e
W

UUUUUUU

An Introduction to C Programming
Exercise Review and Discussion Session

David Dobrigkeit Chinellato
daviddc@ifi.unicamp.br

(Many thanks to Francesco Safai Tehrani!)
(these slides are based on his)

Technicalities: How-to

e Compiler used: gcc (‘pure C’' + GCC extensions)
* Everything compiled via:

— gcec -Wall [program] -o [executable
— -Wall =-W(arning) all
-pedantic = activate all checks for ‘pure’ C conformance

* no command line argument management
— | basically ignore all the command line processing

— arguments are ‘passed’ as #define-s

R
o

UN|cAMp DD Chinellato - Review of C Exercises

Some more details

* Techniques that were necessary here:

— C program structure
 How to organize your code into functioning pieces

— Basic debugging

* Printing out some messages (printf, etc)
— Basic algorithmic thinking
* Take an idea described in text and implement it!

— Basic memory management
* Declaring variables, arrays, allocating memory...

| will try to emphasize these when going through the
exercises..

Questions? Please just ask!

NG

v

UNICAMP DD Chinellato - Review of C Exercises

‘Lost in translation’...

* Beware: C # C++
— ...though, yes, they do look alike!

NG

v

UUUUUUU DD Chinellato - Review of C Exercises

‘Lost in translation’...

* Beware: C # C++
— ...though, yes, they do look alike!

* This is easy to mix... usually due to learning C++ but

not ‘proper’ C. Some C++-isms are typically:

— C++ style comments: //comment (instead of /* */)
C++ memory management (new/delete, not malloc/free)

— Arrays with variable size (actually, this is ISO C99, acepted by gcc
as extension!). But in pure C, arrays must have constant size...

NG

v

UNICAMP DD Chinellato - Review of C Exercises 4

‘Lost in translation’...

* Beware: C # C++
— ...though, yes, they do look alike!

* This is easy to mix... usually due to learning C++ but

not ‘proper’ C. Some C++-isms are typically:

— C++ style comments: //comment (instead of /* */)
C++ memory management (new/delete, not malloc/free)

— Arrays with variable size (actually, this is ISO C99, acepted by gcc
as extension!). But in pure C, arrays must have constant size...

* Mixing is alright; mostly it will work. But...

— You should know what you are doing! (e.g. use exactly
the same (C++) compiler, or else care has to be taken!)
Qg

Y
UUUUUUU DD Chinellato - Review of C Exercises 4

A bit of terminology, from C to C++

* Function Interface (or ‘signature’)
— The set of arguments that a function accepts

—E.g. 1nt sum(int a,int b)
e “int a, int b” istheinterface of function ‘sum’

NG

Y
UUUUUUU DD Chinellato - Review of C Exercises

A bit of terminology, from C to C++

* Function Interface (or ‘signature’)
— The set of arguments that a function accepts
—E.g. 1nt sum(int a,int b)
e “int a, int b” istheinterface of function ‘sum’
* A (collection of) header file(s): library interface
— ...the headers publish the interfaces

NG

v

UUUUUUU DD Chinellato - Review of C Exercises

A bit of terminology, from C to C++

* Function Interface (or ‘signature’)
— The set of arguments that a function accepts
—E.g. 1nt sum(int a,int b)
e “int a, int b” istheinterface of function ‘sum’
* A (collection of) header file(s): library interface
— ...the headers publish the interfaces

* |Interfaces are very important !
— ...also in Object Oriented Programming in general!
— More later...

NG

v

UUUUUUU DD Chinellato - Review of C Exercises

Exercise Listing

Stuff we’ll discuss the solutions to

Forward-counting factorial
Fibonacci Numbers

Unit Conversion Library
Crash the stack

Returning Multiple Values
Numeric Integration
Endianness

O 00 N Uk WNRE

1D Cellular Automata
10. The Sieve of Erastothenes

|It0nxdfrteAACv9t5rMW7
SPax3K7xNRG9a?dI=0

Integration with Monte Carlo Method

DD Chinellato - Review of C Exercises

Rewrite both the iterative and recursive factorial functions using
forward counting (from 1 to num).

Rather simple to implement, both recursively and iteratively...

N
eV
UNICAMP DD Chinellato - Review of C Exercises 7

Rewrite both the iterative and recursive factorial functions using
forward counting (from 1 to num).

Rather simple to implement, both recursively and iteratively...

But: we asked you to implement the algorithm with forward-counting! This requires
that the recursive version gets a second parameter (a ‘multiplication counter’, if you

will), which the user will not care about. We should have:

factorial (n) -— factorial(n , counter)

...but if the user doesn’t care, do we want to publish the interface ‘n, counter’?
How do we solve this issue?

N
eV
UNICAMP DD Chinellato - Review of C Exercises 7

Rewrite both the iterative and recursive factorial functions using
forward counting (from 1 to num).

Rather simple to implement, both recursively and iteratively...

But: we asked you to implement the algorithm with forward-counting! This requires
that the recursive version gets a second parameter (a ‘multiplication counter’, if you

will), which the user will not care about. We should have:

factorial (n) -— factorial(n , counter)

...but if the user doesn’t care, do we want to publish the interface ‘n, counter’?
How do we solve this issue?

Let’s use the “Principle of least surprise”!

N
'&.}'
UNICAMP DD Chinellato - Review of C Exercises 7

#include <stdio.h>

int recursive forward factorial(int num, int index) ({
if (index==num) return num; Auxiliary function
return index * recursive_forward_factorial(num, index+1)j (never‘seen’ by end user!)

