An Introduction to C++

David Dobrigkeit Chinellato
daviddc@ifi.unicamp.br

(Many thanks to Francesco Safai Tehrani!)
(these slides are based on his)

Where we are...

for (int i=0; i<nPixels-1;++1){
pBitmap(i) = (pBitmap(i)+pBitmapli+l]))/2

bl, [ecx)
dl, [ecx+esi*q]

ebx, edx

[ecx+2]
[ecx+esivd+2])

s}
=
Il
=
~
2
=
o)

ainful 0101 00011000 10111000 11011011 00111000 11101111 00001100
g 0100 10001110 01111001 11011100 10110000 01100000 11000000

employment
of Maxwell's
equations

N

Y
UNICAMP DD Chinellato - Introduction to C++

Where we are...

AANA

A

for (int i=0; i<nPixels-1;++1){
pBitmap(i) = (pBitmap(i)+pBitmapli+l]))/2

[ecx+2]

O v
dl, [ecx+esi*q] .
[ecx+esivd+2])

ebx, edx

s}
=
Il
=
~
2
=
o)

ainful 0101 00011000 10111000 11011011 00111000 11101111 00001100
g 0100 10001110 01111001 11011100 10110000 01100000 11000000

employment
of Maxwell's
equations

N

Y
UNICAMP DD Chinellato - Introduction to C++

ere we are...

AANA

A

for (int i=0; i<nPixels-1;++1){
pBitmap(i) = (pBitmap(i)+pBitmapli+l]))/2

[ecx+2]

O v
dl, [ecx+esi*q] .
[ecx+esivd+2])

ebx, edx

s}
=
Il
=
~
2
=
o)

ainful 0101 00011000 10111000 11011011 00111000 11101111 00001100
g 0100 10001110 01111001 11011100 10110000 01100000 11000000

employment
of Maxwell's
equations

N

Y
UNICAMP DD Chinellato - Introduction to C++

Object Oriented Programming

a.k.a.0.0.P.
* Functions: code blocks that accept arguments and
¥ process those, returning some sort of response
* Not (necessarily) a mathematical function!
v,
a¥

UNICAMP DD Chinellato - Introduction to C++

Object Oriented Programming

a.k.a.0.0.P.

* Functions: code blocks that accept arguments and

¥ process those, returning some sort of response
* Not (necessarily) a mathematical function!

 Objects: 'Entities’ that interact with other entities via

well defined interfaces
* * The interface is the key: it fully describes what the object can do!
* e But the object is much more than the function: it may store data, etc...

NG

a¥
UNICAMP DD Chinellato - Introduction to C++

Object Oriented Programming

a.k.a.0.0.P.

* Functions: code blocks that accept arguments and

¥ process those, returning some sort of response
* Not (necessarily) a mathematical function!

 Objects: 'Entities’ that interact with other entities via

i well defined interfaces

* The interface is the key: it fully describes what the object can do!
* e But the object is much more than the function: it may store data, etc...

There are two main types of OOP:
» Static: objects have a fixed, well defined nature
* Dynamic: an object’s nature is determined by its behavior

NG

a¥
UNICAMP DD Chinellato - Introduction to C++

Object Oriented Programming (2)

a.k.a.0.0.P.

* OOP is essentially a technology

e Different languages implement different OOPs

* The basic concepts can be traced back to the ‘50s
 MIT AED-0, Simscript, Sketchpad, ...

* The first explicit use of objects was in Simula, a discrete event

simulation language, in the '60s
 Two versions: Simula | and Simula 67 (the latter zimplemented ‘objects’)
e Ole-Johan Dahl and Kristen Nygaard of the Norwegian Computing Center in Oslo

* The term OOP was actually introduced in the language
Smalltalk, developed at Xerox PARC

* Versions Smalltalk 72 and 80 -> (more emphasis on dynamic than static)
e Also invented: mouse (+GUI), ‘desktop’ metaphor, WYSIWYG, bitmaps,

S"’A http://en.wikipedia.org/wiki/Object-oriented _programming#History

a¥

UNICAMP DD Chinellato - Introduction to C++

From C to C++

Cis not C++ |
* Well, so far so good... that should be known by now!

C++ is a version of ‘C with objects’
* Inspired by Simula 67

Other ‘C with objects’ implementation exist, e.g. Objective-C
* This one inspired by Smalltalk 80
e If you are using an iSomething then you’re using software written in Objective C

Both Smalltalk 80 and Simula 67 are still sometimes used (are

And where can we find what?
* Windows, Android: C++ (and C)
* Mac OS X, iOS: Objective-C (and C++ and C)
* Linux kernel, Android Kernel, Darwin Kernel: C (and some assembler)

NG

a¥

UNICAMP DD Chinellato - Introduction to C++

C++ by examples !

PR —— . _*6" _J". < -
ﬁi s =
S ’ \
&) -J \
of - s~
o .

...... , Jim, I’'m a [physicist], not a [programmer]!” - Dr. McCoy
. ...or maybe not?

n

Y
UNICAMP DD Chinellato - Introduction to C++

C++ by examples !

...... , Jim, I’'m a [physicist], not a [programmer]!” - Dr. McCoy
. ...or maybe not?

e Let’s not try to go through all of C++

e ...oreven ‘the better part of it!’

e Let’s just go through a few examples...
. * Hopefully, you'll grasp (at least some!) useful techniques in these as we go
Qg

a¥

UNICAMP DD Chinellato - Introduction to C++

Talking about OOP

 We need to know basic nomenclature (buzzwords!) to identify
and get along with OOP

 There are tons of words there:
* Class, object, instance, message, member variable, member function, interface,

®* overloading, constructor, destructor, delegation, inheritance, specialization,

generalization, abstraction, ownership, template,
implementation, private, public, protected, friend

UNICAMP DD Chinellato - Introduction to C++

UNICAMP

Talking about OOP

We need to know basic nomenclature (buzzwords!) to identify
and get along with OOP

There are tons of words there:
* Class, object, instance, message, member variable, member function, interface,

®* overloading, constructor, destructor, delegation, inheritance, specialization,

generalization, abstraction, ownership, template,
implementation, private, public, protected, friend

Most of these are well defined...

e ...well, in a specific language. Subtle (or not so much) differences may crop up
* But let’s keep it simple! We’'ll stick to C++...

Let’s introduce the relevant words as we go!

DD Chinellato - Introduction to C++

A case study
l-Dimensional Cellular Automata

Let’s focus on a known exercise!

e Let’s think of a playground of N spaces.

playground
|

UNICAMP DD Chinellato - Introduction to C++

A case study
l-Dimensional Cellular Automata

Let’s focus on a known exercise!

e Let’s think of a playground of N spaces.
* The playground is circular, i.e. the leftmost and rightmost elements are adjacent

playground
|

UNICAMP DD Chinellato - Introduction to C++

A case study
l-Dimensional Cellular Automata

Let’s focus on a known exercise!

e Let’s think of a playground of N spaces.
* The playground is circular, i.e. the leftmost and rightmost elements are adjacent
* Each space in the playground is called a cell

playground
|

UNICAMP DD Chinellato - Introduction to C++

A case study
l-Dimensional Cellular Automata

Let’s focus on a known exercise!

e Let’s think of a playground of N spaces.

