change
 - Preparations start well in advance
 - The 4 LHC TDAQ systems are already planning major upgrades
 - ALICE & LCHb will upgrade for Run 3
 - CMS and ATLAS will mainly upgrade for Run 4
- Guiding Principles
 - Physics goals
 - Accelerator conditions
 - Technology reach
 - Cost
- The constraints being fixed, it's always a matter of finding the clever idea(s)...

+ Synchronization – From TTC to PON

+ The PON Principle

- Substantial increase in physics reach only possible with massive increase in read-out rate
- Geometry (spectrometer) and comparatively small event-size make it possible – and the easiest solution – to run trigger-free, reading every bunch-crossing
- Note:
 - Any increase beyond

 MHz requires
 change of all
 front-end electronics
 - To keep data-size reasonable, all detectors must zero-suppress at the front-end

+ LHCb – Requirements for Run 3

- Event rate 40 MHz
 - of which ~ 30 MHz have protons
- Mean nominal event size 100 kBytes
- Readout board bandwidth up to 100 Gbits/s
 - to match DAQ links of 2018
- CPU nodes up to 4000
 - actual requirements are probably less, but provide for sufficient power, cooling and connectivity to accommodate a wide range of implementations
- Output rate to permanent storage 20 to 100 kHz
- In one number:
 - 8800 (#VL) * 4.48 Gbit/s (wide mode) => 40 Tbps

The evolution of Network Interconnects

ISOTDAQ 2015, G. Lehmann Miotto

+ Readout Architecture

ISOTDAQ 2015, G. Lehmann Miotto

+ LHCb: Summary

- The trigger-free readout of the LHCb detector requires
 - new, zero-suppressing front-end electronics
 - a 40 Tbit/s DAQ system
- This will be realized by
 - a single, high performance, custom-designed FPGA card (PCIe40)
 - A PC based event-builder using 100 Gbit/s technology and data centreswitches
- LHCb is confident that all inherent challenges can be met at a reasonable cost
 - R&D ongoing on network, versatile links, ...

ALICE in Run 3

- Focus of ALICE upgrade on physics probes requiring high statistics
- Target Luminosity
 - Pb-Pb recorded luminosity $\geq 10 \text{ nb}^{-1}$ (50 kHz)
 - pp (@5.5 TeV) recorded luminosity \geq 6 pb⁻¹ (200 kHz)
 - Minimum bias physics: x100
 - Triggered physics : x10
- Optimize use of detectors:
 - Continuous readout
 - Different busy times
 - Different latency times

ALICE DAQ

+ ALICE DAQ

- Event input: 1 TB/s
- Aim at x100 compression
 - Partial event building
- Compression start at each FLP and continues once event in EPN
- Later compression stages perform calibration that is fed in into earlier stages
- Compression preserves ability to re-calibrate offline

Detector	Input to Online System (GByte/s)	Peak Output to Local Data Storage (GByte/s)	Avg. Output to Computing Center (GByte/s)
TPC	1000	50.0	8.0
TRD	81.5	10.0	1.6
ITS	40	10.0	1.6
Others	25	12.5	2.0
Total	1146.5	82.5	13.2

+ ALICE: Summary

- Abandon HW trigger in classical sense
- Varied latencies, busy and readout policies for different detectors
- DAQ/HLT will compress data, not select them
 - Goal is to achieve a x100 compression
 - Option of recording only results of reconstruction
- ALICE online and offline integrated into a single workflow
- A lot of research on viable computing platforms, algorithms and data structures optimizations

+ ATLAS & CMS for Run 4

- Maintaining current physics sensitivity at HL-LHC challenging for trigger
 - EWK, top (and Higgs) scale physics remain critical at HL-LHC
 - 100kHz L1 bandwidth cannot fit interesting physics events at 13-14 TeV, 5x10³⁴cm⁻²s⁻¹
 - Increasing p_T thresholds reduces signal efficiency
 - Trigger on lepton daughters from H->ZZ at $p_T \sim 10\text{--}20 \text{ GeV}$
 - Thresholds risk to increase beyond energy scale of interesting processes

- Backgrounds from HL-LHC pileup reduces the ability to trigger on rare decay products
 - Leptons, photons no longer appear isolated and are lost in QCD backgrounds
 - Increased hadronic activity from pileup impacts jet p_T and MET measurements