}

inline int recursive factorial(int num) { . .
return recursive forward factorial(num, 1); Function with

} expected interface

int iterative factorial(int num) {
int i, result=1;
for (i=1; i<=num; i++) result *= 1i;
return result;

}
int main (int argc, const char * argv[]) {
printf("Iterative 6! :%d\n", iterative factorial(6));
printf("Recursive 6! :%d\n", recursive factorial(6));
return 0;
}
N
“a¥

UNICAMP DD Chinellato - Review of C Exercises 8

Write a program containing two functions (iterative and recursive)
which calculate the n-th Fibonacci number, defined as:

F.,=F +F ,withF,=0andF, =1

n+2

Another relatively simple task, but one has to keep track of the last two results.

R
eV
UNICAMP DD Chinellato - Review of C Exercises 9

Write a program containing two functions (iterative and recursive)
which calculate the n-th Fibonacci number, defined as:

F,,=F . +F ,withF,=0andF, =1

n+

Another relatively simple task, but one has to keep track of the last two results.

However, the recursive implementation is not efficient! Why?

R
eV
UNICAMP DD Chinellato - Review of C Exercises 9

Write a program containing two functions (iterative and recursive)
which calculate the n-th Fibonacci number, defined as:

F.,=F. +tF ,withF,=0and F; =1

Another relatively simple task, but one has to keep track of the last two results.
However, the recursive implementation is not efficient! Why?

e Because each function call is transformed into two! This seems to indicate that
the algorithmic complexity will be 2" and will thus be very slow...

* Inreality, it is a bit better than that, but to put this in perspective, F,q would
require 49 sums if done iteratively, but ~10° if done recursively...

N
'&.}'
UNICAMP DD Chinellato - Review of C Exercises 9

Write a program containing two functions (iterative and recursive)
which calculate the n-th Fibonacci number, defined as:

F.,=F. +tF ,withF,=0and F; =1

Another relatively simple task, but one has to keep track of the last two results.
However, the recursive implementation is not efficient! Why?

e Because each function call is transformed into two! This seems to indicate that
the algorithmic complexity will be 2" and will thus be very slow...

* Inreality, it is a bit better than that, but to put this in perspective, F,q would
require 49 sums if done iteratively, but ~10° if done recursively...

* (can we be smarter than this?)

N
'&.}'
UNICAMP DD Chinellato - Review of C Exercises 9

#include <stdio.h>

#define FIBNUM 49 /* the highest Fn found on the Wikipedia page */

long recursive fibonacci(int num) {
if (num<=1l) return num:;
|return recursive_fibonacci(num-l)+recursive_fibonacci(num-2);|

}

long iterative fibonacci(int num) {
int 1i;
long f0, f1, tmp;
if (num<=1l) return num;

return £f1;

}

int main (int argc, const char * argv[]) {

Guilty as charged:
Double recursion!

This will be fast (<0.001s)

/

printf("The %d Fibonacci number is (iteratively) :%1d\n", FIBNUM, iterative fibonacci(FIBNUM));
printf("The %d Fibonacci number is (recursively) :%1d\n", FIBNUM, recursive fibonacci(FIBNUM));

return 0;

%,

A

\

This will be slow! (60s or so...)

a¥
UNICAMP DD Chinellato - Review of C Exercises

10

#include <stdio.h>

#define FIBNUM 49 /* the highest Fn found on the Wikipedia page */

long recursive fibonacci(int num) {

if (num<=1) return num; Gu”ty as Charged:
|return recursive_fibonacci(num-l)+recursive_fibonacci(num-2);| .
} Double recursion!
long iterative fibonacci(int num) {
int i;

long f0, f1, tmp;
if (num<=1l) return num;

f0 = 0;
f1 = 1;
for (i=2; i<=num; i++) {
tmp = £0;
f0 = £1;
f1 = f0+tmp;
This will be fast (<0.001s)
return £f1;
} /
int main (int argc, const char * argv[]) {

printf("The %d Fibonacci number is (iteratively) :%1d\n", FIBNUM, iterative fibonacci(FIBNUM));
printf("The %d Fibonacci number is (recursively) :%1d\n", FIBNUM, recursive fibonacci(FIBNUM));
return 0;

| N\

This will be slow! (60s or so...)

Alright.... But can we be smarter?

%,

) Tves we canl)

Y
UNICAMP DD Chinellato - Review of C Exercises 10

#include <stdio.h>

#define MAXFNS 100 Let’s recycle: No need to recompute if already done.

| long £ns[MAXFNS];

Needs storage! Here: global variables (nasty, but... hey, it works)
#define FIBNUM 49 /* the last Fn found on the Wikipedia page */

long recursive fibonacci(long num) {
if (num<=1) return num;

if (fns[num] == -1) {
fns[num] = recursive fibonacci(num-1)+recursive fibonacci(num-2);
return fns[num];
}
int main (int argc, const char * argv[]) {
int idx;
for(idx=0; idx<MAXFNS; idx++) fns[idx] = -1;
printf(sd $1d\n", FIBNUM, recursive fibonacci(FIBNUM));

return 0;

This is what is called ‘memoization’ (no, this is not a typo, | also cross-checked, no missing ‘r’ :-D)

What we’ve done is to replace expensive function calls by caching the result and

returning directly from that cache if asked again. Here, the ‘cache’ is a global
variable (not ideal...). This cache goes by many names (e.g. ‘lookup table’)

UNICAMP DD Chinellato - Review of C Exercises 11

#include <stdio.h>

#define MAXFNS 100 Let’s recycle: No need to recompute if already done.

| long £ns[MAXFNS];

Needs storage! Here: global variables (nasty, but... hey, it works)
#define FIBNUM 49 /* the last Fn found on the Wikipedia page */

long recursive fibonacci(long num) {

if (num<=1) return num; Only compute the first time!
if (fns[num] == -1) {€—
fns[num] = recursive fibonacci(num-1)+recursive fibonacci(num-2);
return fns[num];
}
int main (int argc, const char * argv[]) {
int idx;
for(idx=0; idx<MAXFNS; idx++) fns[idx] = -1;
printf(sd $1d\n", FIBNUM, recursive fibonacci(FIBNUM));

return 0;