* The playground is circular, i.e. the leftmost and rightmost elements are adjacent
* Each space in the playground is called a cell

* Each cell is either dead (state ‘0’) or alive (state ‘1’)

playground

1 01 00 1 1 1 O

NG

oY

UNICAMP DD Chinellato - Introduction to C++

A case study
l-Dimensional Cellular Automata

Let’s focus on a known exercise!

e Let’s think of a playground of N spaces.

* The playground is circular, i.e. the leftmost and rightmost elements are adjacent

* Each space in the playground is called a cell

* Each cell is either dead (state ‘0’) or alive (state ‘1’)

 Time flows in discrete steps; at each given step the cell state can be updated,
either swapping state or staying the same, depending on its neighbor cells
(‘neighborhood’)

playground
|

1 01 00 1 1 1 O

e

oY

UNICAMP DD Chinellato - Introduction to C++

A case study

1-Dimensional Cellular Automata

Let’s focus on a known exercise!

e

oY

UNICAMP

Let’s think of a playground of N spaces.

The playground is circular, i.e. the leftmost and rightmost elements are adjacent

Each space in the playground is called a cell
Each cell is either dead (state ‘0’) or alive (state ‘1’)

Time flows in discrete steps; at each given step the cell state can be updated,
either swapping state or staying the same, depending on its neighbor cells

(‘neighborhood’)

There are only eight possible configurations for
a neighborhood, and each with a possible
outcome of 0 or 1 in the next state. Thus, there
are only 256 possible evolution rules! ———>

playground
|

1 01 00 1 1 1 O

111]1110|({101(|100

As an example:
Thisis rule 52 (=22+ 2%+ 2°)

DD Chinellato - Introduction to C++

The implementation

* This problem is hopefully familiar: we’ve covered thisasa C
exercise that we discussed previously...

UUUUUUU DD Chinellato - Introduction to C++

The implementation

* This problem is hopefully familiar: we’ve covered thisasa C
exercise that we discussed previously...

 We will cover 4 versions of the 1D CA with increasing OOP !
e This is still a fairly simple exercise...
e ...and this is complete overkill, but it’'s meant to exemplify OOP ideas!

UNICAMP DD Chinellato - Introduction to C++

The implementation

* This problem is hopefully familiar: we’ve covered thisasa C
exercise that we discussed previously...

 We will cover 4 versions of the 1D CA with increasing OOP !
e This is still a fairly simple exercise...

e ...and this is complete overkill, but it’'s meant to exemplify OOP ideas!

e Let’s lay down some simple common infrastructure..

* And sophisticate, step by step! \
I

R
eV
UNICAMP DD Chinellato - Introduction to C++ 8

The implementation

This problem is hopefully familiar: we’ve covered thisasa C
exercise that we discussed previously...

We will cover 4 versions of the 1D CA with increasing OOP |
e This is still a fairly simple exercise...

e ...and this is complete overkill, but it’'s meant to exemplify OOP ideas!
e Let’s lay down some simple common infrastructure...
* And sophisticate, step by step! \
e This is not all!
I

e This code does not use all features possible to ‘simplify’ ‘
* Instead, it is meant to be friendly!

 We use loops instead of iterators, etc....

R
eV
UNICAMP DD Chinellato - Introduction to C++ 8

Code Structure

Decisions, Decisions

 We need to break down the problem into entities!
 Playground Class: abstracts the notion of the arena where cells ‘live’
e Cell Class: abstracts the cell

UNICAMP DD Chinellato - Introduction to C++

Code Structure

Decisions, Decisions

 We need to break down the problem into entities!
 Playground Class: abstracts the notion of the arena where cells ‘live’
e Cell Class: abstracts the cell

* |n this simple exercise, this is a straightforward decision
e ..butstill, the ‘breaking down’ is an important design choice!
» Different people will design their programs differently!
* Experience, knowledge of problem, technical proficiency...
e ..butsome ofitis actually also taste and style !

UNICAMP DD Chinellato - Introduction to C++

Code Structure

Decisions, Decisions

 We need to break down the problem into entities!
 Playground Class: abstracts the notion of the arena where cells ‘live’
e Cell Class: abstracts the cell

* |n this simple exercise, this is a straightforward decision
e ..butstill, the ‘breaking down’ is an important design choice!
» Different people will design their programs differently!
* Experience, knowledge of problem, technical proficiency...
e ..butsome ofitis actually also taste and style !

 There is much more than one way!

e ..and none of them is ‘right’ |
(well, as long as it works, of course!)

v,
a¥

UNICAMP DD Chinellato - Introduction to C++

The One-dimensional Cellular Automaton
Version 1.0

A “ v1. Basic Class Definition

Y

UUUUUUU DD Chinellato - Introduction to C++

10

#ifndef _CELL_H_
#define CELL_H_

using namespace std;

class Cell {
private:

int state;

int RuleSet[8];

public: Constructors
Cell() { state = 0; }

Cell(int aState): state(aState) {}
Cell(int aState, int*x aRuleSet) {
state = aState;
for(int i=0; i<8; i++) {
RuleSet[i] = aRuleSet[i];
}
}
virtual ~Cell() {}
int evolve(Cellx neighbors[]);
int getState() {
return state;
}
int setState(int aState) {
state = aState;
}
+;

#endif

— 1D CA v1: Object Definition: Cell

N

v

Constructor: the method that is
invoked when instantiating (i.e.
creating) an object of a certain type

UNICAMP DD Chinellato - Introduction to C++

11

#ifndef _CELL_H :
define TCELLH Constructor: the method that is

invoked when instantiating (i.e.
creating) an object of a certain type

using namespace std;

class Cell {
private:

int state;

int RuleSet[8];

Overloading: a kind of
polymorphism where a method can
have different interfaces. The choice

of the correct method to invoke is
Cell(int aState, intx aRuleSet) %

state = aState: based on the interface of the

for(int i=0; i<8; i++) { invocation
RuleSet[i] = aRuleSet[i];
}

public: Constructors
Cell() { state = 0; }

Cell(int aState): state(aState) {} <

Suipeojsano

}
virtual ~Cell() {}
int evolve(Cellx neighbors[]);
int getState() {
return state;
}
int setState(int aState) {

state = aState;
}

+;

o
@)
c
O
B
c
(d
)
()]
s
O
2
o)
@)
—
>
<
@)
()]
i

#endif

A
Y
UNICAMP DD Chinellato - Introduction to C++

#ifndef _CELL_H :
define TCELLH Constructor: the method that is

invoked when instantiating (i.e.
creating) an object of a certain type

using namespace std;

class Cell {
private:

int state;

int RuleSet[8];

