
January 28, 2015

 CERN 
 RWTH Aachen - III. Physikalisches Institut B

Joschka Lingemann

Programming for today’s
physicist and engineer
ISOTDAQ 2015, Rio de Janeiro

page Joschka Lingemann

•Disclaimer: This is more a collection of pointers* than a tutorial

2

Disclaimer

further reading and tips
in these boxes

it’s a starting point… (Almost) no code
Acknowledgment: Slides are based on previous lectures by Erkcan Ozcan, see final slide for link

* not in the C/C++ sense

page Joschka Lingemann

•(Astro)particle, accelerator experiments and industry:

• (Large) collaborations, large sets of data, limited time

‣ Code sharing / reuse

• Revision control, reusability, portability

• Learn new languages / libraries / tools

‣ Code binding - framework integration

• Often via (additional) scripting language

‣ Documentation / visualisation

• Doxygen, wikis, bug-tracking, UML, graphing, GUI

‣ Working remotely

• Batch, grid, cloud

3

The Environment

Part I: How to avoid writing code twice
(and how to avoid writing it at all)

page Joschka Lingemann5

What Language should you learn? Language popularity?
N.b.: difficult to measure

The answer depends:
- Analysis?
- DAQ / Trigger?
- External conditions?

http://redmonk.com/sogrady/2014/01/22/language-rankings-1-14/

of

 ta
gs

 o
n

St
ac

k
O

ve
rf

lo
w

of new projects on GitHub

http://redmonk.com/sogrady/2014/01/22/language-rankings-1-14/

page Joschka Lingemann

•Often you have existing code to start from

• Good: You know where to start and can repurpose

• Bad: It’s easy to make mistakes if you don’t understand the logic

•Short Example: Write a tool in C++ that gives you the number of days in a month
•$ howmanydays april

•april has 30 days

•You have an existing example that does something similar: Given a number it tells

the user which month it corresponds to:
•$ whichmonth 5

•The 5th month is may

6

The C&P Technique — know what you’re doing!

page Joschka Lingemann

•You received the source:

• May learn something new…

• Try it out! Does it even work?

•Hash maps: Associating unique

identifiers “keys” with some values

• Used for fast searches, caching

data

• Examples in Trigger / DAQ:

‣ trigger algorithms

‣ routing in networks

7

Getting to know the existing code

page Joschka Lingemann

•Checked documentation for hasher

of char*

•As seen in code: Checked with

examples

•$ clang++ howmanydays.cxx

•$./a.out

•march : ndays = 31

•june : ndays = 30

•april : ndays = 30

•All I need now is to accept user input.

8

Adaptation of the code

page Joschka Lingemann

•One problem: assuming enduser

is well behaved..

• Never, ever do that! Not even if

you are the enduser…

9

Alright. Finished program, let’s bring it to the people

page Joschka Lingemann

•One problem: assuming enduser

is well behaved..

• Never, ever do that! Not even if

you are the enduser…

•One other problem:

• It does not work:
•$ g++ test.cxx

•./a.out june 
june has 0 days

10

Alright. Finished program, let’s bring it to the people

page Joschka Lingemann

•Check documentation:

• Can provide a comparison function

• Needs additional template

argument: hash-function

‣ We can use default std::hash

•$ g++ test.cxx

•./a.out june 
june has 31 days

•Finally done…

11

Ah, right… C-strings, comparison is problematic

page Joschka Lingemann

•Check documentation:

• Can provide a comparison function

• Needs additional template

argument: hash-function

‣ We can use default std::hash

•$ g++ test.cxx

•./a.out june 
june has 30 days

•Finally done… Try it with your colleagues:
•june has 0 days

12

Ah, right… C-strings, comparison is problematic

why? see additional material

page Joschka Lingemann

•Clean solution with STL:

• Know and use the STL consistently

• Invest some time to learn about it:

Saves you in the long run

• Containers: Many corner cases

covered for you

• They are safer - buffer overflows,

thread-safety and more

•Finally we are really done: Short

code, portable (no dependencies)

and works correctly

13

Avoid mixing C and C++ styles: Stick to the STL

page Joschka Lingemann

•Documentation is vital!

