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Introduction
● This wants to be a hands-on approach to the 

basic DAQ hardware
– We will discuss two different experiments, 

requiring different techniques and components
– We also have some good real data to discuss
– You will see, we are talking about real life here

● Acknowledgements
– © Wainer Vandelli (CERN/PH-ATD)  
– © Sergio Ballestrero (Univ. Johannesburg & CERN)

● Material and ideas have been taken from CERN 
Summer Student lectures of P.Farthouat, C.Joram 
and O.Ullaland
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Outline
● Introduction
● Measure energy deposition

– Scintillator setup
– Photomultiplier
– Analog-to-Digital conversion
– Charge-to-Digital conversion
– QDC in real life

● Measure position
– Wire chamber setup
– Time-to-Digital conversion
– TDC in real life

● Corollary

1st experiment
NEXT EXIT
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Energy measurement

● Measure energy deposited by a particle traversing a medium
● The medium (detector) is a scintillator 

– Molecules, excited by the passing particle, relax emitting light
– The amount of light is proportional to the deposited energy

● The light is then 
– collected, using dedicated optical means (light guide)
– fed into a photo-detector: photomultiplier

Scintillator Light
guide

Photomultiplier

HV

Signal
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Photomultiplier

● Photo cathode: photon to electron conversion 
via photo-electric effect
– typical quantum efficiency ≈1-10% (max 30%), 

depends on material and wavelength

● Dynodes: electrodes that amplify the number 
of electrons thanks to secondary emission
– typical overall gain ≈106

● Dark current: noise
– current flowing in PMT without light

AnodePhoto
Cathode

    ­HV

Dynodes

i(t)
­(4/5)HV

­(3/5)HV

­(2/5)HV

­(1/5)HV



Andrea.Negri@unipv.it DAQ HW 6

Start the measure
● Approximate Q measurement using oscilloscope

– Linear approximation of a exponential decay 

20ns

100mV

i(t)

V(t)

R=50
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Good old oscilloscope 
● Approximate Q measurement using oscilloscope

– Linear approximation of a exponential decay 

20ns

100mV

i(t)

V(t)

R=50

b
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Good old oscilloscope 
● Approximate Q measurement using oscilloscope

– Linear approximation of a exponential decay 

● Easy, but
– Deadtime 5 min, ~3000%/Hz (if you are good)
– Necessary to encode data into some sort of electronic 

format by hand

● Wouldn't be much more convenient to have a direct 
electronic measurement? 
– It could save the data in some digital format and fill a histogram 

on-line. Wouldn't be cool?

● N.B.: the oscilloscope method 
is still fundamental
– it allows for the validation of your DAQ
– yes, you should never thrust it a priori!
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Analog to Digital Conversion
● Digitization

– Encoding an analog value into 
a binary representation

– By comparing entity with a ruler

● Flash ADC simplest and fastest 
implementation
– M comparisons in parallel
– Input voltage Vin compared with M 

fractions of a reference voltage
● (1/2) Vref /M → (M-1/2) Vref  /M

– Result is encoded into a compact 
binary form of N bits

● N=Log2 (M+1)
● E.g.: M=3 → N=2

Entity to be measured

Ruler unit

Flash ADC

Encoder

start
R/2 #M

Vref

#1

Differential comparator

N=Log2 (M+1)

R

R

R

Vin
busy

R/2
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Analog to Digital Conversion
● Digitization

– Encoding an analog value into 
a binary representation

– By comparing entity with a ruler

● Flash ADC simplest and fastest 
implementation
– M comparisons in parallel
– Input voltage Vin compared with M 

fractions of a reference voltage
● (1/2) Vref /M → (M-1/2) Vref  /M

– Result is encoded into a compact 
binary form of N bits

● N=Log2 (M+1)
● E.g.: M=3 → N=2

Entity to be measured

Ruler unit

x = V
in
/V

ref
Comparison

results
Encoded

form

x <1/6 000 00

1/6≤ x <3/6 001 01

3/6≤ x <5/6 011 10

5/6≤ x 111 11

Flash ADC

Encoder

start
R/2 #3

Vref

#1

Differential comparator

2=Log2 (3+1)