Overloading: a kind of
polymorphism where a method can
have different interfaces. The choice

of the correct method to invoke is
Cell(int aState, intx aRuleSet) %

state = aState: based on the interface of the

for(int i=0; i<8; i++) { invocation
RuleSet[i] = aRuleSet[i];
+

public: Constructors
Cell() { state = 0; }

Cell(int aState): state(aState) {} <

Suipeojsano

}

virtual ~Cell() {} Destructor: the method that gets

called when releasing / deleting an
object.

int evolve(Cellx neighbors[]);

int getState() {
return state;

Virtual: a tricky attribute which

setState(int aState) { we’ll explain a bit about later...
state = aState;

}; N.B. destructors have to be virtual,

#endif or else great care has to be taken!

o
@)
c
O
B
c
(d
)
()]
s
O
2
o)
@)
—
>
<
@)
()]
i

A
Y
UNICAMP DD Chinellato - Introduction to C++

#include "Cell.hh"

int Cell::evolve(Cellx neighbors[]) {

int stateInfo = 4x(neighbors[@])->getState() + 2 x state + (neighbors[1])->getState();
return RuleSet[stateInfo];

— 1D CA v1: Object Definition: Cell

N

v

UNICAMP DD Chinellato - Introduction to C++ 12

#include "Cell.hh"

int Cell::evolve(Cellx neighbors[]) {
int stateInfo = 4x(neighbors[@])->getState() + 2 x state + (neighbors[1])->getState();
return RuleSet[stateInfol;

Remember: In C++:
.hh —headers contain the interface of a class (also .H, .hxx, .hpp, ...)
.cc — files contain the implementation of a class (also .C, .cxx, .cpp, ...)

— 1D CA v1: Object Definition: Cell

N

v

UNICAMP DD Chinellato - Introduction to C++ 12

#include "Cell.hh"

int Cell::evolve(Cellx neighbors[]) {
int stateInfo = 4x(neighbors[@])->getState() + 2 x state + (neighbors[1])->getState();
return RuleSet[stateInfol;

Remember: In C++:
.hh —headers contain the interface of a class (also .H, .hxx, .hpp, ...)
.cc — files contain the implementation of a class (also .C, .cxx, .cpp, ...)

Alright, then what is a class?

o
@)
c
O
B
c
(d
)
()]
s
O
2
o)
@)
—
>
<
@)
()]
i

A
Y
UNICAMP DD Chinellato - Introduction to C++

#include "Cell.hh"

int Cell::evolve(Cellx neighbors[]) {
int stateInfo = 4x(neighbors[@])->getState() + 2 x state + (neighbors[1])->getState();
return RuleSet[stateInfol;

Remember: In C++:
.hh —headers contain the interface of a class (also .H, .hxx, .hpp, ...)
.cc — files contain the implementation of a class (also .C, .cxx, .cpp, ...)

Alright, then what is a class?
* Aclassis a design entity representing a part of the solution to your problem.

o
@)
c
O
B
c
(d
)
()]
s
O
2
o)
@)
—
>
<
@)
()]
i

A
Y
UNICAMP DD Chinellato - Introduction to C++

#include "Cell.hh"

int Cell::evolve(Cellx neighbors[]) {
int stateInfo = 4x(neighbors[@])->getState() + 2 x state + (neighbors[1])->getState();
return RuleSet[stateInfol;

Remember: In C++:
.hh —headers contain the interface of a class (also .H, .hxx, .hpp, ...)
.cc — files contain the implementation of a class (also .C, .cxx, .cpp, ...)

Alright, then what is a class?
* Aclassis a design entity representing a part of the solution to your problem.
» Different people will create different solutions (and classes!)

o
@)
c
O
B
c
(d
)
()]
s
O
2
o)
@)
—
>
<
@)
()]
i

A
Y
UNICAMP DD Chinellato - Introduction to C++

#include "Cell.hh"

int Cell::evolve(Cellx neighbors[]) {
int stateInfo = 4x(neighbors[@])->getState() + 2 x state + (neighbors[1])->getState();
return RuleSet[stateInfol;

Remember: In C++:
.hh —headers contain the interface of a class (also .H, .hxx, .hpp, ...)
.cc — files contain the implementation of a class (also .C, .cxx, .cpp, ...)

Alright, then what is a class?
A class is a design entity representing a part of the solution to your problem.
Different people will create different solutions (and classes!)
To be more precise, the class is a ‘blueprint’ of the actual entity. It’s the project for
a car, but is not a car yet, and has no state, behavior, etc: it cannot store data or
answer to messages.

o
@)
c
O
B
c
(d
)
()]
s
O
2
o)
@)
—
>
<
@)
()]
i

A
Y
UNICAMP DD Chinellato - Introduction to C++

#include "Cell.hh"

int Cell::evolve(Cellx neighbors[]) {
int stateInfo = 4x(neighbors[@])->getState() + 2 x state + (neighbors[1])->getState();
return RuleSet[stateInfol;

Remember: In C++:
.hh —headers contain the interface of a class (also .H, .hxx, .hpp, ...)
.cc — files contain the implementation of a class (also .C, .cxx, .cpp, ...)

Alright, then what is a class?
A class is a design entity representing a part of the solution to your problem.
Different people will create different solutions (and classes!)
To be more precise, the class is a ‘blueprint’ of the actual entity. It’s the project for
a car, but is not a car yet, and has no state, behavior, etc: it cannot store data or
answer to messages.
When you ‘create a car’ from this blueprint, i.e. generate an object from a class,
this is called instantiation. This object is a real entity: it has state and behavior!
An interface fully defines what an object can do (or what messages it can answer)

o
@)
c
O
B
c
(d
)
()]
s
O
2
o)
@)
—
>
<
@)
()]
i

A
Y
UNICAMP DD Chinellato - Introduction to C++

#include "Cell.hh"

int Cell::evolve(Cellx neighbors[]) {
int stateInfo = 4x(neighbors[@])->getState() + 2 x state + (neighbors[1])->getState();
return RuleSet[stateInfol;

Remember: In C++:
.hh —headers contain the interface of a class (also .H, .hxx, .hpp, ...)
.cc — files contain the implementation of a class (also .C, .cxx, .cpp, ...)

Alright, then what is a class?
A class is a design entity representing a part of the solution to your problem.
Different people will create different solutions (and classes!)
To be more precise, the class is a ‘blueprint’ of the actual entity. It’s the project for
a car, but is not a car yet, and has no state, behavior, etc: it cannot store data or
answer to messages.
When you ‘create a car’ from this blueprint, i.e. generate an object from a class,
this is called instantiation. This object is a real entity: it has state and behavior!
An interface fully defines what an object can do (or what messages it can answer)
The object is the core entity of C++ programming. A C++ program can be seen as a
‘network of objects’ which interact with each other.

o
@)
c
O
B
c
(d
)
()]
s
O
2
o)
@)
—
>
<
@)
()]
i

A
Y
UNICAMP DD Chinellato - Introduction to C++

o
@)
c
O
B
c
(d
)
()]
s
O
2
o)
@)
—
>
<
@)
()]
i

N
v

UNICAMP

#include "Cell.hh"

int Cell::evolve(Cellx neighbors[]) {
int stateInfo = 4x(neighbors[@])->getState() + 2 x state + (neighbors[1])->getState();
return RuleSet[stateInfol;

Remember: In C++:
.hh —headers contain the interface of a class (also .H, .hxx, .hpp, ...)
.cc — files contain the implementation of a class (also .C, .cxx, .cpp, ...)