• Internal documentation

‣ Describe your interfaces

‣ Describe your reasoning

• External documentation

‣ Give use-cases, examples

‣ Describe the “big picture”

•It will also save you when you re-

use this in a few months / years

14

Final Code: Don’t forget to document!

page Joschka Lingemann

•External conditions:

• We have little time

• Likely someone else will have to take over at some point

• Work together with others

•It all boils down to one basic principal:

• Make your code easy to understand

‣ Therefore easy to re-use

‣ Easier to maintain

15

Pre-summary: Make your code easy to understand

page Joschka Lingemann

•Generally two sides of the same coin: Internal and external documentation

• Both are necessary to make your programs easy to use

• They have different purpose!

•Internal documentation:

• Explain interfaces, i.e. function signatures

• Make note of possible future problems (better: prevent them)

• Sometimes might be good to document your reasoning

• Do not “over-comment”

•External documentation:

• Again: Explain your interfaces (can be derived from internal, e.g. doxygen.org)

• For large projects: The big picture

‣ Wiki pages with use-cases and examples

‣ Consider using UML (unified modelling language)

16

Make re-using your code easy: Documentation
Document your code while you write it! For your own benefit.

http://doxygen.org

page Joschka Lingemann

•Generally two sides of the same coin: Internal and external documentation

• Both are necessary to make your programs easy to use

• They have different purpose!

•Internal documentation:

• Explain interfaces, i.e. function signatures

• Make note of possible future problems (better: prevent them)

• Sometimes might be good to document your reasoning

• Do not “over-comment”

•External documentation:

• Again: Explain your interfaces (can be derived from internal, e.g. doxygen.org)

• For large projects: The big picture

‣ Wiki pages with use-cases and examples

‣ Consider using UML (unified modelling language)

17

Make re-using your code easy: Documentation
Document your code while you write it! For your own benefit.

http://doxygen.org

page Joschka Lingemann

•Revision control: Important for you, important for colleagues
•Basic: CVS and Subversion (“CVS done right”*)

•Distributed revision control: Must for personal use (for working on the go)
• Your local copy has everything (including history)

•Gaining ever more popularity “git”: git-scm.com  
(“there is no way to do CVS right”*)

• Other solutions are: Mercurial, bazaar and more

• Easy to learn:
$ git init
$ git add test.cc
$ git commit -m “initial commit”

18

Make re-using your code easy: Sharing

http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
http://pcottle.github.io/learnGitBranching/

visualisation with SourceTree, often available gitk

* paraphrasing Linus Torvalds

http://git-scm.com
http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
http://pcottle.github.io/learnGitBranching/

page Joschka Lingemann

•Git is widely used, examples:

• CMSSW (CMS software), ROOT

• Microsoft, Apple, Amazon, Google, LG

• Linux Kernel, GNOME, Android, KDE

• and many more

•Easy to host & share your projects:

• Setting up a shared repo can be done via any cloud service, e.g. dropbox

• many open-source hosting sites, biggest: github.com

‣ Includes fairly usable bug-tracking

•The more you learn the more you’ll like it!

19

Make re-using your code easy: Sharing (cont.)

possibly interesting:
https://education.github.com/pack

+

http://github.com
https://education.github.com/pack

page Joschka Lingemann

•Have a meaningful directory structure (especially in repos)

• if you use github: try playing around with the markdown for README.md

•Separate projects that do not belong together!

