Data Networks

Introduction to Networking

Dan Octavian Savu & Silvia Fressard-Batraneanu

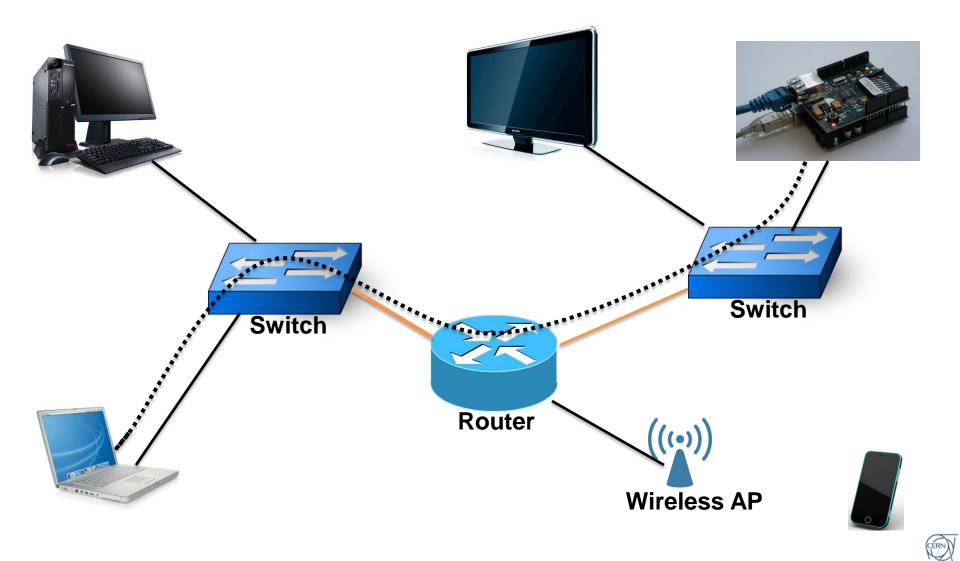
CERN

ISOTDAQ 2015, Rio de Janeiro

Outline

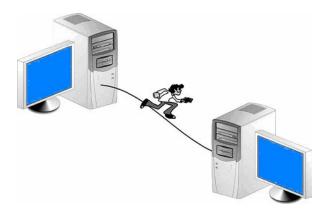
Introduction

- Networking basics
- OSI reference model
- Technologies and protocols
 - Ethernet
 - IP (Internet Protocol)
 - TCP vs. UDP
 - Routing
- Network monitoring
- Software defined networking



What is a network ?

- A *network* is simply two or more computers connected together so they can exchange information. At the same time it can be a complex interconnected system of objects and people (Internet)
- End-host devices are hosts attached to a network
- A source host is the place where the data originally comes from
- A *destination host* is the place where the data is being sent to
- Networking devices are waypoints along paths for data to travel along
- Links are direct data paths between adjacent devices
- A **route** is the path between any two network points

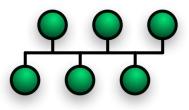

What is a network ?

Introduction to Networking

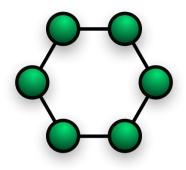
Why do we need a network ?

- Sneaker Net
 - Inefficient data communication;
 - Many copies of the same file;
 - Reliability, scalability, flexibility... issues.

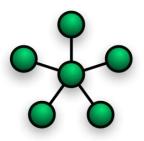
- (High speed) networks connecting all hosts help address slow transmission of information
- Interconnected datacenter servers help minimize redundant copy of files
- File sharing, resource sharing, communication & collaboration, group organization, remote access, data backups etc

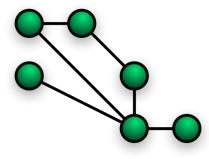

Network types

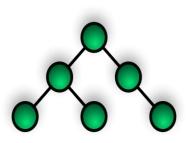
- Networks have different varieties to suit different purposes and needs
- LAN (small size, high speed, physical proximity)
- WAN (long distance, lower data transfer rates)
- MAN (metropolitan area network)
- **PAN** (immediate space around a person)
- **SAN** (connecting storage farms, high speed)
- VPN (private network extension across a shared or a public network)

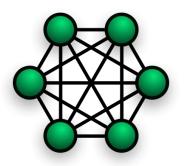


Network structure


- The structure of a network is known as the *topology*
 - Physical = The way the network is cabled
 - **Logical** = The way devices use the network to communicate