Alright, then what is a class?
A class is a design entity representing a part of the solution to your problem.
Different people will create different solutions (and classes!)
To be more precise, the class is a ‘blueprint’ of the actual entity. It’s the project for
a car, but is not a car yet, and has no state, behavior, etc: it cannot store data or
answer to messages.
When you ‘create a car’ from this blueprint, i.e. generate an object from a class,
this is called instantiation. This object is a real entity: it has state and behavior!
An interface fully defines what an object can do (or what messages it can answer)
The object is the core entity of C++ programming. A C++ program can be seen as a
‘network of objects’ which interact with each other.
Or, alternatively: each object can ask another to do something and return a result
(which is known as delegation)

DD Chinellato - Introduction to C++

#ifndef _PLAYGROUND_H_
#define _PLAYGROUND_H_

#include "Cell.hh"

using namespace std;

class Playground {

private: When defining the playground class,

Cellxx currentArena;

Cell* nextArena; we can now make ample use of the

Cellsx tmpArena;

int RuleSet[8]; ‘cell’ class!
int rule;

int size;

Playground

public:
Playground(int aSize, int aRule) {
size = aSize;
rule = aRule;

currentArena new Cellx[sizel;
nextArena new Cellx[sizel;

createRuleSet();

for(int idx=0; idx<size; idx++) {
currentArenal[idx] = new Cell(®@, RuleSet);
nextArenal[idx] = new Cell(@, RuleSet);
¥

initCurrentArena();

Object Definition

}

virtual ~Playground() {
delete[] currentArena;
delete[] nextArena;

}

1D CAvl

void createRuleSet();
void initCurrentArena();
void nextGeneration();

| void printArena();

s

#endif

N

v

UNICAMP DD Chinellato - Introduction to C++

#ifndef _PLAYGROUND_H_
#define _PLAYGROUND_H_

#include "Cell.hh"

using namespace std;

private:

class Playground { {
Cellxx currentArena;
| |

When defining the playground class,
Celli* nextArena; we can now make ample use of the
Cellsx tmpArena; | |

int RuleSet[8]; ‘cell’ class!
int rule;
int size; —
public:
Playground(int aSize, int aRule) {
size = aSize;
rule = aRule;

currentArena new Cellx[sizel;
nextArena new Cellx[sizel;

createRuleSet();

for(int idx=0; idx<size; idx++) {
currentArenal[idx] = new Cell(®@, RuleSet);
nextArenal[idx] = new Cell(@, RuleSet);

¥

initCurrentArenal();

}

virtual ~Playground() {
delete[] currentArena;

delete[] nextArena; The playground contains the

| (discrete!) time evolution method
void createRuleSet();]]
void initCurrentArena(); (which will have to call Cell::Evolve!)

void nextGeneration()¥
| void printArena();
s
#endif

}

@)
C
)
@)
S
oo
>

0

a
c
@)

B
C

(d
)

()]

i)
O

2

0

@)

—
>

<

@)

()]

i

A
Y
UNICAMP DD Chinellato - Introduction to C++

#include <iostream>
#include "Playground.hh"

using namespace std;

Among other simple setup
void Playground::createRuleSet() {

for(int idx=0; idx<8; idx++) { functions... There is the most

RuleSet [idx] = (rule >> idx) & 1; . .) .
y o eeTea = Are = A important ingredient: the evolution!

b

void Playground::nextGeneration() {
Cellx neighborhood[2];

for(int idx=0; idx<size; idx++) {
int pidx = (idx-1)<@?(size-1):(idx-1);
neighborhood[@] = currentArenalpidx];
neighborhood[1] = currentArenal[(idx+1)%sizel;
(nextArenal[idx])->setState((currentArenal[idx])->evolve(neighborhood));
}
tmpArena currentArena;
currentArena nextArena;
nextArena tmpArena;

b

void Playground::initCurrentArena() {
// impulse
(currentArenalsize/2])->setState(1);

}

void Playground::printArena() {
for(int idx=0; idx<size; idx++) {
if((currentArenalidx])->getState()) {
cout << "o";
} else {

cout <<
}

@)
C
)
@)
S
oo
>

0

(a
c
@)

B
C

(d
)

()]

i)
O

2

0

@)

—
>

<

@)

()]

i

}
| cout << endl;

A
Y
UNICAMP DD Chinellato - Introduction to C++

#include <iostream>
#include "Playground.hh"

using namespace std;

Among other simple setup
void Playground::createRuleSet() {

for(int idx=0; idx<8; idx++) { functions... There is the most

Ruleset [idx] = (rule >> idx) & 1; . .) .
y o ooeReRn = ATe = A important ingredient: the evolution!

b

void Playground::nextGeneration() {
Cellx neighborhood[2];

for(int idx=0; idx<size; idx++) {
int pidx = (idx-1)<@?(size-1):(idx-1);
neighborhood[@] = currentArenalpidx];
neighborhood[1] = currentArenal(idx+1)%size];
(nextArenal[idx])->setState((currentArenalidx])->evolve(neighborhood));
}
tmpArena currentArena;
currentArena nextArena;
nextArena tmpArena;

} Here, we call Cell:Evolve (where the

void Playground::initCurrentArena() { evolution rule is!) to determine
// impulse p) .
(currentArenalsize/2])->setState(1); nextarena’, the array with the next

states!

}

void Playground::printArena() {
for(int idx=0; idx<size; idx++) {
if((currentArenalidx])->getState()) {
cout << "o";
} else {

cout <<
}

@)
C
)
@)
S
oo
>

0

(a
c
@)

B
C

(d
)

()]

i)
O

2

0

@)

—
>

<

@)

()]

i

¥
| cout << endl;

A
Y
UNICAMP DD Chinellato - Introduction to C++

#include<iostream>
#include "Cell.hh"
#include "Playground.hh"

#define PLAYGROUND_SIZE 80
#define GENERATIONS 100
#define RULE 30

int main (int argc, const char x argv[]) {
Playground* myPlayground = new Playground(PLAYGROUND_SIZE, RULE);

for(int idx=0; idx<GENERATIONS; idx++) {
myPlayground->nextGeneration();
myPlayground->printArena();

return 0;

Code simplicity:
* When using classes, your code will be modular, and the main program
will be exceedingly simple — such as the one above!

...and this was the 1D CA v1. Let’s improve!

)
§S;
@)
O
&
(G
| -
oT0)
@)
S
a
=
T
=
—
>
<
O
()]
—

A
Y
UNICAMP DD Chinellato - Introduction to C++

The One-dimensional Cellular Automaton
Version 2.0

v2. Abstract Classes and Inheritance
v1. Basic Class Definition

UUUUUUU DD Chinellato - Introduction to C++ 16

#ifndef _ABSCELL_H_
#define _ABSCELL_H_

class AbsCell {

public:
virtual ~AbsCell() {};

virtual int evolve(AbsCellx neighbors[])=0; = Purely virtual methods!
virtual int getState()=0; This essentially tells
virtual int setState(int)=0;

the compiler: ‘wait for it...’