R

R

Vin
busy

R/2

#2
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ADC Characteristics
● Resolution (LSB), the ruler unit: Vmax/N 

– e.g.: 1V and 8bit (N=256) → LSB = 3.9 mV

● Quantization error: LSB/2 

● Dynamic range: ratio largest /smallest value (in log2) 
– N for linear ADC
– >N  for non-linear ADC (Constant relative resolution on the 

valid input range)

● Many different ADC technique exists 
– mostly because of the trade-off between speed and resolution
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ADC Accuracies
● ADC transfer function

– Output code vs analog input

ADC Transfer functionADC Transfer function
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ADC (In)Accuracies

ADC Transfer functionADC Transfer function

● ADC transfer function
– Output code vs analog input

integral
non-linearity

differential
non-linearity
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ADC (In)Accuracies

ADC Transfer functionADC Transfer function

● ADC transfer function
– Output code vs analog input

Extrime
differential

non-linearity
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Charge to Digital
● ADC converts a voltage into a digital representation 

– However, in our experiment, we have a current and we 
are interested in the total charge

● We need a QDC (Charge to Digital Converter)
– Essentially an integration step 

followed by an ADC
– Integration requires limits → gate

delay QDC

Gate
gen.

0xa3, 0x15, 0x8d, … 
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Charge to Digital

delay QDC

Gate
gen.

0xa3, 0x15, 0x8d, … 

● ADC converts a voltage into a digital representation 
– However, in our experiment, we have a current and we 

are interested in the total charge

● We need a QDC (Charge to Digital Converter)
– Essentially an integration step 

followed by an ADC
– Integration requires limits → gate
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● Relative timing between signal and gate is important
– Delay tuning

● Gate should be large enough to contain the full pulse and to 
accommodate for the jitter
– Fluctuations are always with us!

● Gate should not be too large 
– Increases the noise level
– By the way, which is the noise contribution 

to our charge measurement?

QDC: timing

delay QDC

Gate
gen.

0xa3, 0x15, 0x8d, … 

f(x)

a b
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QDC spectra
● QDC spectra from data taken during a  

test beam @CERN (calorimetry R&D)

● But, what is the 1st peak?

QDC countQDC count
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QDC spectra
● QDC spectra from data taken during a  

test beam @CERN (calorimetry R&D)

● But, what is the 1st peak?

QDC countQDC count



Andrea.Negri@unipv.it DAQ HW 22

QDC: pedestal subtraction

delay QDC

Gate
gen.

0xa3, 0x15, 0x8d, … 

clock

● The pedestal can be measured with an out-of-phase trigger 
– PMT dark current, thermal noise, …
– The same noise enters our physics measurements and contributes 

with an offset to the distribution

● The result of a pedestal measurement has to be subtracted 
from our charge measurements
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● The result of a pedestal measurement has to be subtracted 
from our charge measurements
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QDC: pedestal subtraction
● The pedestal can be measured with an out-of-phase trigger 

– PMT dark current, thermal noise, …
– The same noise enters our physics measurements and contributes 

with an offset to the distribution

● The result of a pedestal measurement has to be subtracted 
from our charge measurements
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“Real” QDC at work
● PbWO4 (scintillating) crystal equipped with 

two PMTs and exposed to e,  and  beams 
– Real data from a test beam @CERN
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“Real” QDC at work
● PbWO4 (scintillating) crystal equipped with 

two PMTs and exposed to e,  and  beams 
– Real data from a test beam @CERN

QDC count

dN/dQ

-beam charge-distribution for one PMT
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“Real” QDC at work
● PbWO4 (scintillating) crystal equipped with 

two PMTs and exposed to e,  and  beams 
– Real data from a test beam @CERN

QDC count

dN/dQ

-beam charge-distribution for one PMT

But, what are all those little 
peaks? Just statistical 
fluctuations? 