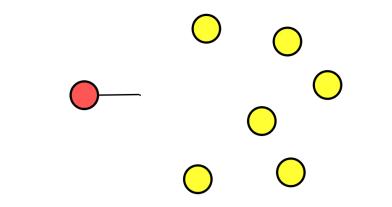

Bus Topology

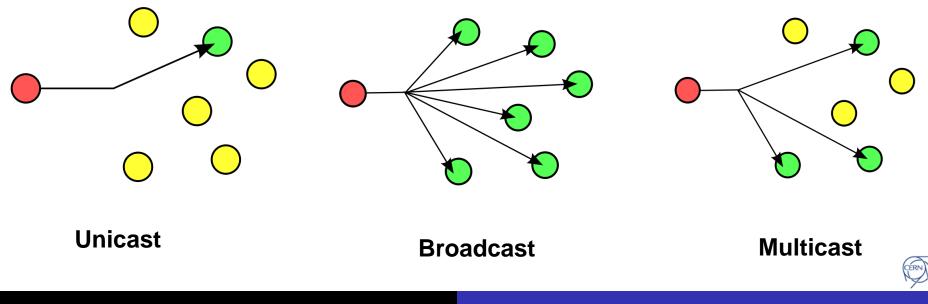

Ring Topology


Star Topology

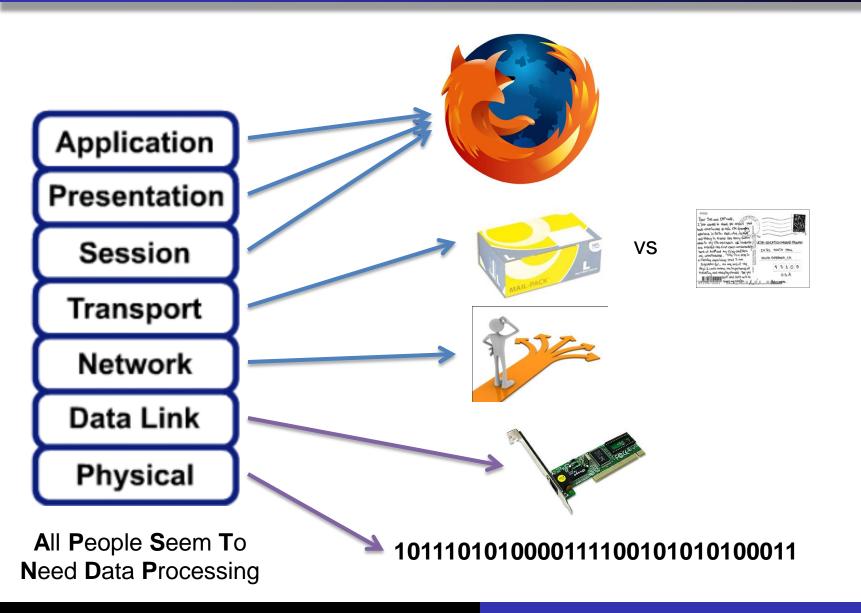
Partial Mesh Topology

Hierarchical Topology


Fully Mesh Topology



Introduction to Networking


Network communication

- One-to-one
- One-to-all
- One-to-many

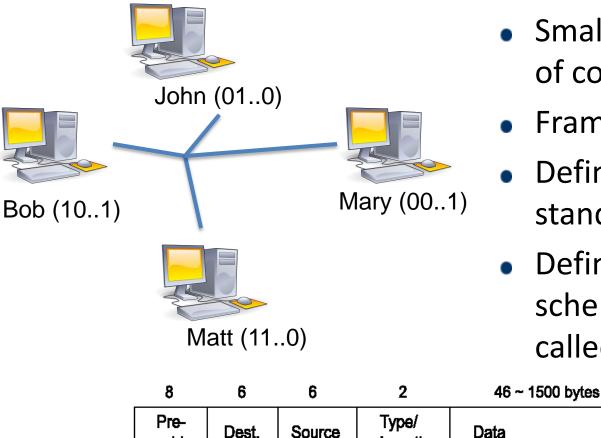
OSI Model. Divide et impera.

OSI Model. Divide et impera.

All People Seem To Need Data Processing

Why layers in OSI ?

- Simplifies understanding of networking
- Breaks networking tasks into smaller, manageable, chunks
- Allows for platform independence
- Provides a standard for networking manufactures
- Easier to determine the correct networking protocol required to connect
- Problem investigation is easier and debugging time is shortened



Outline

- Introduction
 - Networking basics
 - OSI reference model
- Technologies and protocols
 - Ethernet
 - IP (Internet Protocol)
 - TCP vs. UDP
 - Routing
- Network monitoring
- Software defined networking

Ethernet

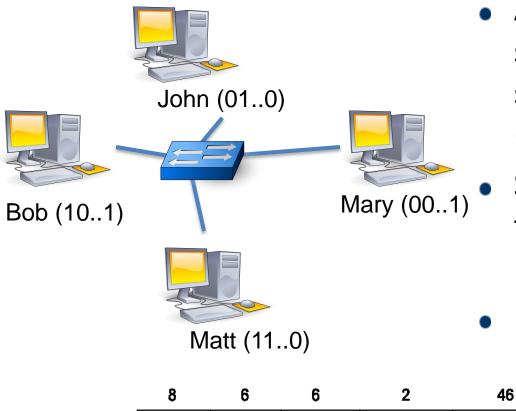
amble

Small to medium size group of computers

- Frame based technology
- Defines wiring and signaling standards (Layer 1)
- Defines a flat addressing scheme with local visibility, called MAC (Layer 2)

4

Frame


check

Basic Ethernet frame

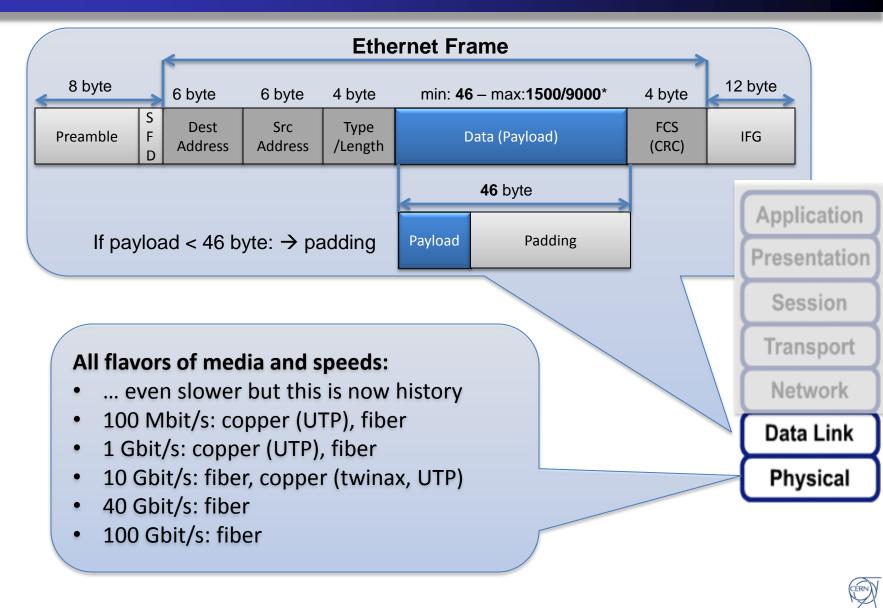
Length

Ethernet (switch)

- Analyses incoming frames and switches them to correct
 segment using MAC addresses
 (a process called switching)
- Simultaneous data transmissions without medium sharing
- Layer 2 device

8	6	6	2	46 ~ 1500 bytes	4
Pre- amble	Dest.	Source	Type/ Length	Data	Frame check

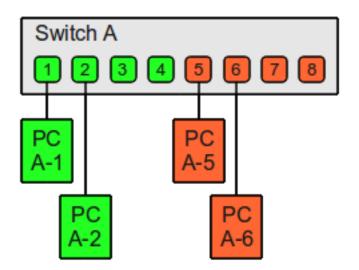
Basic Ethernet frame



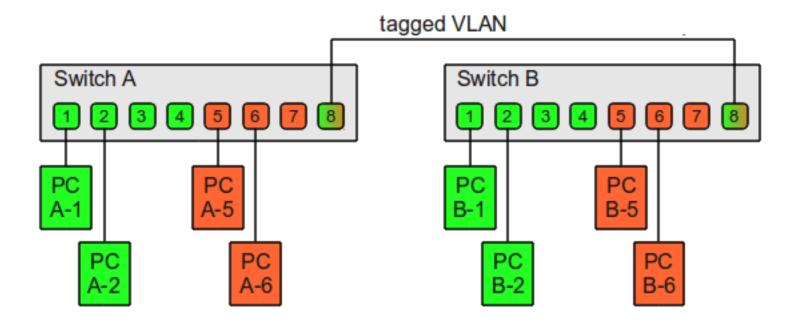
Ethernet (reliable since 1973)