};

#endif

e This is an abstract class: a class that cannot be instantiated. It does define an
interface, but does not define the behavior associated to said interface.

o
O
i)
O
O
S
o+
%)
i)
<
c
o
5
c
=
)
()]
i)
O
2
o)
O
N
>
<
@)
()]
—i

A
Y
UNICAMP DD Chinellato - Introduction to C++

#ifndef _ABSCELL_H_
#define _ABSCELL_H_

class AbsCell {

public:
virtual ~AbsCell() {};

virtual int evolve(AbsCellx neighbors[])=0; = Purely virtual methods!
virtual int getState()=0; This essentially tells
virtual int setState(int)=0;

the compiler: ‘wait for it...’

};

#endif

This is an abstract class: a class that cannot be instantiated. It does define an
interface, but does not define the behavior associated to said interface.

Real classes can be implemented from an abstract class via inheritance and
these classes will inherit the interface and will have to respond to these calls.

o
O
i)
O
O
S
o+
%)
i)
<
c
o
5
c
=
)
()]
i)
O
2
o)
O
N
>
<
@)
()]
—i

A
Y
UNICAMP DD Chinellato - Introduction to C++

#ifndef _ABSCELL_H_
#define _ABSCELL_H_

class AbsCell {

public:
virtual ~AbsCell() {};

virtual int evolve(AbsCellx neighbors[])=0; = Purely virtual methods!
virtual int getState()=0; This essentially tells
virtual int setState(int)=0;

the compiler: ‘wait for it...’

};

#endif

This is an abstract class: a class that cannot be instantiated. It does define an
interface, but does not define the behavior associated to said interface.

Real classes can be implemented from an abstract class via inheritance and
these classes will inherit the interface and will have to respond to these calls.
If B inherits from A, it will have to know how to answer to any calls that A is
able to respond to (but not vice versal)

o
O
i)
O
O
S
o+
%)
i)
<
c
o
5
c
=
)
()]
i)
O
2
o)
O
N
>
<
@)
()]
—i

A
Y
UNICAMP DD Chinellato - Introduction to C++

#ifndef _ABSCELL_H_
#define _ABSCELL_H_

class AbsCell {

public:
virtual ~AbsCell() {};

virtual int evolve(AbsCellx neighbors[])=0; = Purely virtual methods!
virtual int getState()=0; This essentially tells
virtual int setState(int)=0;

the compiler: ‘wait for it...’

};

#endif

This is an abstract class: a class that cannot be instantiated. It does define an
interface, but does not define the behavior associated to said interface.

Real classes can be implemented from an abstract class via inheritance and
these classes will inherit the interface and will have to respond to these calls.
If B inherits from A, it will have to know how to answer to any calls that A is
able to respond to (but not vice versal)

A classic example: the ‘Rectangle’ class can inherit from a ‘Shape’ class, which
has an abstract ‘Draw’ method. The ‘Rectangle’ can have a specialized ‘Draw’
to draw a rectangle.

o
O
i)
O
O
S
o+
%)
i)
<
c
o
5
c
=
)
()]
i)
O
2
o)
O
N
>
<
@)
()]
—i

A
Y
UNICAMP DD Chinellato - Introduction to C++

#ifndef _ABSCELL_H_
#define _ABSCELL_H_

class AbsCell {

public:
virtual ~AbsCell() {};

virtual int evolve(AbsCellx neighbors[])=0; = Purely virtual methods!
virtual int getState()=0; This essentially tells
virtual int setState(int)=0;

the compiler: ‘wait for it...’

};

#endif

This is an abstract class: a class that cannot be instantiated. It does define an
interface, but does not define the behavior associated to said interface.
Real classes can be implemented from an abstract class via inheritance and
these classes will inherit the interface and will have to respond to these calls.
If B inherits from A, it will have to know how to answer to any calls that A is
able to respond to (but not vice versal)
A classic example: the ‘Rectangle’ class can inherit from a ‘Shape’ class, which
has an abstract ‘Draw’ method. The ‘Rectangle’ can have a specialized ‘Draw’
to draw a rectangle.

| In C++, this forces the developer to correctly implement the full interface
S"’A defined in the object from which it inherits, or else

o
O
i)
O
O
S
o+
%)
i)
<
c
o
5
c
=
)
()]
i)
O
2
o)
O
N
>
<
@)
()]
—i

Y
UNICAMP DD Chinellato - Introduction to C++

#ifndef _CELL_H . .
#ée?iﬁe _CELL_H_ Here it is: Inheritance!

" . The class Cell inherits the interface
;nclude <iostream>

#include "AbsCell.hh" (and behavior, if defined) from
using namespace std; AbSCE”

class Cell: public AbsCell {
private:

int state;
int RuleSet[8]; One can also say:

public: Cell conforms to, or implements,

Cell() { state = 0; } the AbsCell interface
Cell(int aState): state(aState) {}

Cell(int aState, intx aRuleSet) {
state = aState;
for(int i=0; i<8; i++) {
RuleSet[i] = aRuleSet[il;
}

}
virtual ~Cell() {}
virtual int evolve(AbsCellx neighbors[]);
virtual int getState() {
return state;
}
virtual int setState(int aState) {
state = aState;
}
}s

#endif

o
@)
c
O
B
c
(d
)
()]
s
O
2
o)
@)
N
>
<
@)
()]
i

A
Y
UNICAMP DD Chinellato - Introduction to C++

o
@)
c
O
B
c
(d
)
()]
s
O
2
o)
@)
N
>
<
@)
()]
i

N
v

UNICAMP

#ifndef _CELL_H_
#define _CELL_H_

#include <iostream>
#include "AbsCell.hh"

using namespace std;
class Cell: public AbsCell {
private:

int state;

int RuleSet[8];

public:
Cell() { state = 0; }

Cell(int aState): state(aState) {}

Cell(int aState, intx aRuleSet) {
state = aState;
for(int i=@; i<8; i++) {

RuleSet[i] = aRuleSet[i];

}

}

virtual ~Cell() {}

virtual int evolve(AbsCellx neighbors[]);

virtual int getState() {
return state;

}

virtual int setState(int aState) {
state = aState;

}

}s

#endif

DD Chinellato - Introduction to C++

Here it is: Inheritance!
The class Cell inherits the interface
(and behavior, if defined) from
AbsCell.

One can also say:
Cell conforms to, or implements,
the AbsCell interface

{ And here, we specialize the evolve
l method defined in AbsCell ...