This is what is called ‘memoization’ (no, this is not a typo, | also cross-checked, no missing ‘r’ :-D)

What we’ve done is to replace expensive function calls by caching the result and

returning directly from that cache if asked again. Here, the ‘cache’ is a global
variable (not ideal...). This cache goes by many names (e.g. ‘lookup table’)

UNICAMP DD Chinellato - Review of C Exercises 11

#include<stdio.h>

typedef struct fibpair {

long val, prevval;

} fibpair;

fibpair recfib(long num) {

}

float sum;
fibpair tmp = { 1, 0 };
if (num == 1) return tmp;
if (num == 0) {

tmp.val = 0;

return tmp;
}
tmp = recfib(num-1);
sum = tmp.val + tmp.prevval;
tmp.prevval = tmp.val;
tmp.val = sum;
return tmp;

long recursive fib(long num) {

int

v.v

UNICAMP

fibpair tmp = recfib(num);
return tmp.val;

main() {

int i;

printf(%21
return 0;

It doesn’t stop there: we can also store
the added information via a C struct to
hold the current and previous Fibonacci
number. The data structure is more
complex, but in this way no double
recursion is needed!

N.B. This code is slightly less
transparent... Another option would be
to store the ‘cache’ from the
memoization in a struct, too!

, 49, recursive fib(49));

DD Chinellato - Review of C Exercises

12

* For this exercise you will implement a few unit conversion libraries. You can find the conversion
factors and algorithms online.

e [length] Start with a library to convert centimeters to inches, meters to feet and vice versa, then
add miles to kilometers. Add as many as you want.

* [weight] Now create another library to convert weights, and implement the conversion between
kilograms and pounds. Add as many as you want.

* [temperature] Now create a library to convert between different temperature scales, Celsius to
Fahrenheit and vice versa, Celsius to Kelvin, Kelvin to Fahrenheit and so on.

* Create a test program to use these libraries and print various conversions. Check that the result
are correct. Now, unless you’ve done some design in advance, you will find yourself with a lot of
functions which do exactly the same thing (more or less).

RN
UNICAMP DD Chinellato - Review of C Exercises

* For this exercise you will implement a few unit conversion libraries. You can find the conversion
factors and algorithms online.

e [length] Start with a library to convert centimeters to inches, meters to feet and vice versa, then
add miles to kilometers. Add as many as you want.

* [weight] Now create another library to convert weights, and implement the conversion between
kilograms and pounds. Add as many as you want.

* [temperature] Now create a library to convert between different temperature scales, Celsius to
Fahrenheit and vice versa, Celsius to Kelvin, Kelvin to Fahrenheit and so on.

* Create a test program to use these libraries and print various conversions. Check that the result
are correct. Now, unless you’ve done some design in advance, you will find yourself with a lot of
functions which do exactly the same thing (more or less).

e [utility] Would it be possible to rewrite your conversion libraries to minimize code repetition,
maybe by implementing some utility functions in a special dedicated library? (Utility functions are
functions which solve a specific problem in a more general way).

* Rewrite your libraries to maximize code reuse. Is it simpler now to add new conversions? Discuss
your solution.

NG

Y
UNICAMP DD Chinellato - Review of C Exercises

Header

Length

#ifndef LENGTH_H
#define LENGTH_H

double cm_to in(double);
double in to cm(double);

#endif

Header

#include "length.h"

double cm_to_in(double cms)
return cms/2.54;

}

double in_to cm(double ins)
return ins*2.54;

}

Weight

#ifndef WEIGHT H
#define WEIGHT H

double kg_to_lb(double);
double 1lb_to_kg(double);

#endif

Header

#include "weight.h"

double kg_to_lb(double kgs)
return kgs/0.45359237;
}

double 1lb to kg(double 1bs)
return lbs*0.45359237;

}

#ifndef TEMPERATURE H
#define TEMPERATURE H

double C_to_ F(double);
double F_to C(double);

7Y Temperature

\//

\

)
1

UNICAMP

%,

#include "temperature.h"

double C_to F(double cdeg)

return cdeg*9./5.+32.;

}

double F_to_C(double fdegq)

#include <stdio.h>
#include "weight.h"
#include "temperature.h"
#include "length.h"

int main (int argc, const
printf ("1 cm in inches:
printf ("1 inch in cms:
printf ("1 pound in kgs:
printf ("1 kg in pounds:
printf("60F in Celsius:
printf("60Celsius in F:

return 0;

char * argv[]) {

.3f\n", cm_to_in(1
.3f\n", in_to_cm(1
.3f\n", 1b_to kg(1l
.3f\n", kg_to 1lb(1
.3f\n", C_to F(60
.3f\n", F_to _C(60

How can we make life easier?
Note that the conversions are
always of the type:

#endif return (fdeg-32)*5./9.; y= Axx+B
} ...but then why not put this
into a helper/utility library?
DD Chinellato - Review of C Exercises 14

#ifndef WEIGHT H
#define WEIGHT H

#include "weight.h"

Utility

double reverse conversion(double, double, double);