- Created at Xerox in 1973, released as an open standard in the early 80s
- Later modified to comply with the OSI model, ratified as IEEE 802.3 in 1985
- Ethernet has evolved significantly since then:
 - Proved flexible as a technology, able to upgrade to new media and faster data transmission speeds.
 - 10Gig Ethernet ratified as IEEE 802.3ae
 - Optical fiber has joined copper as media of choice for the IEEE 802.3 family
- Flexibility came through the simplicity of Ethernet's structure
- Ease of installation and maintenance

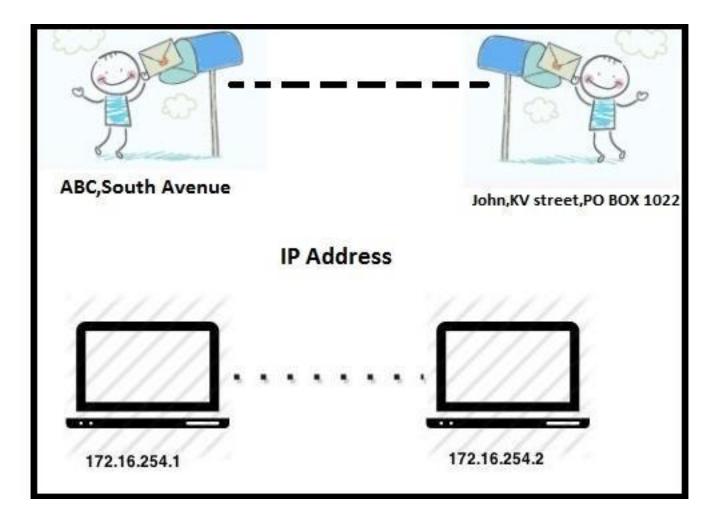
Ethernet


Ethernet Standards

The Evolution of Ethernet Standards to Meet Higher Speeds						
Date	IEEE Std.	Name	Data Rate	Type of Cabling		
1990	802.3i	10BASE-T	10 Mb/s	Category 3 cabling		
1995	802.3u	100BASE-TX	100 Mb/s*	Category 5 cabling		
1998	802.3z	1000BASE-SX	1 Gb/s	Multimode fiber		
	802.3z	1000BASE-LX/EX		Single mode fiber		
1999	802.3ab	1000BASE-T	1 Gb/s*	Category 5e or higher Category		
2003	802.3ae	10GBASE-SR	10 Gb/s	Laser-Optimized MMF		
	802.3ae	10GBASE-LR/ER		Single mode fiber		
2006	802.3an	10GBASE-T	10 Gb/s*	Category 6A cabling		
2015	802.3bq	40GBASE-T	40 Gb/s*	Category 8 (Class I & II) Cabling		
2010	802.3ba	40GBASE-SR4/LR4	40 Gb/s	Laser-Optimized MMF or SMF		
	802.3ba	100GBASE-SR10/LR4/ER4	100 Gb/s	Laser-Optimized MMF or SMF		
2015	802.3bm	100GBASE-SR4	100 Gb/s	Laser-Optimized MMF		
2016	SG	Under development	400 Gb/s	Laser-Optimized MMF or SMF		
Note: *with auto negotiation						

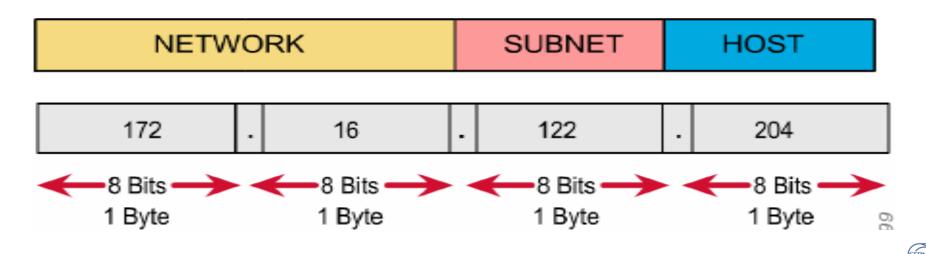

Virtual LAN (VLAN)

- OSI Layer 2
- Logical grouping of hosts
- Simplifies network design and administration



Virtual LAN (VLAN)

IP (Internet Protocol)


IP. (Un)reliable since 1974.

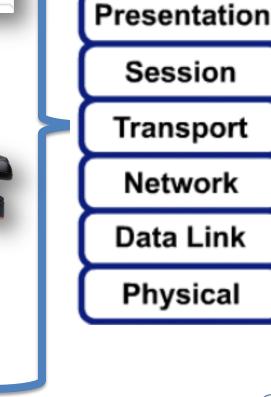
- Connectionless, best effort protocol
- Designed to be encapsulated into layer 2 protocols , such as Ethernet
- Initially created by Vint Cerf and Bob Kahn in 1974
- IPv4 described in RFC 791 (1981) hyperlink
- Defines a hierarchical (logical) addressing scheme capable of connecting all the hosts in the world (Layer 3)
- Routes packets towards destination using best available path, with the help of routing protocols (Layer 3)

IP Addressing

- 32bit address space (IPv4)
- Hierarchical addressing (similar to postal addressing)
- Global visibility
- ARP (Address Resolution Protocol) used to map an IP address with an Ethernet MAC address (layer 2, local visibility)

Networks for DAQ

SYN


ACK

SYN, ACK

- Transport Control Protocol (TCP)
 - Connection oriented protocol
 - Flow control
 - Lossless
 - RFC 793
 - http://tools.ietf.org/html/rfc793

Major Transport Protocols: TCP and UDP

- Unreliable Datagram Protocol (UDP)
 - Unreliable but simple
 - Connectionless
 - RFC 768
 - http://tools.ietf.org/html/rfc768