•When compiling software:

• Use meaningful folder names — version numbers

• ./configure --help to learn how to install into custom folders

• Use softlinks if you like to store multiple versions of code

• Permissions: Minimum rights as usual

20

Make re-using your code easy: Organise your code

github markdown:
https://help.github.com/articles/markdown-basics/

https://help.github.com/articles/markdown-basics/

page Joschka Lingemann

•Makefiles — makes compilation easier

• Makefiles might look complex

• More than one source file: Useful!

‣ Again: Think about compiling it in 2 years

• Write your own for a small project

• Automatically allows parallel compilation (option -j)

•Alternatives and improvements to makefiles: CMake,
•autoconf and more

• Might look like overkill; Makes things easier in the long run

• CMake is easier to read and better documented

• Improved portability

• At least you should learn how to compile with them

21

Make re-using your code easy: Portability

“Compiling” by Randall Munroe
xkcd.com

http://xkcd.com

page Joschka Lingemann

•Make your code as short as possible while maintaining readability

• For some solutions that means to use the right language

• Often quicker and nicer to use interpreted languages: python, perl, ruby, tcl, lua

• Often used as binding languages: Performance critical code in C/C++ modules

instantiated within python (e.g. in CMSSW) — best of both worlds

• Personal choice: Python has a large standard library and is very expressive!

• dict example in python: 
more compact code, does 
more stuff

• have a look at ipython 
 

22

Make re-using your code easy: Conciseness
Use the right tool

try it yourself:
$ ipython
In [1]: run howmanydays.py -h
In [2]: run howmanydays.py may
In [3]: help(months)

page Joschka Lingemann

•If you try to do everything at once:

• You’ll probably end up doing nothing right

• Generalising a problem before solving it: Probably not a good idea

‣ Only do it when you have a use case

• Write dedicated tools / libraries

• Be pragmatic:

‣ Only do the abstract cases when it is likely that they will be used

‣ Try to make everything as concise as possible (maintain readability)

‣ Keep it simple!

23

Make re-using your code easy: Conciseness
Avoid feature creeps

MS Office ’11 Word

Apple TextEdit

page Joschka Lingemann

•Do not reinvent the wheel
• Many problems have already been solved

• (Sometimes necessary — avoid dependencies)

• In languages with big standard lib: Look there!

• When using external libraries, look out for:
‣ Active community? Well maintained?
‣ Tested?

•Getting to know new frameworks:
• Before asking for advice: try the simple tools
‣ Read the docs

• Investing time in the beginning will pay off
‣ StackOverflow is your friend
‣ Are there TWikis?
‣ python packages: try the ipython “help”

24

Re-using other’s code

• Start with a simple test (work your way

from the existing examples)

‣ Does the code do what you expect?

“Prof. Lucifer Butts and his Self-Operating Napkin”,
by Rube Goldberg

Part II: When you have to write code
(tools to make your life easy)

page Joschka Lingemann

•One side of using the right tool for the right problem:

• Interpreted vs compiled languages

• Existing toolkit vs implementing yourself

•Whatever you do, you’ll end up using (at least)

• Editor

‣ Know* at least one “always” present editor: nano, vi(m), emacs, etc.

‣ But also have a look at more modern solutions, they may have some benefits

‣ Depending on the language / platform, IDEs are a better choice (Java, Python(?))

• Terminal

‣ Learn about shortcuts (ctrl+r, ctrl+e, ctrl+a … have a look)

‣ Knowing about some basic command line-tools can come in handy

26

Be efficient — know your tools

* at least know how to save and exit :)
for the more daring: try ed

page Joschka Lingemann

•The choice of editor is yours…
• Do you want “a great operating system, lacking only a decent editor”

• Or one with two modes: “beep constantly” and “break everything” *
•Both are versatile and learning them is worthwhile

•However: Alternatives exist that have a less steep learning-curve
• Most of them have been closed and expensive (TextMate, Sublime Text)

• Open alternative: Atom, https://atom.io/
‣ Con: footprint, startup time
‣ Pro: Integrated git diffs, active community, many plugins…

•Once you decided which one is best for you:
• Spend some time learning about it’s features and keybindings

• Many things that might require dozens of keystrokes can be done with 2 (5 in emacs ;))

• Learn about: Linters, extensibility — look at existing plugins

27

A few words on editors: Many choices
Whichever you choose, learn to be efficient!