#ifndef _PLAYGROUND_H_
#define _PLAYGROUND_H_
#include "Cell.hh"

using namespace std;

Now we can replace most of the
lass Playground { calls to AbsCell in the playground as
D T calls to AbsCell, to take care of any

AbsCellxx nextArena;

AbsCellsk tmpArena; general cases...

int RuleSet[8];
int rule, size;

public:

Playground(int aSize, int aRule) { That’s alright: all cells here should

rule = aRule; have the needed interface.

currentArena = new AbsCellx[sizel;
nextArena new AbsCellx[size];

createRuleSet(); .
(But more on that in v3!)

for(int idx=0; idx<size; idx++) {
currentArenalidx] new Cell(@, RuleSet);
nextArena[idx] new Cell(@, RuleSet);

}
initCurrentArena();

}

virtual ~Playground() {
deletel[] currentArena;
delete[] nextArena;

¥

void createRuleSet();
void initCurrentArena();
void nextGeneration();
void printArena();

@)
C
)
@)
S
oo
>

0

a
c
@)

B
C

(d
)

()]

i)
O

2

0

@)

N
>

<

@)

()]

i

+;
#endif

A
Y
UNICAMP DD Chinellato - Introduction to C++

Wait, now which ::Evolve is called?

#include <iostream>
#include "Playground.hh"

using namespace std; There is one in AbsCell and one in Cell!

void Playground::createRuleSet() {
for(int idx=@; 1idx<8; idx++) {
RuleSet[idx] = (rule >> idx) & 1;
}

i

void Playground::nextGeneration() {
AbsCellx neighborhood[2];

for(int idx=0; idx<size; idx++) {
int pidx = (idx-1)<@?(size-1):(idx-1);
neighborhood[0] currentArenalpidx];
neighborhood[1] currentArena[(idx+1)%%ize];
(nextArena[idx])—>setState((currentArenal[idx])->evolve(neighborhood));
¥
tmpArena currentArena;
currentArena nextArena;
nextArena tmpArena;

¥

void Playground::initCurrentArena() {
// impulse
(currentArenalsize/2])->setState(1);

}

void Playground::printArena() {
for(int idx=0; idx<size; idx++) {
if((currentArenalidx])->getState()) {
cout << "o";
} else {
cout << " "
¥

@)
C
)
@)
S
oo
>

0

(a
c
@)

B
C

(d
)

()]

i)
O

2

0

@)

N
>

<

@)

()]

i

}
| cout << endl;

A
Y
UNICAMP DD Chinellato - Introduction to C++

Wait, now which ::Evolve is called?
#include <iostream>)
#include "Playground.hh"]

using namespace std; There is one in AbsCell and one in Cell!

void Playground::createRuleSet() {
for(int idx=0; idx<8; idx++) {

, Rutesetlidx = (rule >> idx) & 1; C++ will take the definition from the

¥ non-abstract class: the one which
void Playground::nextGeneration() { ; : . ‘ ’ .
AbSCELLs neighborhood [2] mherlted. the mterface (e.g. ‘Cell’). This
is what ‘virtual’ does!

for(int idx=0; idx<size; idx++) {
int pidx = (idx-1)<@?(size-1):(idx-1);
neighborhood[0] = currentArenal[pidx];
neighborhood[1] = currentArena[(idx+1)%%Yize];
(nextArena[idx])—>setState((currentArenal[idx])->evolve(neighborhood));

¥

tmpArena currentArena;
currentArena nextArena;
nextArena tmpArena;

¥

void Playground::initCurrentArena() {
// impulse
(currentArenalsize/2])->setState(1);

}

void Playground::printArena() {
for(int idx=0; idx<size; idx++) {
if((currentArenalidx])->getState()) {
cout << "o";
} else {
cout << " "
¥

@)
C
)
@)
S
oo
>

0

(a
c
@)

B
C

(d
)

()]

i)
O

2

0

@)

N
>

<

@)

()]

i

}
| cout << endl;

A
Y
UNICAMP DD Chinellato - Introduction to C++

Wait, now which ::Evolve is called?
#include <iostream>)
#include "Playground.hh"]

using namespace std; There is one in AbsCell and one in Cell!

void Playground::createRuleSet() {
for(int idx=0; idx<8; idx++) {

, Rutesetlidx = (rule >> idx) & 1; C++ will take the definition from the

¥ non-abstract class: the one which
void Playground::nextGeneration() { ; : . ‘ ’ .
AbSCELLs neighborhood [2] mherlted. the mterface (e.g. ‘Cell’). This
is what ‘virtual’ does!

for(int idx=0; idx<size; idx++) {
int pidx = (idx-1)<@?(size-1):(idx-1);
neighborhood[0] = currentArenal[pidx];
neighborhood[1] = currentArena[(idx+1)%%Yize];
(nextArena[idx])—>setState((currentArenal[idx])->evolve(neighborhood));

¥

tmpArena currentArena;
currentArena nextArena;
nextArena tmpArena;

} . :
This is very powerful! You can make function
void Playground::initCurrentArena() {

// impulse calls using the known interface without the

(currentArenalsize/2])->setState(1);

} function itself even being defined in a
void Playground: :printArena() { particular context... The binding will take

for(int idx=0; idx<size; idx++) { i :
if((currentArenalidx])->getState()) { place later! (bUt it still has to take pIace!)

cout << "o";
} else {

cout << ;
}

@)
C
)
@)
S
oo
>

0

(a
c
@)

B
C

(d
)

()]

i)
O

2

0

@)

N
>

<

@)

()]

i

}
| cout << endl;

A
Y
UNICAMP DD Chinellato - Introduction to C++

Wait, now which ::Evolve is called?
#include <iostream>)
#include "Playground.hh"]

using namespace std; There is one in AbsCell and one in Cell!

void Playground::createRuleSet() {
for(int idx=0; idx<8; idx++) {

, Rutesetlidxd = (rute > idx) & 1; C++ will take the definition from the

¥ non-abstract class: the one which
void Playground::nextGeneration() { ; H . ‘ ’ .
ADSCALUs neighborhood (2] mherlted. the mterface (e.g. ‘Cell’). This
is what ‘virtual’ does!

for(int idx=0; idx<size; idx++) {
int pidx = (idx-1)<@?(size-1):(idx-1);
neighborhood[@] = currentArenal[pidx];
neighborhood[1] = currentArena[(idx+1)%%Yize];
(nextArena[idx])—>setState((currentArenal[idx])->evolve(neighborhood));

¥

tmpArena currentArena;
currentArena nextArena;
nextArena tmpArena;

} . :
This is very powerful! You can make function
void Playground::initCurrentArena() {

// impulse calls using the known interface without the

(currentArenalsize/2])->setState(1);

} function itself even being defined in a
void Playground: :printArena() { particular context... The binding will take

for(int idx=0; idx<size; idx++) { : ;
LT ((Curronthrenaladul) saetstate()) { place later! (but it still has to take place!)

cout << "o",;
} else {

@)
C
)
@)
S
oo
>

0

(a
c
@)

B
C

(d
)

()]

i)
O

2

0

@)

N
>

<

@)

()]

i

cout << ;

| , } ...and this was the 1D CA v2. Let’s improve!

cout << endl;

A
Y
UNICAMP DD Chinellato - Introduction to C++

The One-dimensional Cellular Automaton
Version 3.0

v3. Template Classes
v2. Abstract Classes and Inheritance
v1. Basic Class Definition

UNICAMP DD Chinellato - Introduction to C++ 21

What if we have other Cell types?...