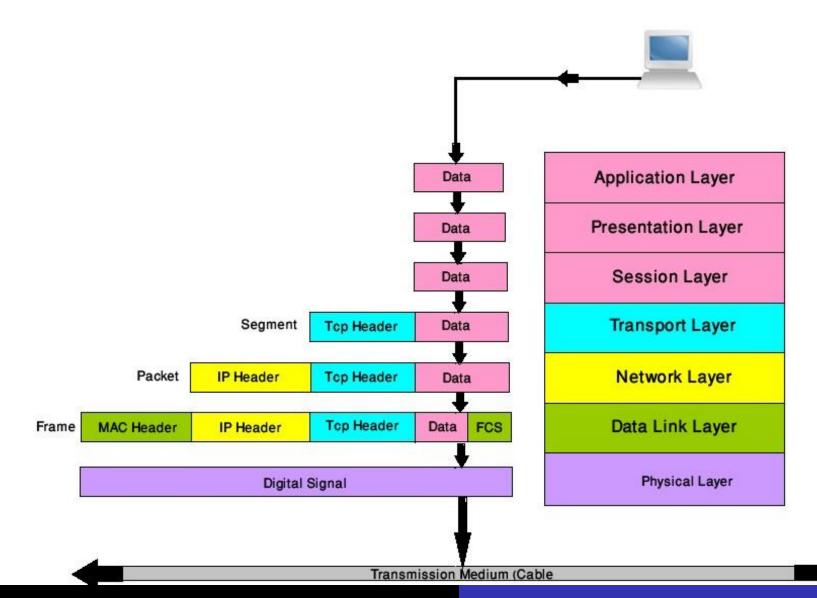
Application

TCP Packet Header

Bits

0	8	1	6	3	
S	ource Port		Destination	Port	
Sequence Number					
Acknowledgment Number					
Data Offset	Reserved	Code	Window	(
C	Checksum		Urgent Poir	nter	
	Padding				
Data					

Size of TCP header without options: 20 bytes


Bits

0 1	6 3 ⁴
SOURCE PORT NUMBER	DESTINATION PORT NUMBER
LENGTH	CHECKSUM

Size of UDP header: 8 bytes

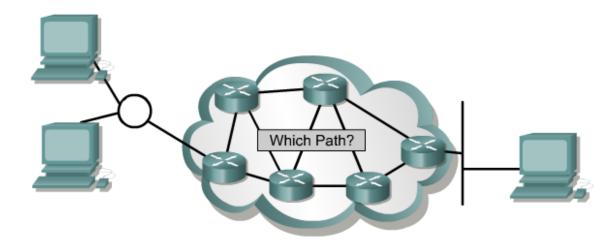
Data Encapsulation & Decapsulation

CERN

Link Aggregation & QoS

- Link Aggregation (LAG)
 - Combining several links in parallel
 - Increased throughput
 - Redundancy
- Quality of Service (QoS)
 - Ability to provide different priority to different applications, users or data flows
 - Guarantee a certain level of performance to a data flow
 - E.g.: required bit rate, delay, packet drop probability

Routers


- Connect together separate networks, sometime of various networking technologies (ex: Ethernet and DSL)
- Make path determination decision based upon logical addresses (such as IP). The process is called **routing**.
- Layer 3 networking devices
- Routing and switching are similar concepts, but are in different layers:
 - Routing occurs in Layer 3, uses IP
 - Maintains routing tables (IP network addresses)
 - Maintains ARP tables (IP to MAC mappings)
 - Switching occurs in layer 2, uses MAC
 - Maintains switching tables (MAC addresses)

The **process of selecting paths** in a network along which to send network traffic, based upon logical addresses (such as IP).

A routing protocol allows one router to share information with other routers regarding known network paths as well as its proximity

- Static routing
- Dynamic routing
 - Distance Vector
 - Link State

Routing. Dynamic routing


Distance Vector Protocols

- Each router tell its neighbors about its view over the network
- Routes are advertised as a vector of distance and direction.
- Routers do not have knowledge of the entire path to a destination

Link State Protocols

- Each router tells the world about its neighbors
- Routes are computed based on the network connectivity map (topological database)
- Routers have knowledge of the entire path to a destination


Outline

- Introduction
 - Networking basics
 - OSI reference model
- Technologies and protocols
 - Ethernet
 - IP (Internet Protocol)
 - TCP vs. UDP
 - Routing
- Network monitoring
- Software defined networking

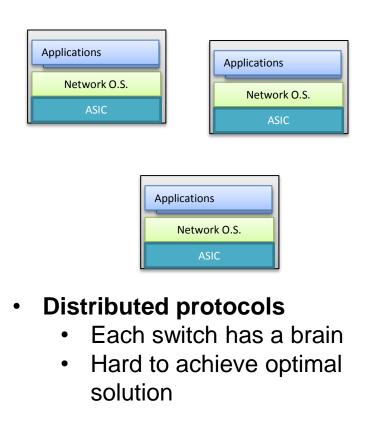
Network Monitoring. SNMP

- A standard protocol for managing devices on IP networks (switches, routers, computers etc);
- Exposes management data in the form of variables on the managed systems. These variables are then queried;
- Used to gather device-based or port-based statistics (traffic volume, errors, packets, discards, temperature etc);

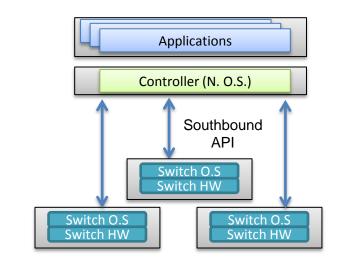
Network Monitoring. sFlow & NetFlow

- Network monitoring technology to gather flow-related statistics;
- Can track the source and destination for packets that passes through an interface;

- sFlow compute statistics based on a sampling mechanism;
- NetFlow keeps a record for every flow. If needed, it can also use sampling.



Outline


- Introduction
 - Networking basics
 - OSI reference model
- Technologies and protocols
 - Ethernet
 - IP (Internet Protocol)
 - TCP vs. UDP
 - Routing
- Network monitoring
- Software defined networking

Software Defined Networking

- Network configured indirectly
 - Configure protocols
 - Hope protocols converge

- Global view of the network
 - Applications can achieve optimal performance
- Southbound API gives fine grained control over switch
 - Network configured directly
 - Allows automation
 - Allows definition of new interfaces

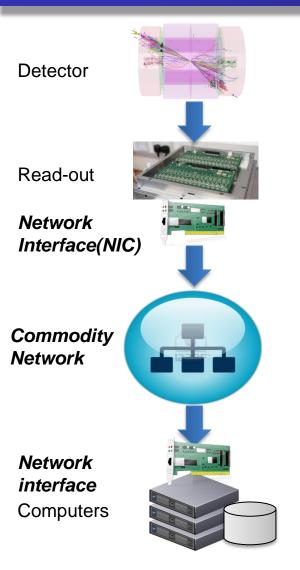
CERN

The show must go on ...