#endif

}

- double kg to 1lb(double kgs) {
'Eb #include "utility.h" return reverse conversion(kgs, 0.45359237, 0.);
- } .
O double kg to lb(double);
e double 1b_to kg(double); double 1b_to_kg(double lbs) {
- = return direct conversion(lbs, 0.45359237, 0.); ThlS maXimizeS COde r-euse|
#endif } &~)
#ifndef WEIGHT H #include "weight.h" It’s good for any linear
4= | #define WEIGHT_H
c double kg to_lb(double kgs) { i it i
b | #include "utility.h" return reverse conversion(kgs, 0.45359237, 0.) &= conversion, and it is enough to
— } 2 g
%" double kg _to lb(double); . . oo | know the two coefficients
double 1lb to kg(double); double 1b_to_kg(double lbs) . .
—to_kg() return direct_ conversion(lbs, 0.45359237, 0.); <= InVO|Ved tO Implement
#endif ’ anything new.
QU | #ifndef TEMPERATURE H #include "temperature.h"
S #define TEMPERATURE H h d Id (.y h d
o double C_to F(double cdeg) { pell The good old ‘main’ we showe
© #include "utility.h" return direct conversion(cdeg, 9./5., 32.); . . . 0
5 } in the previous slide wouldn’t
O | double C_to_F(double); k th dﬂ; f I
double Fto C(double): | | double F_to_C(double fdeg) { pr now the difference, of course!
E - - return reverse conversion(fdeg, 9./5., 32.);
|G—J #endif }
#include "utility.h"
#ifndef UTILITY H
#define UTILITY_H double direct conversion(double value, double m factor, double a factor) ({
return value*m factor + a_factor;
double direct_conversion(double, double, double); }

double reverse_conversion(double value, double m_factor, double a_factor) {
return (value-a factor)/m factor;

UNICAMP

DD Chinellato - Review of C Exercises

15

* Write a program to crash the stack.
* As abonus point, add a counter to check the stack depth.

That’s an easy one! Breaking things is easy, indeed ...

What needs to be done here is to issue function calls within function calls until the
stack is exhausted and we get a crash.

e Let’s count how long (how many function calls!) it takes, while we’re at it!

N
eV
UNICAMP DD Chinellato - Review of C Exercises 16

#include<stdio.h>

volid crash stack(int index) {
printf("'%d ... ", index);
crash stack(index+1);

}

int main() {
crash stack(0);
return 0;;

NG

a¥

For me, this crashes after
61818 function calls, with a
message of:

Segmentation fault
(core dumped)

UNICAMP DD Chinellato - Review of C Exercises

17

[multiple value return] Write a function that accepts two positive numbers, and

returns their sum, their difference and their mean value. [error handling] Also make it
so that the function returns something indicating an error if one of the arguments is

negative.
* Write a program to use this function and print its results.

UNICAMP DD Chinellato - Review of C Exercises 18

[multiple value return] Write a function that accepts two positive numbers, and

returns their sum, their difference and their mean value. [error handling] Also make it
so that the function returns something indicating an error if one of the arguments is

negative.
* Write a program to use this function and print its results.

We can solve this by using two different approaches:

* Write a function with a long signature containing three dummy arguments
passed by pointer, so that the function can store the values there
* Write a function that returns an array containing the results

=¥
18

UNICAMP DD Chinellato - Review of C Exercises

* [multiple value return] Write a function that accepts two positive numbers, and

returns their sum, their difference and their mean value. [error handling] Also make it
so that the function returns something indicating an error if one of the arguments is
negative.

* Write a program to use this function and print its results.

We can solve this by using two different approaches:

* Write a function with a long signature containing three dummy arguments
passed by pointer, so that the function can store the values there
* Write a function that returns an array containing the results

Most commonly, the first approach is used (also makes it easier to not confuse the
array positions!). But the error handling is important! Better to return error values
rather than print out an error message. Actually, error handling is much easier in
the first approach... so let’s focus on that!

UNICAMP DD Chinellato - Review of C Exercises 18

#include <stdio.h>

int calc_data(int opl, int op2, [int* sum, int* diff, float* mean) {

if((opl<0) || (op2<0)) { return -1; }
*sum = opl+op2;
*diff opl-op2;

*mean = *sum / 2.0;
return 0;

}

int main (int argc, const char * argv[]) {
int opl 40;
int op2 2;

int sum, diff;
float mean;

if(calc_data(opl, op2, &sum, &diff, &mean) == -1)
printf(
} else {
printf(\n");
printf($5d $5d $5d\n", opl, op2, sum);
printf($5d $5d $5d\n", opl, op2, diff);
printf($5d $5d $8.2f\n", opl, op2, mean);
}

return 0;

The printf formatting works like this:
S[-cln[.m]X
The - specifies that the field is left justified

The [c] is a padding character: %05d, 42 = 00042
The n is the field length in characters

Dummy arguments (to be used as output)

Handling the error condition

(negative input!)

\n");

The [.m] only for float/double fields, indicates the number of digits after the

\

4

\\"’, X is the format specifier [d = integers, f = floats/doubles, ...]

[y 2

!a.§"

UNICAMP DD Chinellato - Review of C Exercises 19

Write a program to calculate a numeric integral using the the composite trapezoidal rule
(http://en.wikipedia.org/wiki/Trapezoidal rule).

[Integrator] The program should define a function that accepts an array containing the
values of the function to integrate and any other relevant parameter: float integrate(float
values(], ...)

=< [main program] The main part of the program should fill the values array, with values
calculated from the function to be integrated. Ideally this function should also be stored
in a function (okay, the mathematical function to be integrated should be stored in a C
function).

* This logical separation allows you to write the integration code and reuse it as needed,
while making it also possible to easily implement other integration algorithms and
reuse the same mathematical functions. You should be careful when defining the
integration interval, the integration steps and all the relevant parameters. You might
also want to define some utility function to map the integer indexes of the values array
onto the integration step. The math.h header contains a number of mathematical
functions which might be useful.