* from http://en.wikipedia.org/wiki/Editor_war
Atom on MacOS: Don’t forget to Install Shell

Commands (after moving to final dest)

vs

https://atom.io/
http://en.wikipedia.org/wiki/Editor_war

page Joschka Lingemann

•At the beginning might think: Quicker with GUI, don’t need terminal

• After learning about some command line tools… probably not

• What if you don’t have a GUI?

•Searching for files / something in files: grep, find.. example:
•$ find . -name "*.cc" -exec grep -A 3 "foo" {} +

• Displays all matches of “foo” (+3 lines below) in all .cc files from the current work dir

•Once you learn about some of the small wheels you can build big machines:

• sed, head, tail, sort… awk (a turing-complete interpreted language)

• At the beginning: note down often used commands…

• After a tutorial dump your history* (increase cache size for max usage)

•Shell-scripting:

• Alternative: Can solve most things more conveniently with an interpreted language

• Con: interpreters might not always be available

28

The terminal: Biggest foe or best friend?

tune your bashrc / bash-profile
see additional material

* dump the last 100 steps:
$ history | tail -n 100 > steps.txt
log the terminal “responses”:
$ script # press ctrl+d to stop

page Joschka Lingemann

•While running your code:

• cout / printf statements: only suitable for small code base

• Sooner or later have to use a debugger: gdb (GNU debugger) — get a stack-trace

‣ basic commands: run, bt, info <*>, help

• Most crashes from memory management: Only use raw pointers when you have to!  
(I.e. when you know what you’re doing and you need the performance)

‣ Look at smart pointers (part of C++11/14 standards, alternative: boost)

• Even if you don’t have crashes: Memory Leaks. Try valgrind (valgrind.org)

• Python: pdb — import pdb; pdb.set_trace() #set a breakpoint

•While writing your code:

• There are static code analysis tools that can help you

• Try out a linter for your preferred editor (e.g. atom: https://atom.io/packages/linter)

‣ Highlights potentially problematic code— your code will be more reliable

29

After writing code:
Debugging, profiling and static analysis

http://valgrind.org
https://atom.io/packages/atom-lint

page Joschka Lingemann

•When you need a graphical user interface:

• Web browsers are present everywhere

• If you do it right get phone / tablet support for free*

• HTML5 - a lot of potential, a lot of frameworks

‣ WebGL: GPU support (want to make a new event display?  
http://ispy-webgl.web.cern.ch/ispy-webgl/)

‣ There are also tools to compile Java, Python, even C++ into JS

•Some pointers to interesting / fun projects:

• http://www.skulpt.org/ — python interpreter

• http://gcc.godbolt.org/ — C++ compiler to assembly

• http://webglplayground.net/ — play with shaders

• http://wiki.polyfra.me/ — wikipedia visualisation

• http://www.chromeexperiments.com/

‣ many more

30

Need GUI Solution?
Web interfaces might be the easiest solution…

* try http://getbootstrap.com/
if you want to get something
sleek quickly

http://ispy-webgl.web.cern.ch/ispy-webgl/
http://www.skulpt.org/
http://gcc.godbolt.org/
http://webglplayground.net/
http://wiki.polyfra.me/#
http://www.chromeexperiments.com/
http://getbootstrap.com/

page Joschka Lingemann

•If you have programs that have to run with slightly different parameters:

• Do not change the variables in the source code! (It’s error prone, might need to recompile, etc)

• Introduce a way to configure from the terminal:

‣ Command line options / arguments (a few variables)

‣ Configuration file (many variables)

• XML, JSON, CSV .. choices a plenty

•Batch systems: Probably your home institute has one installed

• Learn about available resources

• GRID — get a certificate

• Your laptop has multiple cores.. Can also utilise without threading:

‣ e.g. task spooler - http://vicerveza.homeunix.net/~viric/soft/ts/
$ export TS_MAXCONN=20
$ export TS_SLOTS=<# cores>
$ ts
$ ts <job>

31

Automation and batch systems..