Data Networks

Networking for Data Acquisition

Acknowledgements Stefan Stancu


Eukeni Pozo Wainer Vandelli Dan Octavian Savu & Silvia Fressard-Batraneanu

CERN

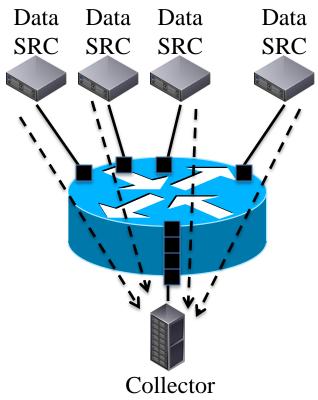
ISOTDAQ 2015, Rio de Janeiro

Data Acquisition uses networks

- Detector
 - Measure physical phenomena
- Read-Out
 - Digitize and perform basic processing
 - Possibly data buffers
 - Interface to network

Commodity Network

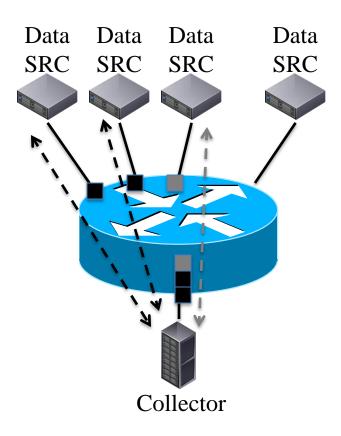
- Connect all read-outs to analysis computers
- Allows computers to collect data from all sources
- Computer(s)
 - Interface to network
 - Collect data from all sources
 - Analyze and filter data
 - Store data



Networks for DAQ

Outline

- DAQ networks for large experiments
- TCP protocol characteristics
- Linux networking characteristics and optimizations
- QoS and link aggregation specifics
- Optimization summary
- Network technology choices


DAQ – push design

- Data SRCs simultaneously send data to a collector
 - Fan-in effect on the switch
 - Packets need to be buffered before being sent to the Collector
 - The more sources, the worse
- Advantages:
 - Simple design of the data sources
- Disadvantages
 - Rely on network buffers for not losing data
 - Collector must cope with the rate

DAQ – pull design

- Data SRC buffer data and provide it on request
- Controlled fan-in effect on the switch
 - Collector can limit the number of outstanding requests
 - Not affected by the number of sources

Advantages:

- Better control of network traffic
- Collector asks as much as it can handle
- Collector can slow down in case of loss detection
- Disadvantages
 - Data sources complexity:
 - Buffering
 - Request-reply protocol implementation

LHC DAQ networks requirements

High availability/Fault tolerance

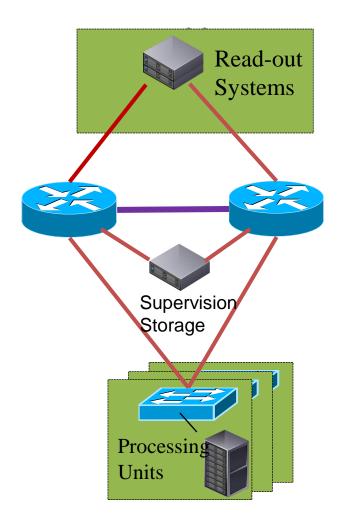
- Ideally, redundancy at every level
- Advanced health monitoring
- Security

Performance

- High throughput AND low latency
- Substantial tuning
 - Data flow software
 - Network itself
- Advanced performance monitoring

Low cost

LHC DAQ networks characteristics

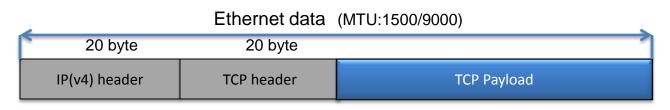

- Private local networks
- Flat network topology
- Congestion hot-spots
- Packet loss caused by
 - HW failures
 - Transmission errors
 - Congestion manifested by discarded packets
- Network latency and event building time much smaller than the TCP timeout

The golden rule: Minimize packet loss and TCP retransmissions!

DAQ Network for a large experiment

ATLAS DAQ Network

- Pull architecture
- LHC DAQ systems use O(1000) nodes
 - too large for a single device
- Typical multi-layer architecture
 - Aggregation layer
 - Core layer
- Simple, reliable and fast
 - Routing
 - Link aggregation



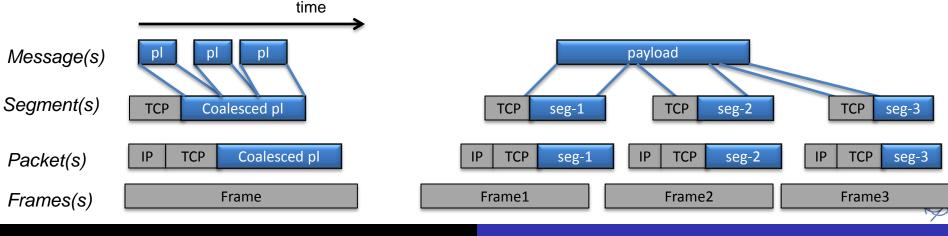
Outline

- DAQ networks for large experiments
- TCP protocol characteristics
- Linux networking characteristics and optimizations
- QoS and link aggregation specifics
- Optimization summary
- Network technology choices