NG

Y
UNICAMP DD Chinellato - Review of C Exercises

The Trapezoidal Rule:
Take f(x), an interval [a, b] and divide it in
N subintervals of length = (b-a)/N. Then:

X; = a+ix (step length)

Xy=Db

A= Z (;) + f (ziy1)) X (steplength)

A,

4.\’
UNICAMP DD Chinellato - Review of C Exercises

The Trapezoidal Rule:
Take f(x), an interval [a, b] and divide it in
N subintervals of length = (b-a)/N. Then:

X; = a+ix (step length)

Xy=Db

Think before coding! It pays off to

implement a faithful version of the . Z
algorithm and not try to optimize too

much beforehand.

(;) + f (ziy1)) X (steplength)

A
Y
UNICAMP DD Chinellato - Review of C Exercises

The Trapezoidal Rule:
Take f(x), an interval [a, b] and divide it in
N subintervals of length = (b-a)/N. Then:

X; =a +ix (step length)

Xy=Db

Think before coding! It pays off to

implement a faithful version of the . Z
algorithm and not try to optimize too

much beforehand.

(;) + f (ziy1)) X (steplength)

In this case, without loss of generality,
note that you can rewrite the sum a bit!
Wz,

Y
UNICAMP DD Chinellato - Review of C Exercises

%,

_-

A

aY

UNICAMP

#include <stdio.h>
#include <math.h>

#define STEPS 1000

double function(double x) {
return exp(x)*pow(x,2);

} —_

void calculate function(double a, double b, int steps, double* values) {
int idx;
double step len = (b-a)/steps;
for(idx=0; idx<=steps; idx++) {
values[idx] = function(at+idx*step len);
}

}

—

double integrate function(double a, double b, int steps, double* values) ({
int idx;

double step len =

double result = 0;

=

(b-a)/steps;
for(idx=1; idx<steps; idx++)
result += values[idx];

result = (result + (values[0O]+values[steps])/2.0) * step len;
return result;

Compute the values
= of the (mathematical!)
function

Compute the integral
— using the trapezoidal
Rule (modular!)

} —

int main (int argc, const char * argv[]) {
double a, b;
double result;
double values[STEPS+1];

1;
2;

a
b
calculate function(a, b, STEPS, values);

result = integrate function(a, b, STEPS, values);

printf("Integration of e"x*x"2 between %7.2f and %7.2f yields %7.2f\n", a, b, result);

return 0;

}

ulenl

DD Chinellato - Review of C Exercises

22

Figure out the endianness of the computer you are using using a C program

You can choose a short for simplicity! It only contains two bytes so that:

Ox1l in little endian would look like 01 00
Ox1 1n big endian would look like 00 01

If you read the material suggested for the exercise, you should also know a little bit
more about how C represents integer numbers internally.

R
eV
UNICAMP DD Chinellato - Review of C Exercises 23

* Figure out the endianness of the computer you are using using a C program

You can choose a short for simplicity! It only contains two bytes so that:

Ox1l in little endian would look like 01 00
Ox1 1n big endian would look like 00 01

If you read the material suggested for the exercise, you should also know a little bit
more about how C represents integer numbers internally.

pu—

#include<stdio.h>

int main() {

short a = 1;
— char* x = (char*) &a;
if (x[0] == 1) { printf("Little endian\n"); }

else { printf("Big endian\n"); }
return 0;

-
eV
UNICAMP DD Chinellato - Review of C Exercises 23

Write a program to implement the 1D Monte
Carlo integration. The Monte Carlo integration is
a numerical integration algorithm that uses
random numbers. The algorithm works as
follows:

Inscribe your function in a rectangle whose left
and right sides are the same as the integration
limits, and whose lower side lays on the x axis
Generate a random point within this rectangular
area

If the point is under the curve, increment a
counter

Repeat 2. and 3. N times. With N large enough,
the integral of the curve is

(counter/N)*rectangle_area

See: http://en.wikipedia.org/wiki/Monte Carlo integration
and man rand for information about random
number generation in C.

A
Y
UNICAMP DD Chinellato - Review of C Exercises

Write a program to implement the 1D Monte
Carlo integration. The Monte Carlo integration is
a numerical integration algorithm that uses
random numbers. The algorithm works as
follows:

Inscribe your function in a rectangle whose left
and right sides are the same as the integration
limits, and whose lower side lays on the x axis
Generate a random point within this rectangular
area

If the point is under the curve, increment a
counter

Repeat 2. and 3. N times. With N large enough,
the integral of the curve is

(counter/N)*rectangle_area

See: http://en.wikipedia.org/wiki/Monte Carlo integration
and man rand for information about random
number generation in C.

A
Y
UNICAMP DD Chinellato - Review of C Exercises

I\Ibelow

Area = (Nbelow/Nall)x Arectangle

A
Y
UNICAMP DD Chinellato - Review of C Exercises

Write a program to implement the 1D Monte
Carlo integration. The Monte Carlo integration is
a numerical integration algorithm that uses
random numbers. The algorithm works as
follows:

Inscribe your function in a rectangle whose left
and right sides are the same as the integration
limits, and whose lower side lays on the x axis
Generate a random point within this rectangular
area

If the point is under the curve, increment a
counter

Repeat 2. and 3. N times. With N large enough,
the integral of the curve is

(counter/N)*rectangle_area

See: http://en.wikipedia.org/wiki/Monte Carlo integration
and man rand for information about random
number generation in C.