“Automation” by Randall Munroe
xkcd.com

http://vicerveza.homeunix.net/~viric/soft/ts/
http://xkcd.com

page Joschka Lingemann

•SSH — might be more versatile than you think:
• Tunneling

‣ Secure connections to other machines
‣ Should also be used when using VNC to avoid man-in-the-middle vulnerability

• Using public keys as authentication
‣ Generate with ssh-keygen -t dsa, copy your public key (never the id_dsa key): 

Put public key into ~/.ssh/authorized_keys on remote host

• Working through X-forwarding can be annoying if you have bad latency / shaky connection

• Alternative: mosh (https://mosh.mit.edu/)
‣ allows intermittent connectivity, roaming and more…

•SSHFS — mounting your remote work directories:
• On MacOSX: MacFusion + OSXFuse

• Work locally but have files live in remote host
•AFS — even more convenient:

• Don’t forget to set permissions correctly while sharing files

• OpenAFS also available for Mac OS X (Yosemite: Have to  
hack the installer if you need help, come see me)

32

Working remotely: No way around the terminal

SSH tunnel for VNC connection:
ssh -L 5902:<VNCServerIP>5902 <user>@<remote>
vncserver :<session> -geometry <width>x<height>
-localhost -nolisten tcp

SSH authentication via kerberos token. In ~/.ssh/config:
GSSAPIAuthentication yes
GSSAPIDelegateCredentials yes
HOST lxplus*
 GSSAPITrustDns yes

Lots of things possible with the ssh-config:
HOST <host>
 USER <remote-user>
 ProxyCommand ssh <tunnel> nc <host> <port>

more on (auto-)tunnelling:
https://security.web.cern.ch/security/recommendations/en/
ssh_tunneling.shtml

https://mosh.mit.edu/
https://security.web.cern.ch/security/recommendations/en/ssh_tunneling.shtml

page Joschka Lingemann

•screen : part of GNU, present in almost all *nix

• Creates a virtual terminal

‣ That do not die when connection is lost:

• X session crashes, while working via ssh

‣ The processes keep working after you logged off

• When you try it: Also try visualiser e.g. byobu (http://byobu.co/)

• Alternative: tmux

33

Both while working remotely or locally:
Screen can come in very handy

Try it out — screen:
$ screen
> # start something
ctrl+a d
$ screen -ls
$ screen -r
> # continue where you were
> # get help:
ctrl+a ?

Try it out — tmux:
$ tmux
> # start something
ctrl+b d
$ tmux ls
$ tmux a
> # continue where you were
> # get help:
ctrl+b ?

http://byobu.co/

Part III: More tools that can help you
(maybe there is already a solution)

page Joschka Lingemann

•In HEP probably no way around ROOT / RooFit

• Maintained at CERN, used in LHC experiments

•GNU R — www.r-project.org

• Used widely among statisticians (including finance and others)

• Interpreted language + software for analysis and graphical representation

•SciPy — http://www.scipy.org/

• Collection of python libraries for numerical computations, graphical representation

and containing additional data structures

•Sci-kitlearn: — http://scikit-learn.org/stable/

• Python library for machine learning

35

Software collection: Analysis / Statistics

http://www.r-project.org
http://www.scipy.org/
http://scikit-learn.org/stable/

page Joschka Lingemann

•Data visualisation:
•Matplotlib (part of SciPy)

• histograms, power spectra, scatterplots and more.. extensive library for 2D/3D plotting

•ROOT

• Again, probably no way around it… Sometimes a little unintuitive

•Other:
•JaxoDraw — http://jaxodraw.sourceforge.net/

• Feynman graphs through “axodraw” latex package

•tex2im — http://www.nought.de/tex2im.php

• Need formulas in your favourite WYSIWG presentation tool?