TCP: Fragmentation

Buffers data for a short while before sending it

Knows the MTU size

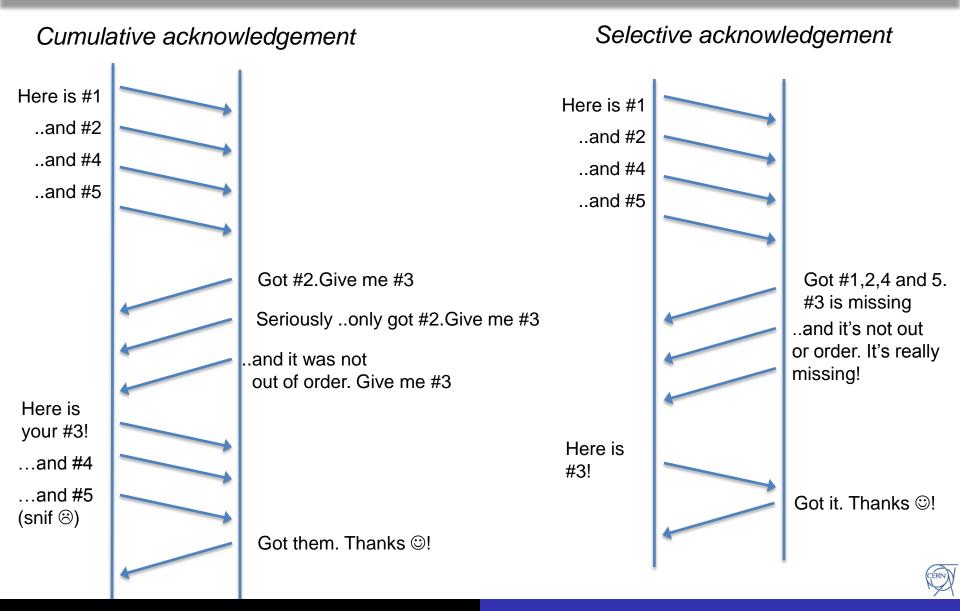

Coalesces or segments data depending on payload size

Payload < MTU

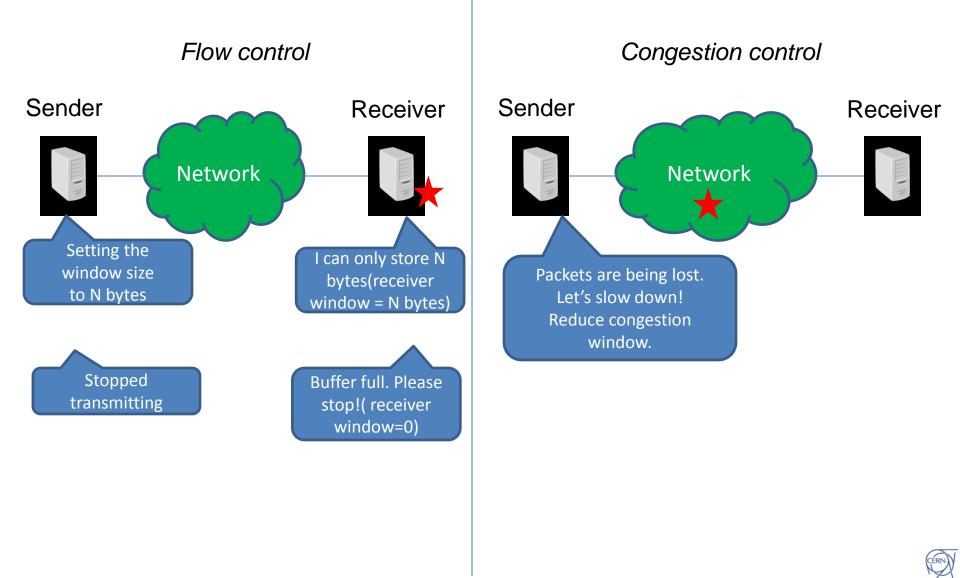
May coalesce using the nagle algorithm

Payload > MTU

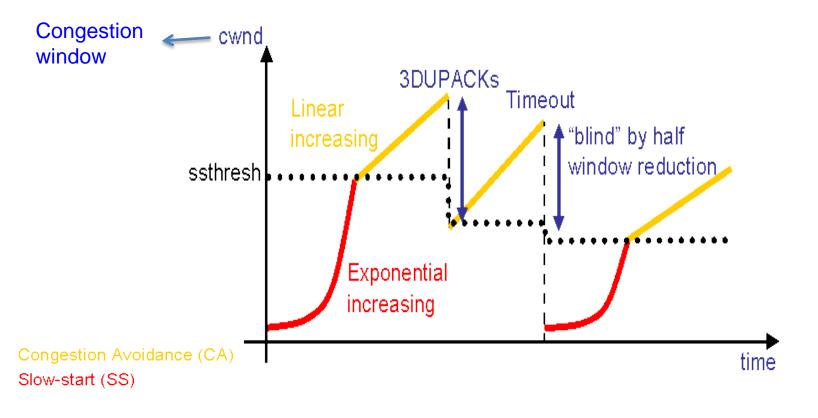
Does segmentation No IP fragmentation


Networks for DAQ

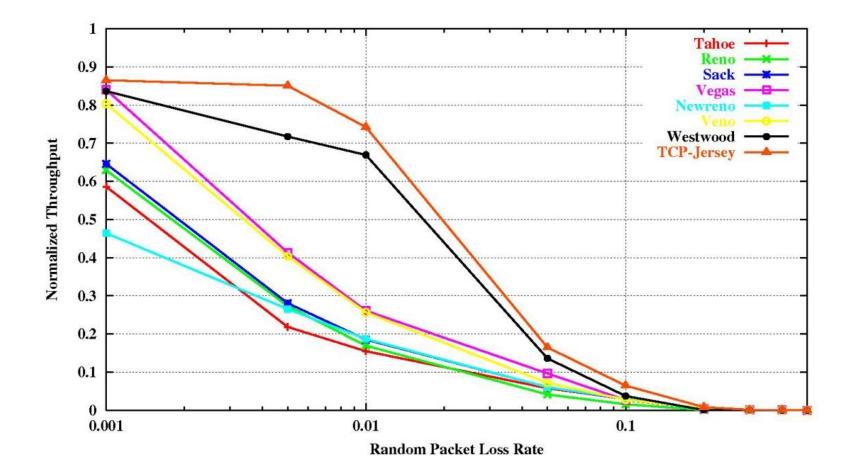
TCP: Reliable transmission(1)


Normal transmission Retransmission timeout Here is #1 Here is #1 Sliding Window =1 Got it. (waiting..) Give me #2 Time out (waiting..) Here is #2 (I'm bored. ..and #3 Sliding Any newspapers to read?) ...and #4 Window =3Another try. Here is #1!!! Got them. Give me #5 Got it. Give me #2.

CERN

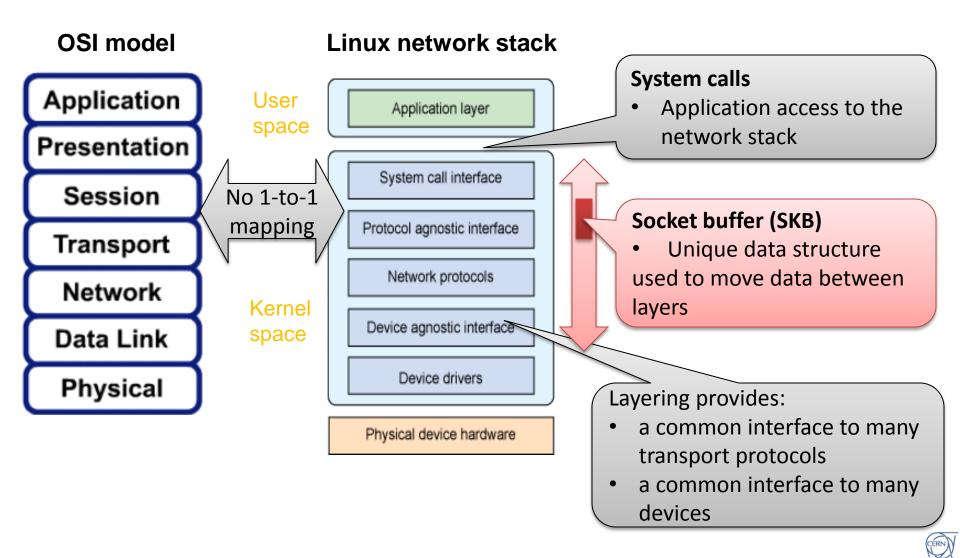

TCP: Reliable transmission(2)