%,

A

(]

8
K

UNICAMP

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>

#define STEPS 1000
#define SAMPLES 10000000

double function(double x) { return exp(x)*pow(x,2);

==

void min max(double a, double b, int steps, double* min, double* max) {

int idx;
double wvalue;

double step len = (b-a)/steps;

*min
*max

function(a
function(a

=)i
=)i
for(idx=0; idx<=steps;

if(value > *max) *max
if(value < *min) *min

First step: determine maximum and minimum of function within interval

(so as to determine the rectangle to inscribe your function in!)

idx++) {
value = function(at+idx*step len);

value;
value;

DD Chinellato - Review of C Exercises

25

double mc_integrate function(double a, double b, double min, double max, int samples) {

int idx, counter = 0;
double xr, yr;

double lenH
double lenVv

b-a;
(max - min);

srand(time(0)); Function to “shoot randomly”
for(idx=0; idx<samples; idx++) { within that triangle and count
Xr = a + lenH * (rand()/(double)RAND MAX); . .
yr = min + lenV * (rand()/(double)RAND MAX); (fraction of) points below curve

if(function(xr) > yr) counter++;

}

return lenH*lenV*counter/samples;

}
int main (int argc, const char * argv[]) {
double a, b, min, max, result;
a=1;
b = 2;
min max(a, b, STEPS, &min, &max); :
if(min > 0) min = 0; Main Progran1
if(max < 0) return 1;
result = mc_integrate function(a, b, min, max, SAMPLES);
printf("Integration of e"x*x"2 between %7.2f and %7.2f yields %7.2f\n", a, b, result);
return 0;
}
N
eV

UNICAMP DD Chinellato - Review of C Exercises 26

* Let’s think of a playground of N spaces.

playground
A

.

A

R
K

UNICAMP DD Chinellato - Review of C Exercises 27

* Let’s think of a playground of N spaces.
* The playground is circular, i.e. the leftmost and rightmost elements are adjacent

playground
A

RN
oV
UNICAMP DD Chinellato - Review of C Exercises 27

* Let’s think of a playground of N spaces.
* The playground is circular, i.e. the leftmost and rightmost elements are adjacent
e Each space in the playground is called a cell

playground
A

RN
oV
UNICAMP DD Chinellato - Review of C Exercises 27

* Let’s think of a playground of N spaces.

* The playground is circular, i.e. the leftmost and rightmost elements are adjacent
e Each space in the playground is called a cell

e Each cell is either dead (state ‘0’) or alive (state ‘1’)

playground

1 01 0 01 1 1 O

RN
oV
UNICAMP DD Chinellato - Review of C Exercises 27

* Let’s think of a playground of N spaces.

* The playground is circular, i.e. the leftmost and rightmost elements are adjacent

e Each space in the playground is called a cell

e Each cell is either dead (state ‘0’) or alive (state ‘1’)

 Time flows in discrete steps; at each given step the cell state can be updated,
either swapping state or staying the same, depending on its neighbor cells

(‘neighborhood’)

playground
A

1 01 0 01 1 1 O

RN
eV
UNICAMP DD Chinellato - Review of C Exercises

27

* Let’s think of a playground of N spaces.

* The playground is circular, i.e. the leftmost and rightmost elements are adjacent

e Each space in the playground is called a cell

e Each cell is either dead (state ‘0’) or alive (state ‘1’)

 Time flows in discrete steps; at each given step the cell state can be updated,
either swapping state or staying the same, depending on its neighbor cells

(‘neighborhood’)

* There are only eight possible configurations for
a neighborhood, and each with a possible | 1777 1] 1 1 oll1o1l 100
outcome of 0 or 1 in the next state. Thus, there
are only 256 possible evolution rules! ——>

playground
A
1

1
Thisisrule 52 (=22+2%+2°)

1 01 0 01 1 1 O

RN
eV
UNICAMP DD Chinellato - Review of C Exercises

27

* Let’s think of a playground of N spaces.

* The playground is circular, i.e. the leftmost and rightmost elements are adjacent

e Each space in the playground is called a cell

e Each cell is either dead (state ‘0’) or alive (state ‘1’)

 Time flows in discrete steps; at each given step the cell state can be updated,
either swapping state or staying the same, depending on its neighbor cells

(‘neighborhood’)

* There are only eight possible configurations for
a neighborhood, and each with a possible | 1777 1] 1 1 oll1o1l 100
outcome of 0 or 1 in the next state. Thus, there
are only 256 possible evolution rules! ——>

playground
A
1

1
Thisisrule 52 (=22+2%+2°)

1 01 0 01 1 1 O

Q| Mo orrche Wil be dctssed o deall o 7001 the Cos rroduckont

a¥
UNICAMP DD Chinellato - Review of C Exercises

27

#include <stdio.h>
#include <stdlib.h>

#define PLAYGROUND_SIZE 80
#define GENERATIONS 20
#define RULE 30

void init rules(int rule, int* evolutionTable) {
int idx;
for(idx=0; idx<8; idx++) {
evolutionTable[idx] = (rule >> idx) & 1;
}
}

void init playground(int size, int* playground) {
int idx;
for (idx=0;idx<size; idx++) { playground[idx] = 0
/* impulse */
playground[size/2] = 1;
}

void print playground(int size, int* playground) {
int idx;
for(idx=0; idx<size; idx++){
if(playground[idx]==1) { printf("o"); }
else { printf(" "); }

}
printf("\n");
}

Configure evolution

N

rules

Initalize ‘all dead’ playground

Draw current playground

DD Chinellato - Review of C Exercises

void evolve automaton(int size, int generations, int* evolutionTable, int* playground) {

int* tmp;

int idx, cell idx;

int c0, cl;

int* tmp playground = (int*)malloc(PLAYGROUND SIZE*sizeof(int));

print playground(size, playground);

Config. Neighborhood

for(idx=0; idx<generations; idx++) {

for(cell idx=0; cell idx<size; cell idx++) {
c0 = cell idx==02?size-l:cell idx-1;
cl = playground[c0] * 4 + playground[cell idx] * 2 + playground[(cell idx+1l)%size];
tmp playground[cell idx] = evolutionTable[cl];

tmp = tmp playground;
tmp playground = playground;

playground = tmp; Here’s where it happens:

Evolution call

print playground(size, playground);

}
free(tmp playground);

int main (int argc, const char* argv[]) {

int evolutionTable[8];
int* playground = (int *)malloc(PLAYGROUND SIZE*sizeof(int));

init rules(RULE, evolutionTable);

init playground(PLAYGROUND SIZE, playground);
evolve automaton(PLAYGROUND SIZE, GENERATIONS, evolutionTable, playground);
free(playground);
return 0;

Main program: Short,

uses functions

DD Chinellato - Review of C Exercises 29

(o]
000
oo O
OO0 0000
oo O o]

This is an example time
OO0 0000 000 . .
© o o o evolution using rule 30...