+ ATLAS & CMS L1 Tracking Trigger

Reduces leptonic trigger rate

- Validate calorimeter or muon trigger object, e.g. discriminating electrons from hadronic (π₀-> γγ) backgrounds in jets
- Addition of precise tracks to improve precision on p_T measurement, sharpening thresholds in muon trigger
- **Degree of isolation of e,** γ , μ or τ **candidate**
- Requires calorimeter trigger to work at finest granularity to reduce electron trigger rate

Other triggers

- Primary z-vertex location within 30 cm luminous region derived from projecting tracks found in trigger layers
- Provide discrimination against pileup events in multiple object triggers, e.g. in lepton + jet triggers

- Ll tracking trigger calculated stand-alone, combined with calorimenter & muon trigger data regionally
- After regional correlation stage, physics objects transmitted to global trigger
- Ll trigger latency = 12.5 μs

 Divide L1 Trigger into L0/L1 of latency 6/30 µsec; rate ≤ 1 MHz/400 kHz

- HLT output 5-10 kHz
- L0 uses cal. & µ Triggers, which generate track trigger seeds
- Ll uses Track Trigger and more fine-grained calorimeter trigger information.

+ ATLAS & CMS: Summary

ATLAS & CMS still need a hardware trigger

- Ultra low mass, low power and high speed optical links could change this -> R&D
- Ll tracking triggers enable "Run 1" thresholds
 - Technically challenging and strongly coupled to tracker design -> R&D
- Ll global, calorimeter and muon triggers need upgrade to be able to exploit this
 - Also challenging due to the large data rates -> R&D
- Evolution of processing power of processors and coprocessors critical for HLT
 - If we do not find clever solutions processing times in the HL-LHC era will explode -> R&D

+ Summary & Outlook

- The TDAQ systems of all four large experiments have a fascinating upgrade programme
- ALICE & LHCb are already designing the new systems in order to use them from 2019 onwards
 - New physics reach
 - Elimination of classic HW trigger stage
- CMS & ATLAS are in a phase of R&D in order to understand how to cope with HL-LHC and preserve the interesting physics
- In all cases, we rely on your clever ideas to find the best solutions within the constraints!

+

ISOTDAQ 2015, G. Lehmann Miotto

+ Timing, Trigger & Control at LHC

ISOTDAQ 2015, G. Lehmann Miotto

TTC Encoding: 2 Channels

- Channel A:
 - One bit every 25ns
 - constant latency required
 - Used to read out pipelines
 - For distribution of LV11-accept
- Channel B:
 - One Bit every 25 ns
 - Synchronous commands
 - Arrive in fixed relation to LHC Orbit signal
 - Asynchronous commands
 - No guaranteed latency or time relation
 - "Short" broadcast-commands (Bunch Counter Reset, LHC-Orbit)
 - "Long" commands with addressing scheme
 - Serves special sub-system purposes

+Long-distance optical fibres

- Most compact system achieved by locating all Online components in a single location
- Power, space and cooling constraints allow such an arrangement only on the surface: containerized data-centre
- Versatile links connecting detector to readout-boards need to cover 300 m

+Long distance versatile link lab tests

- Various optical fibres tested show good optical power margin and very low bit error rates
- For critical ECS and TFC signals Forward Error Correction (standard option in GBT) gives additional margin
- On DAQ links expect < 0.25 bit errors / day / link in 24/7 operation

Receive OMA [dBm]

- Up to 48 bi-directional optical I/Os (VL)
- Up to 100 Gbit/s I/O to the PC (PCIe Gen3 x 16 card)
- Designed by CPP Marseille. Firmware and production support by INFN Bologna, LAPP and CERN
- Universal building block for DAQ, ECS and TFC

Network building & testing

- Core network will require a 500 port 100 Gbit/s device → this will be available
 - Internally probably a Clos (like) topology → need to carefully verify blocking factors and protocol
- Large scale tests require large system
 - Can test opportunistically in HPC sites

+ LHC: A Discovery Machine

ISOTDAQ 2015, G. Lehmann Miotto

+Current and future DAQ

	LHCb Run1 & 2	LHCb Run 3
Max. inst. luminosity	4 x 10^32	2 x 10^33
Event-size (mean – zero-suppressed) [kB]	\sim 60 (L0 accepted)	~ 100
Event-building rate [MHz]	1	40
# read-out boards	~ 330	400 - 500
link speed from detector [Gbit/s]	1.6	4.5
output data-rate / read-out board [Gbit/s]	4	100
# detector-links / readout-board	up to 24	up to 48
# farm-nodes	~ 1000	1000 - 4000
# links 100 Gbit/s (from event-builder PCs)	n/a	400 - 500
final output rate to tape [kHz]	5	20 - 100