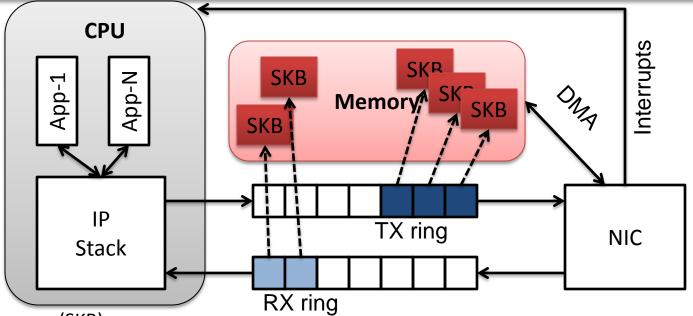
TCP: Flow vs congestion control


TCP: Congestion control example

TCP Westwood

TCP Performance with packet loss




Outline

- DAQ networks for large experiments
- TCP protocol characteristics
- Linux networking characteristics and optimizations
- QoS and link aggregation specifics
- Optimization summary
- Network technology choices

From theory to practice : Linux N/W stack

Kernel – NIC interaction

Send

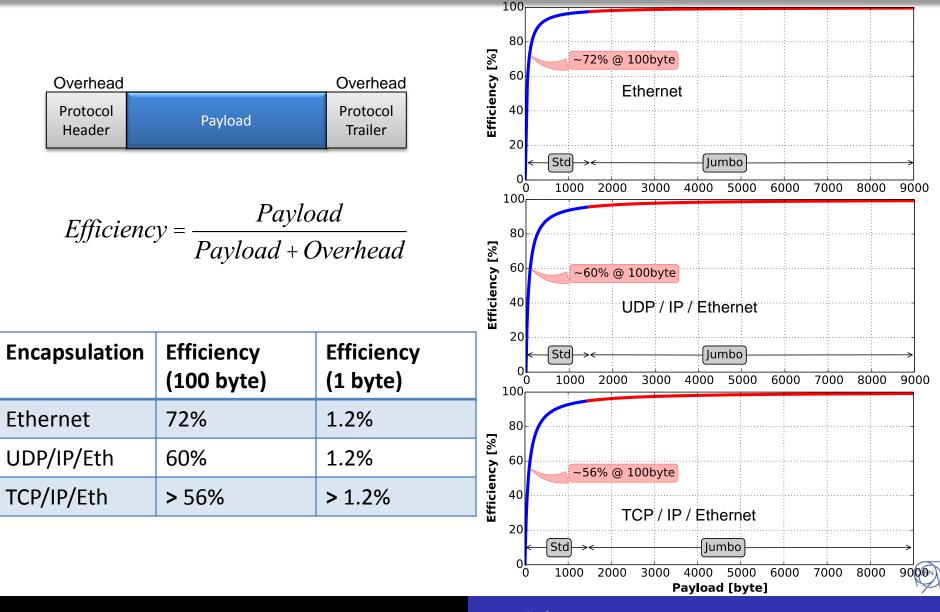
- Data in memory (SKB)
- Descriptor to TX ring
- NIC fetches data via DMA
- NIC interrupts when finished sending
- The TX ring descriptor is released

Receive

- NIC puts data in memory (SKB) via DMA
- NIC puts descriptor in RX ring
- NIC interrupts
- CPU fetches the SKB and frees up the RX ring descriptor

Interrupt coalescing

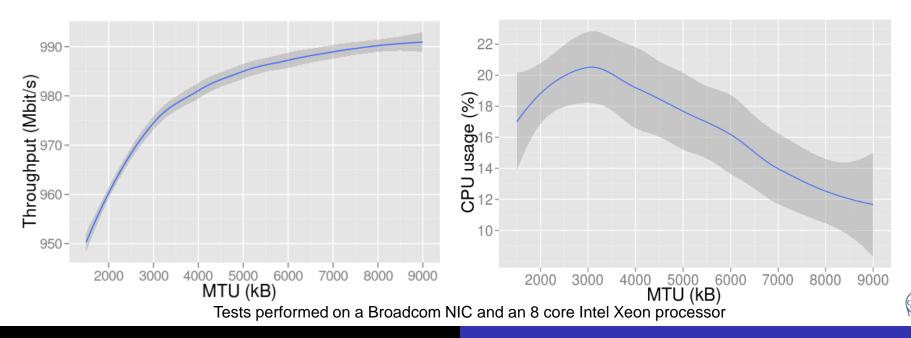
- Hardware interrupt has a cost
 - Context switch of a CPU
 - Saving and loading registers and memory maps, updating various tables and list
 - Happens every time an Ethernet frame is received
 - 1538 bytes -> 12304 bits -> 1 frame every 1.23 μs @ 10 GbE
- Lower the rate with interrupt coalescing
 - 1 interrupt for several frames


Time	
Packet Arrival	Interrupt
Absolute Timer	asserted
Packet Timer	

Precautions

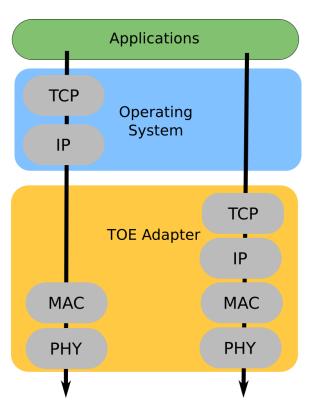
- Do not add too much latency in case of low traffic
- Careful with the ring buffer size
 - Packets are discarded if the buffer is full

Encapsulation – Efficiency


Jumbo Frames

Improve max throughput

- 94% @ 1500 MTU
- 99% @ 9000 MTU


• Reduce the frame rate

- Lower interrupt rate
- Less data dis/re assembling for the CPU

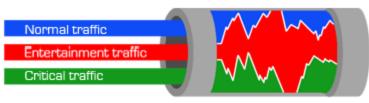
Networks for DAQ

NIC Offloading

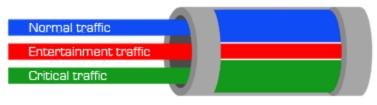
TOE: export processing to hardware controllers

- Packet processing consists of numerous task
 -> CPU intensive for high bandwidth
- TCP Offload Engine: TCP/IP stack processed by the network device
 - Checksum computing
 - Transport protocol segmentation
- A TOE capable device will offer the OS a much larger MTU (SKB size)
 - TSO = TCP Segmentation Offload (send)
 - the NIC takes care of segmenting the large SKB
 - LRO = Large Receive Offload (receive)
 - the NIC assembles data from multiple frames/segments into a large SKB