OO0 0000 000000
oo O 000 (o]
OO0 0000 OO O [o]e]e]
oo O O 0000 OO O

v o 000 oo 000 o 111]{110f(101|[100

OO0 0000 OO 000 000 OO 00O
oo O O 000 O 000 O o
OO0 0000 OO0 O O 00000 0000000

oo O 000 0000 O [o]e]e] o O 1 1 O 1 0 O O 1 O O O

me

OO0 0000 OO 000 o0 OO0 O [o]e]e]
.-D oo O O 00O O OO0 000 0000 OO O
OO0 0000 OO O 000000 O (o] 000 0000
oo O 000 0000 0000 000 OO (o] (o]
OO0 0000 OO 000 o] oo [o] O O 000 00O
oo O O 00O O 000 OO O O000 OO O O o O
OO0 0000 OO0 O ©000 O O 0000 O O OO0 000000
oo O 000 0000 OO0 00000 O 00000 O O (o]
OO0 0000 OO 000 o OO0 O O 00 O 00000 [o]e]e]
v oo O O 00O O OO0 O 0000 OO O OO oo o 00O O
OO0 0000 O©OO0O O ©00O0O O O O 000 O0000 O 00O O 00 O 0O0O0OOo
oo O 000 0000 0000 OO0 OO 000 O O 0000 O O o
OO0 0000 OO 000 o OO O O 00O O 00 0000 000 0O 00O
oo O O OO0 O OO0 O O 00000 O 000000 O o OO o O o
OO0 0000 OO O 000 O O 0000 0000 0000 OO0 O O 000000000
oo O 000 0000 0000 O (o] oo (o] oo o O oo o
OO0 0000 OO 000 o OO OO0 000 OO0 O 000 OO O 00000 O OO (ee]e)
oo O O 00O O 00O 0O O ooOo O o O o O 0000 o O O oo O
“'i OO0 0000 OO0 O O000 O O 0000 0000 00000 OO 00000 (o] OO0 O OO0 0O O000O
§ é. oo O 000 0000 0000 O (o] (o] o O O 000 OO O O 00O O o

eV
UNICAMP DD Chinellato - Review of C Exercises 30

v

UNICAMP

.|".I:".I'|-':".I:!r|‘.l g g g g

rule 62

et e o

,
rule 182

i
Hilaatbt,

5 e 7 o e

i
.=m==:u=m=.
«ERIIIRRNIIIIINNNNIIINNNINGGL.

DD Chinellato - Review of C Exercises

But there are many more!
And they have been
extensively studied...

http://mathworld.wolfram.com/
ElementaryCellularAutomaton.html

The Sieve of Eratosthenes is a simple
iterative algorithm to generate a table of

prime numbers:

Prime numbers

12 13 14 15 16 Take the list of the first 100 numbers, and
2 23 24 25 26 start by removing the multiples of 2.

Then proceed to remove the multiples of 3.
Then the multiples of 5 (4 has been removed
when we removed the multiples of 2) and so
on...

At the end of this process, what’s left are
only the prime numbers between 1 and 100.

32 33 34 35 36
42 43 44 45 46
52 53 54 55 56
62 63 64 65 66
72 73 74 75 76

82 83 84 85 86
92 93 94 95 9 Write a program to implement this algorithm

and use it to calculate the prime factors of an
integer number.

102 103 104 105 106
112 113 114 115 116
See:

(animation from wikipedia) http://en.wikipedia.org/wiki/Prime_factor
http://en.wikipedia.org/wiki/Sieve of Eratosthenes

RN
UNICAMP DD Chinellato - Review of C Exercises

* There is not much complication in generating the first 100 numbers... But
in this solution, let’s zero-suppress this array to make things easier:

primes[0] = (number of primes)
primes|[1] = 1-th prime number

* Then let’s employ these first prime numbers (<100) to determine the
prime factors of a large integer number, i.e.

What are the prime factors of 53139008 ?

N.B.: Since we will just try primes smaller than 100, we won’t manage to
decompose this number if it has prime factors >100... (but okay, this one
will work!)

L E————————————————————
UNICAMP DD Chinellato - Review of C Exercises

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define STEVE SIZE 100 (Let’s pretend we don’t know this ...)
#define NUMBER 53139008|/* 1372 * 1773 * 276 */
/* #define NUMBER 101 */

int* zero suppress(int* data, int size)/{
int* outcome = (int*)malloc(size);
//brute force
outcome[0]=1;
for(int i=0;i<size;i++){

if(data[i] != 0){
outcome[outcome[0]++]=data[i];
}

}

return outcome;

} Just a simple function
which accepts an array and
suppresses zeros. (and
stores size in the first
. value!)