•GraphViz — http://www.graphviz.org/ or MacOS: http://www.pixelglow.com/graphviz/

• Diagrams / Flowcharts with auto-layout

36

Software collection: Visualisation

http://jaxodraw.sourceforge.net/
http://www.nought.de/tex2im.php
http://www.graphviz.org/
http://www.pixelglow.com/graphviz/

page Joschka Lingemann

•SAGE — www.sagemath.org

• Open source alternative to Matlab, Maple and Mathematica

•GNUPlot — http://www.gnuplot.info/

• Quick graphing and data visualisation

•Wolfram Alpha — http://www.wolframalpha.com/

• Wolfram = Makers of Mathematica.. A… ask me anything?:
‣ http://www.wolframalpha.com/input/?i=how+much+does+a+goat+weigh

‣ Answer: Assuming “goat” is a species specification. Result: 61 kg

37

Software collection: Math & more

http://www.sagemath.org
http://www.gnuplot.info/
http://www.wolframalpha.com/
http://www.wolframalpha.com/input/?i=how+much+does+a+goat+weigh

page Joschka Lingemann

•This lecture was full of starting points: You have to follow up to get something out of it.

• Most of it are tools to make your life easier

‣ Bonus: If you know them you’ll have an easier time to follow nerd-talk

• Nothing is free

‣ You’ll have to invest some effort to learn

‣ If you do that this week: We’ll be here to help!

•Homework:

• Install git, start a repository. Try branching on the web

• Compile and play with examples given (python + C++)

‣ See what doesn’t work

• Run screen, kill the connection, reconnect and see if you can continue where you left off

• Tune your .bashrc / .bash_profile to get a more useful prompt

• Try out vim / emacs / atom and learn what suits you best — download a shortcut summary…

Learn how to block-select, indent multiple lines, rename occurrences of text

38

Conclusion

page Joschka Lingemann

•Before you write trigger / DAQ software, you should know the ins and outs:

• What is: compiler, interpreter, linker, terminal, object, class, pointer, reference

• If these concepts are not clear: Excellent material on the web (see next slide)

•Before (and while) implementing: Think

• Smart solutions can take significant amount of time… put it on the back-

burner if you have other things to work on

•Read! Read! Read! The internet is full of information… Blogs, tutorials,

StackOverflow, also Wikipedia can be very useful to get a grasp of new concepts

39

Advice

page Joschka Lingemann

•Udacity — courses from industry (Google, Intel, Autodesk)

• https://www.udacity.com/courses#!/all

‣ course material is free (videos + exercises), tutoring for monthly fees

• Growing catalogue beginner to advanced — mostly web-centric

‣ JavaScript + HTML5 + AJAX courses etc

‣ But also: Intro to git, data analysis with R, parallel programming …

•Coursera — courses by universities (Caltech, Johns Hopkins, Stanford and more)

• https://www.coursera.org/courses

• Large variety of courses

‣ Not only technology / programming

‣ Also physics, biology, economics… and more

‣ Also in different languages

•University Homepages — have a gander… many courses available through YouTube etc.

• i.e.: https://www.youtube.com/watch?v=Ps8jOj7diA0&feature=PlayList&p=9D558D49CA734A02&index=0

•http://ureddit.com/ — University of Reddit

40

Internet courses on programming (and more)

https://www.udacity.com/courses#!/all
https://www.coursera.org/courses
https://www.youtube.com/watch?v=Ps8jOj7diA0&feature=PlayList&p=9D558D49CA734A02&index=0
http://ureddit.com/

6 Stages of Debugging:
1.That can’t happen.
2.That doesn’t happen on my machine.
3.That shouldn’t happen.
4.Why does that happen?
5.Oh, I see.
6.How did that ever work?
— http://plasmasturm.org/log/6debug/

“Debugging is like being the
detective in a crime novel where you
are also the murderer.”