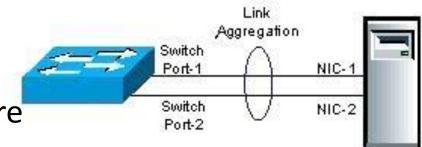
Outline

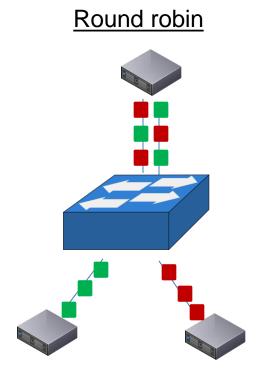

- DAQ networks for large experiments
- TCP protocol characteristics
- Linux networking characteristics and optimizations
- QoS and link aggregation specifics
- Optimization summary
- Network technology choices

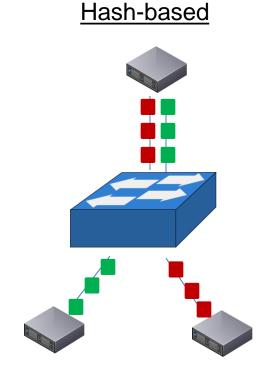
QoS


Bandwidth Use without Qos control

- Layer 3 DiffServices (DSCP)
 - Set the priority in the ToS field of the IP header
 - Can be done at the application level
- Layer 2 VLANs
 - Define overlapping(tagged) VLANs
 - Send traffic on a specific VLAN
 - Configure N/W devices to prioritize VLANs


Bandwidth Use with QoS control


Link Aggregration - basics


- Combining two or more links to
 - increase throughput
 - provide redundancy
- In Linux is called bonding
- One master and one or more slaves
- Master MAC address becomes bond MAC address
- Can be static or dynamic (LACP)

Link Aggregation – load balancing policies

High throughput Out of order packets High throughput for many conversations No out of order packets

Outline

- DAQ networks for large experiments
- TCP protocol characteristics
- Linux networking characteristics and optimizations
- QoS and link aggregation specifics
- Optimization summary
- Network technology choices

62

Basic optimizations for DAQ

- Hosts
 - Mainly for reception side
 - *Reception* is the more resource consuming side mainly because it has to reorder packets
 - Provide large kernel buffers and large socket buffer for the application (sysctl!)
 - Tune IRQ moderation
 - If possible, enable jumbo frames
 - Be aware of the specifics of the TCP congestion mechanism on your system
 - If needed tune them
- Network devices
 - Enable jumbo frames on all ports to improve bandwidth
 - Increase buffers
 - Packet loss has a big impact on performance (see previous TCP slides)
 - Pay attention to the delay they introduce
 - Use virtual output queueing to avoid head-of-line blocking
- Both
 - Evaluate the performance of your link aggregation groups
 - If needed, change the load balancing policy
 - Use QoS to prioritize critical traffic that risks of getting lost in the congestion spots

Outline

- DAQ networks for large experiments
- TCP protocol characteristics
- Linux networking characteristics and optimizations
- QoS and link aggregation specifics
- Optimization summary
- Network technology choices

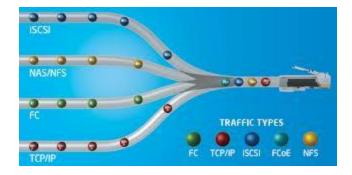
Network Technology Choice

Ethernet is a de-facto standard

- OSI Layer-2
- Largely used in the industry
- Many providers
- Its evolution (Converged Enhanced Ethernet)
 - Brings more reliability without the TCP complexity
 - Makes Ethernet usable for storage area networks

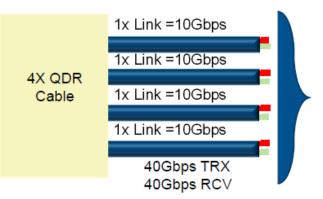
Infiniband

- One main provider
- One step ahead regarding link speeds
- Steep learning curve, not so much know-how around
- Lower cost per port, proprietary connectivity more expensive
- Key advantages related to performance and packet loss
- More and more used in HPC
- Myrinet, FiberChannel ..



Converged (Enhanced) Ethernet

- Also known as "Lossless Ethernet"
- Aims to eliminate loss due to queue overflow and to be able to allocate bandwidth on links for selected traffic


- Combines a number of optional Ethernet standards into one umbrella:
 - Priority based flow control(PFC): Link level flow control for each Class of Service (CoS)
 - Enhanced Transmission Selection(ETS): Bandwidth assignment to each CoS
 - End-to-end Congestion notification(ECN): Per flow congestion control to supplement per link flow control
 - Data Center Bridging eXchange (DCBX): Exchange protocol used for conveying capabilities between neighbours

Infiniband

- High speed
 - Uses multiple differential pairs(x4, x8,x12)

SDR - 2.5Gb/s per lane (10Gb/s for 4x) DDR - 5Gb/s per lane (20Gb/s for 4x) QDR - 10Gb/s per lane (40Gb/s for 4x) FDR - 14Gb/s per lane (56Gb/s for 4x) EDR (EDR) - 25Gb/s per lane (100Gb/s for 4x)

- Low latency OSI layers 2-4 implemented in hardware
- Low CPU Utilization with RDMA (Remote Direct Memory Access)
 - communication bypasses the OS
- Absolute credit based flow control
 - assures NO packet loss within fabric even in the presence of congestion
 - receiver guarantees that enough space is allocated for N data blocks
- *Reliable transport protocols* for other packet loss

References

- Wikipedia
- IETF RFCs
- « man » pages
- Conference proceedings and journals

A few noticeable:

- 1. Wenji Wu. The Performance Analysis of Linux Networking Packet Receiving http://lss.fnal.gov/archive/2006/pub/fermilab-pub-06-406-cd.pdf
- 2. Sequence diagrams for TCP/IP stack and many protocols <u>http://www.eventhelix.com/RealtimeMantra/Networking/</u>
- 3. 10 Gigabit Ethernet Association http://www.10gea.org/tcp-ip-offload-engine-toe.htm
- 4. Binary Increase Congestion Control for Fast, Long Distance Networks http://netsrv.csc.ncsu.edu/export/bitcp.pdf
- 5. Designing Cloud and Grid Computing Systems with InfiniBand and High Speed Ethernet: http://www.ics.uci.edu/~ccgrid11/files/ccgrid11-ib-hse_last.pdf
- 6. Unix Network Programming, Volume 1: The Sockets Networking API (3rd Edition), Addison-Wesley Professional