UNICAMP DD Chinellato - Review of C Exercises

34

/* Brute force prime factors calculation */

int divideAll(int value, int factor) {
printf("Checking to see if I can still divide with %i (at %i)\n",value,factor);

| if(valuetfactor==0) return l+divideAll(value/factor, factor); |
return 0;

}

int check factorization(int value, int* primes, int* factors) {
int cvalue, idx;
for(idx=1; idx<primes[0]; idx++) {

Here, we check
(recursively!) how
many times we can

cvalue *= (int)pow(primes[idx], factors[idx]);
} divide a certain
if (cvalue==value) return 1;
else return 0; value by a factor
}
int* prime factors(int value, int* primes) ({ .r -
int table size = primes[0]; Check if it worked!
int* factors = (int*)malloc(table size*sizeof (it
int idx; . .
for(idx=1; idx<table size; idx++) { Function which
) factors[idx] = divideAll(value, primes[idx]); cakxﬂatestheeprhne
if (check factorization(value, primes, factors)) factors[0] = 0; factors(uwdexnﬁga35|n
else factors[0] = 1; the sieve)

return factors;

-~

%,

A

(]

8
K

UNICAMP DD Chinellato - Review of C Exercises 35

/* The Sieve of Eratosthenes */

int*

%,

A

(]

8
K

UNICAMP

Prime numbers

5
11 13 17 19
23 29 31 37
41 43

47 53

59 61 67 71

produce sieve(int size) {
int* data = (int*)malloc(size*sizeof(int));
int idx, done, base;

73 79 83 89

97 101 103 107
109 113

idx++) data[idx] = idx;

for(idx=0; idx<size;

done = 0;
idx 2;
data[l]
do {
if(data[idx] != 0) {
| for (base=2*data[idx]; base < size; base += data[idx]) data[base]
}
if(++idx>size) { done=1; }
} while(!done);

/* skip 0 and 1 */
/* remove 1 from the sieve */

0;

return zero suppress(data, size);
This function will take all

numbers from 1..99 and set

those that are multiples of
others to zero (these are not
primes!)

DD Chinellato - Review of C Exercises 36

int main (int argc, const char * argv[]) {
int* primeNumbers;
int* factors;

(1) Calculate first numbers

", primeNumbers[idx]);

int idx;

printf("Producing Sieve...\n");

| primeNumbers = produce sieve(SIEVE SIZE);
for(idx=1; idx<primeNumbers[0]; idx++) printf("%d
printf("\n");

| printf(Producing factors...\n');

factors = prime factors(NUMBER, primeNumbers);

printf ("Produced factors!\n");
if(!factors[0]) {

printf ("It wasn't possible

printf("a table containing

printf("This is the best I could do:\n");

printf("%d ~= ", NUMBER);
} else {
printf("%d = ", NUMBER);

}

for(idx=1; idx<primeNumbers[0];
if(factors[idx]!=0) {

idx++) {

(2) Decompose a number

to fully calculate the prime factors of %d with ", NUMBER);
2d primes.\n", primeNumbers[0]);

| printf(sd sd =, primeNumbers[idx],

factors[i1idx]); |

b
printf("\n");

free(factors);
return 0;

',Aw-'

A

(]

(3) Print numbers

8
K

UNICAMP DD Chinellato - Review of C Exercises

37

Producing Sieve...
2357111317192329313741434753596167717379838997
Producing factors...

Checking to see if | can still divide with 53139008 (at 2)
Checking to see if | can still divide with 26569504 (at 2)
Checking to see if | can still divide with 13284752 (at 2)
Checking to see if | can still divide with 6642376 (at 2)
Checking to see if | can still divide with 3321188 (at 2)
Checking to see if | can still divide with 1660594 (at 2)
Checking to see if | can still divide with 830297 (at 2)
Checking to see if | can still divide with 53139008 (at 3)
Checking to see if | can still divide with 53139008 (at 5)
Checking to see if | can still divide with 53139008 (at 7)
Checking to see if | can still divide with 53139008 (at 11)
Checking to see if | can still divide with 53139008 (at 13)
Checking to see if | can still divide with 4087616 (at 13)
Checking to see if | can still divide with 314432 (at 13)
Checking to see if | can still divide with 53139008 (at 17)
Checking to see if | can still divide with 3125824 (at 17)
Checking to see if | can still divide with 183872 (at 17)
Checking to see if | can still divide with 10816 (at 17)
Checking to see if | can still divide with 53139008 (at 19)

Checking to see if | can still divide with 53139008 (at 23)
Checking to see if | can still divide with 53139008 (at 29)
Checking to see if | can still divide with 53139008 (at 31)
Checking to see if | can still divide with 53139008 (at 37)
Checking to see if | can still divide with 53139008 (at 41)
Checking to see if | can still divide with 53139008 (at 43)
Checking to see if | can still divide with 53139008 (at 47)
Checking to see if | can still divide with 53139008 (at 53)
Checking to see if | can still divide with 53139008 (at 59)
Checking to see if | can still divide with 53139008 (at 61)
Checking to see if | can still divide with 53139008 (at 67)
Checking to see if | can still divide with 53139008 (at 71)
Checking to see if | can still divide with 53139008 (at 73)
Checking to see if | can still divide with 53139008 (at 79)
Checking to see if | can still divide with 53139008 (at 83)
Checking to see if | can still divide with 53139008 (at 89)
Checking to see if | can still divide with 53139008 (at 97)

Produced factors!
53139008 = 276 1372 1773

UNICAMP DD Chinellato - Review of C Exercises

38

And that’s all, folks

* In the end, | received only a couple of solutions...

— But please take a look! Hopefully (some of it) is useful....

 Thanks for the effort!

— For some, this was too easy, ... (“another factorial function...”)
— ...for some, maybe too difficult...
— ...but that’s fine and expected, as long as we learn something!

* But, if you found it too difficult,
— Please take another look!
— Yes, it takes time, but there is no other way
— If you have questions, now is the right time!

. |
§"’A, Thank youl!

UNICAMP DD Chinellato - Review of C Exercises

39