* So far, so good! But... what if somebody asks us to define a
different type of Cell (which conforms to AbsCell)?

 Would we have to rewrite the whole playground?

UUUUUUU

22

What if we have other Cell types?...

* So far, so good! But... what if somebody asks us to define a
different type of Cell (which conforms to AbsCell)?

 Would we have to rewrite the whole playground?

e Naturally not!

* There are nearly infinite possibilities, so....
 What if we could tell playground to accept multiple class types, somehow?

22

UUUUUUU

What if we have other Cell types?...

So far, so good! But... what if somebody asks us to define a
different type of Cell (which conforms to AbsCell)?

Would we have to rewrite the whole playground?

Naturally not!

* There are nearly infinite possibilities, so....
 What if we could tell playground to accept multiple class types, somehow?

For that, we can use templates!
* These are structures that have parametric arguments which can be of various
classes (or, generally, types)
* They are extremely powerfull They form the basis of ‘generic programming’, see:
* http://en.wikipedia.org/wiki/Generic_programming

Here, we will merely cover a super simple example!

#ifndef _PLAYGROUND_H_
#define _PLAYGROUND_H_

#include "AbsCell.hh"
using namespace std;

template <class T> class Playground {
private:

AbsCellxx currentArena;

AbsCellxx nextArena;

AbsCellx* tmpArena;

int RuleSet[8];

int rule, size;

public:
Playground(int aSize, int aRule) {
size aSize;

rule aRule;

new AbsCellx[sizel;
new AbsCellx[sizel;

currentArena
nextArena

this—>createRuleSet();

for(int idx=0; idx<size; idx++) {
currentArenalidx] new T(@, RuleSet);
nextArenal[idx] new T(@, RuleSet);

}

this—>initCurrentArena();

b

virtual ~Playground() {
deletel]l currentArena;
delete[] nextArena;

}

@)
C
)
@)
S
oo
>

0

(a
c
@)

B
C

(d
)

()]

i)
O

2

0

@)

™
>

<

@)

()]

i

void createRuleSet();

void initCurrentArena();

| void nextGeneration();
void printArenal();

This is a ‘playground’ template!

Here, we tell the compiler that this
is a template definition and the
class T is an (as of yet) unidentified
argument to playground

A
Y
UNICAMP DD Chinellato - Introduction to C++

@)
C
)
@)
S
oo
>

0

(a
c
@)

B
C

(d
)

()]

i)
O

2

0

@)

™
>

<

@)

()]

i

N
v

UNICAMP

#ifndef _PLAYGROUND_H_
#define _PLAYGROUND_H_

#include "AbsCell.hh"
using namespace std;

template <class T> class Playground {
private:

AbsCellxx currentArena;

AbsCellxx nextArena;

AbsCellx* tmpArena;

int RuleSet[8];

int rule, size;

public:
Playground(int aSize, int aRule) {
size aSize;

rule aRule;

new AbsCellx[sizel;
new AbsCellx[sizel;

currentArena
nextArena

this—>createRuleSet();

for(int idx=0; idx<size; idx++) {
currentArenalidx] new T(@, RuleSet);
nextArenal[idx] new T(@, RuleSet);

}

this—>initCurrentArena();

b

virtual ~Playground() {
deletel]l currentArena;
delete[] nextArena;

}

void createRuleSet();
void initCurrentArena();
void nextGeneration();
void printArenal();

This is a ‘playground’ template!

Here, we tell the compiler that this
is a template definition and the
class T is an (as of yet) unidentified
argument to playground

The compiler knows nothing about
T until | start using the playground.
Then, when | instantiate a
playground, | will have to define
what the class T is!

DD Chinellato - Introduction to C++

#include<iostream>
#include "Playground.hh"
#include "Cell.hh"

#define PLAYGROUND_SIZE 80
#define GENERATIONS 100
#define RULE 30

int main (int argc, const char x argvl[]) {
Playground<Cell>x myPlayground = new Playground<Cell>(PLAYGROUND_SIZE, RULE);

for(int idx=0; idx<GENERATIONS; idx++) {
myPlayground->nextGeneration();

myPlayground—>printArena(); - And this is the
}

instantiation!
return 0;

Essentially, we passed the ‘Cell’ class as an argument to the template of
playground. When we did this, the compiler used the template to provide a
“customized” playground class in which ‘T" was ‘Cell’, and carried on!

| ...and this was the 1D CA v3. Let’s improve!

A
Y
UNICAMP DD Chinellato - Introduction to C++

@)
C
)
@)
S
oo
>

0

(a
c
@)

B
C

(d
)

()]

i)
O

2

0

@)

™
>

<

@)

()]

i

The One-dimensional Cellular Automaton
Version 4.0

v4. Delegation and more
v3. Template Classes
v2. Abstract Classes and Inheritance

v1. Basic Class Definition

N
eV
UNICAMP DD Chinellato - Introduction to C++ 25

#ifndef _ABSCELL_H_
#define _ABSCELL_H_

#include <iostream>
class AbsCell {

public:
virtual ~AbsCell() {};

virtual int evolve(AbsCellx neighbors[])=0;
virtual int getState()=0;
virtual int setState(int)=0;)
virtual void print()=0; . Shouldn’t the cell
s always know how to

) _ ,
#endif display itself:

Responsibility: Who should do what?

Shouldn’t the AbsCell decide how to display itself?

Somebody should, and everybody should be able to delegate the task of
drawing to the cell (any cell!) of AbsCell type!

o
)
)
o
()
S
)
v
O
<
c
@)
B
c
=
)
()]
i)
O
9
0
O
<
>
<
O
()]
—

A
Y
UNICAMP DD Chinellato - Introduction to C++

Cell / Cell3

c
@)
B
c
=
)
()]
o
O
2
o)
O

1D CAv4

#ifndef _CELL_H_
#define _CELL_H_

#include <iostream>
#include "AbsCell.hh"

using namespace std;
class Cell: public AbsCell {
private:

int state;

int RuleSet[8];

public:
Cell() { state = 0; }

Cell(int aState): state(aState) {}
Cell(int aState, intx aRuleSet) {

state = aState;

for(int i=0; i<8; i++) {

RuleSet[i] = aRuleSet[i];

}
}
virtual ~Cell() {}
virtual int evolve(AbsCellx neighbors[]);
virtual int getState() {

return state;
¥

virtual int setState(int aState) {
state = aState;
}

virtual void print();

¥

#ifndef _CELL3_H_
#define _CELL3_H_

#include <iostream>
#include "AbsCell.hh"

using namespace std;

class Cell3: public AbsCell {
private:

int state;
int RuleSet[8];

public:

};

Cell3() { state = 0; }
Cell3(int aState): state(aState) {}
Cell3(int aState, intx aRuleSet) {
state = aState;
for(int i=0; i<8; i++) {
RuleSet[i] = aRuleSet[i];
}
}
virtual ~Cell3() {}
virtual int evolve(AbsCellx neighbors[]);
virtual int getState() {

return state;
}

virtual int setState(int aState) {
state = aState;
}

virtual void print();

| #endif #endif

g\"/& [* Two Cell Types: Cell and Cell3, both conform to AbsCell but otherwise identical! l