— @fortes

Random Quotes & Links

Guru of the Week: Regular C++
programming problems with solutions
by Herb Sutter
http://www.gotw.ca/gotw/

Random github commit messages:
http://whatthecommit.com/

Go-language: Designed with threading in mind
http://tour.golang.org/welcome/1

Last year’s lecture may have some complementary stuff:
http://indico.cern.ch/event/274473/session/21/material/0/0.pdf

About JavaScript:
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/wat

Want to try your programming skills?
Google code jam (registration 10.03.15):
https://code.google.com/codejam
Also you can just practice
by solving nice problems.

like the fonts in the presentation?
https://github.com/adobe-fonts/source-code-pro
https://github.com/adobe-fonts/source-sans-pro

http://plasmasturm.org/log/6debug/
http://www.gotw.ca/gotw/
http://whatthecommit.com/
http://tour.golang.org/welcome/1
http://indico.cern.ch/event/274473/session/21/material/0/0.pdf
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/wat
https://code.google.com/codejam
https://github.com/adobe-fonts/source-code-pro
https://github.com/adobe-fonts/source-sans-pro

Additional Material

page Joschka Lingemann43

~/.bashrc : An example.

tune your prompt:
if ["$PS1"]; then
 PS1="[\[\033[1;29m\]\[\033[0;34m\] \u\[\033[0;34m\]@\[\033[1;34m\]\h :\[\033[0m\]: \w \
[\033[0;36m\] \$(git branch 2>/dev/null | grep '^*' | colrm 1 2) \[\033[0m\]] \n \[\033[0;31m\]\$\
[\033[0m\] "
fi

do not put duplicate lines into history:
export HISTCONTROL=“ignoredups”

default to human readable filesizes
alias df=‘df -h’
alias du=‘du -h’

get some color
alias grep=‘grep --color'

more file listing:
alias l=‘ls’
alias ll=‘ls -lt -h -G -c -r’

fool proof cp - asks for each file, use fcp if you’re sure
alias fcp='cp'
alias cp='cp -i -v'

never remember those..
alias untgz='tar -xvzf'
alias tgz='tar -pczf'

#never install root:
source /path/to/your/working/root/bin/thisroot.sh
alias root=‘root -l’

Mac OS stuff
alias wget=‘curl -O’

[user@host :: pwd current git-branch]

resulting prompt

page Joschka Lingemann

•And that’s it — it’s even fast

• we concatenate 0 and 1 with an infinite list of recursive sums

• At run-time the lazy evaluation makes sure the list is only created up to

element 100

•“I love functional programming. it takes smart people who would otherwise be

competing with me and turns them into unemployable crazies”
• — William Morgan (@wm)

44

Functional Fibonacci (Haskell)

page Joschka Lingemann

•How does look up in unordered_map work?

• keys are associated to buckets depending on

the hash (bucket: each 0-1 elements,

depending on implementation more than 1 is

allowed)

• upon look-up: hash the key and go to bucket

to retrieve value

• the predicate is not used here!

•When is the predicate used?

• The string_equal is actually only called

when we add elements! (More precise: When

re-hashing)

•The actual problem was the hash function which

is not specialised for null-terminated (C-)strings

• the correct value is only returned if the

pointers match (not guaranteed)

45

So.. Why does this not work?

page Joschka Lingemann

•Passwords

• Never re-use a password

‣ Use password generators for one-use passwords

‣ Store passwords in KDE KWallet, Apple Keychain, Gnome Keyring etc.

‣ Don’t forget to set a good master password

•Pub terminal: New session!

• Whenever you use a public terminal: Start a new session

‣ Simple (script) to capture everything you type…

46

Security