Y
UNICAMP DD Chinellato - Introduction to C++ 27

Cell / Cell3

c
@)
B
c
=
)
()]
o
O
2
o)
O

1D CAv4

#ifndef _CELL_H_
#define _CELL_H_

#include <iostream>
#include "AbsCell.hh"

using namespace std;
class Cell: public AbsCell {
private:

int state;

int RuleSet[8];

public:
Cell() { state = 0; }

Cell(int aState): state(aState) {}
Cell(int aState, intx aRuleSet) {

state = aState;

for(int i=0; i<8; i++) {

RuleSet[i] = aRuleSet[i];

}
}
virtual ~Cell() {}
virtual int evolve(AbsCellx neighbors[]);
virtual int getState() {

return state;
¥

virtual int setState(int aState) {
state = aState;
}

virtual void print();

¥

#ifndef _CELL3_H_
#define _CELL3_H_

#include <iostream>
#include "AbsCell.hh"

using namespace std;

class Cell3: public AbsCell {
private:

int state;
int RuleSet[8];

public:

};

Cell3() { state = 0; }
Cell3(int aState): state(aState) {}
Cell3(int aState, intx aRuleSet) {
state = aState;
for(int i=0; i<8; i++) {
RuleSet[i] = aRuleSet[i];
}
}
virtual ~Cell3() {}
virtual int evolve(AbsCellx neighbors[]);
virtual int getState() {

return state;
}

virtual int setState(int aState) {
state = aState;
}

virtual void print();

Let’s play with this....

| #endif #endif

g\"/& [* Two Cell Types: Cell and Cell3, both conform to AbsCell but otherwise identical! l

Y
UNICAMP DD Chinellato - Introduction to C++ 27

#include "Cell.hh"

int Cell::evolve(AbsCellx neighbors[]) {
int stateInfo = 4x(neighbors[0])->getState() + 2 * state + (neighbors[1])->getState();
return RuleSet[stateInfol;

}

void Cell::print() {
if(state) { I I

cout <<|"o0";
} else {

cout << H
}

#include "Cell3.hh"

int Cell3::evolve(AbsCellx neighbors[]) {
int stateInfo = 4x(neighbors[@])->getState() + 2 * state + (neighbors[1])->getState();
return RuleSet[stateInfol;

by

void Cell3::print() {
if(state) {
cout <<
} else {
cout << " ";
}

™
o
@)
S~
o
@)
c
@)
B
c
=
)
()]
i)
O
2
0
@)
<
>
<
@)
()]
i

* They get drawn slightly differently, but the interface to the call is already
| defined in AbsCell! (i.e. even before the compiler knows of any specific ::print())
QW

Y
UNICAMP DD Chinellato - Introduction to C++

template <class T> void Playground<T>::printArena() {
for(int idx=0; idx<size; idx++) {
(currentArenalidx])—->print();

}

cout << endl;

It looks like a small enough change: let’s make sure to invoke AbsCell::print() when
the playground gets asked to printArena()

1D CA v4: Object Definition: Playground

N

v

UNICAMP DD Chinellato - Introduction to C++ 29

template <class T> void Playground<T>::printArena() {
for(int idx=0; idx<size; idx++) {
(currentArenalidx])—->print();

}

cout << endl;

It looks like a small enough change: let’s make sure to invoke AbsCell::print() when
the playground gets asked to printArena()

...but actually, this is a good example of delegation: the Playground class delegates
the print task to the Cell, instead of drawing on screen by itself, as it was doing
before. Now the Cell will print out, not Playground!

1D CA v4: Object Definition: Playground

N

v

UNICAMP DD Chinellato - Introduction to C++ 29

#include<iostream> o] ,
#include "Playground.hh" This is short and concise, but we’ve

#include "Cell.hh" i |
e s R used a lot of techniques here!

#define PLAYGROUND_SIZE 80
#define GENERATIONS 100 The first playground is filled with

#define RULE 30] .
o” while the secondis ™.”

\

int main (int argc, const char % argv[]) {
Playground<Cell>x myPlayground = new Playground<Cell>(PLAYGROUND_SIZE, RULE);

for(int idx=0; idx<GENERATIONS; idx++) {
myPlayground->nextGeneration();
myPlayground—>printArena();

}

cout << endl << "And now for something completely different... " << endl;

Playground<Cell3>% myPlayground2 = new Playground<Cell3>(PLAYGROUND_SIZE, RULE);
for(int idx=0; 1dx<GENERATIONS; idx++) {

myPlayground2->nextGeneration();

myPlayground2->printArena();

}

_GJ.
®)

@)
@)
©
=
L

c

@)
B

C
d
)
)]
i)
(®)
2
0
@)
<
>
<
@)
M)
—

return 0;

N ...and this was the 1D CA v4

Y
UNICAMP DD Chinellato - Introduction to C++ 30

And that was it for now...

e |f you didn’t know C++ (or some of it)

e ..you might not have learned it today... Sorry.
e But that was not quite the idea! Hopefully, you got something from this...

UNICAMP DD Chinellato - Introduction to C++

31

And that was it for now...

e |f you didn’t know C++ (or some of it)

e ..you might not have learned it today... Sorry.
e But that was not quite the idea! Hopefully, you got something from this...

* |t takes time...
* Yes, some of us are physicists and not programmers, but that’s no excuse!

UNICAMP DD Chinellato - Introduction to C++

31

And that was it for now...

e |f you didn’t know C++ (or some of it)

e ..you might not have learned it today... Sorry.
e But that was not quite the idea! Hopefully, you got something from this...

* |t takes time...
* Yes, some of us are physicists and not programmers, but that’s no excuse!

* |n the end, like it or not, it’s a tool
 And one that is as powerful as we can make it

NG

a¥

UNICAMP DD Chinellato - Introduction to C++

31

And that was it for now...

|f you didn’t know C++ (or some of it)

e ..you might not have learned it today... Sorry.
e But that was not quite the idea! Hopefully, you got something from this...

It takes time...
* Yes, some of us are physicists and not programmers, but that’s no excuse!

In the end, like it or not, it’s a tool
 And one that is as powerful as we can make it

Object oriented programming: a different way of thinking
e Butit’s not exclusive to C++!

NG

a¥

UNICAMP DD Chinellato - Introduction to C++ 31

And that was it for now...

|f you didn’t know C++ (or some of it)
e ..you might not have learned it today... Sorry.
e But that was not quite the idea! Hopefully, you got something from this...

It takes time...
* Yes, some of us are physicists and not programmers, but that’s no excuse!

In the end, like it or not, it’s a tool
 And one that is as powerful as we can make it

Object oriented programming: a different way of thinking
e Butit’s not exclusive to C++!

The more you know about what’s out there...
e ..thelessyou’ll be surprised. And nobody likes to be surprised...

a¥

UNICAMP DD Chinellato - Introduction to C++

31