Let's zoom in!
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QDC count

dN/dQ

“Real” QDC at work
● PbWO4 (scintillating) crystal equipped with 

two PMTs and exposed to e,  and  beams 
– Real data from a test beam @CERN

-beam charge-distribution for one PMT

Bin with N entries can 
fluctuate with  = N
  - expected N360~19
  - observed ~200 (10 )   

Spikes are regularly 
distributed
  - Some systematic effect
    must be taking place

Let's zoom in!
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“Real” QDC at work
● PbWO4 (scintillating) crystal equipped with 

two PMTs and exposed to e,  and  beams 
– Real data from a test beam @CERN

-beam charge-distribution for one PMT

QDC count

dN/dQ

415 & 416 → 0x19f & 0x1a0 
431 & 432 → 0x1af & 0x1b0
447 & 448 → 0x1bf & 0x1c0

Can you see the effect?   

-beam charge-distribution for one PMT



Andrea.Negri@unipv.it DAQ HW 30

“Real” QDC at work
● PbWO4 (scintillating) crystal equipped with 

two PMTs and exposed to e,  and  beams 
– Real data from a test beam @CERN

-beam charge-distribution for one PMT

QDC count

dN/dQ

415 & 416 → 0x19f & 0x1A0 
431 & 432 → 0x1Af & 0x1B0
447 & 448 → 0x1Bf & 0x1C0

Can you see the effect?   

The QDC prefers 
output of type 0x..0 
in respect of 0x..f
  where  =  + 1

-beam charge-distribution for one PMT
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Homework

-beam charge-distribution for one PMT

QDC count

dN/dQ

415 & 416 → 0x19f & 0x1A0 
431 & 432 → 0x1Af & 0x1B0
447 & 448 → 0x1Bf & 0x1C0

The QDC prefers 
output of type 0x..0 
in respect of 0x..f
  where  =  + 1

Can you see the effect?   

● Which is the simplest way to fix this problem in the data? 
– At which cost? 

● Can you understand the module name?
– Module: 4c6543726f79204c31313832
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Outline
● Introduction
● Measure energy deposition

– Scintillator setup
– Photomultiplier
– Analog-to-Digital conversion
– Charge-to-Digital conversion
– QDC in real life

● Measure position
– Wire chamber setup
– Time-to-Digital conversion
– TDC in real life

● Corollary

2nd experiment
NEXT EXIT
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Position measurement

x

Set
Q

Clear

clock   f→

N bit
counter

reset

delay

● We want to measure the position of 
particle with a wire chamber (drift)

● The ionization electrons created by 
the passage of the particle will take a 
time t to reach the anode wire
– Transit time is normally negligible with 

respect to t

– If we consider a constant drift speed vD 
(e.g.: 50 m/ns), then position is: 

                   x = vD · t
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Triggering

x

Set
Q

Clear

clock   f→

N bit
counter

reset

delay

● Wire chamber alone is not sufficient
– We need a triggering system

● We will measure a relative time 
– t* = t + t 0 

– t0 accounts for the time delays, offsets, … 
between wire chamber and triggering 
system

● Assuming a constant drift

            x = t* + 
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Time measurement

x

Set
Q

Clear

N bit
counter

reset

delay

● We can measure the time offset 
between the two signals using a 
N-bit digital counter driven by a 
clock of frequency f
– The wire signal acts as a start signal
– The trigger provides the stop signale 

clock: 
f Hz
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Time measurement: TDC

x

Set
Q

Clear

N bit
counter

reset

delay

● This device is a TDC:
Time-to-Digital Converter
– Resolution: 1/f
– Dynamic range: N

● Single hit TDC
– if a noise spike comes just 

before the signal, the 
measure is lost 

TDC

clock: 
f Hz
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Multi-hit TDC
● Gate resets and starts the counter. 

– It also provides the measurement period. 
– It must be smaller than 2N/f

● Each “hit” (i.e. signal) forces the FIFO to load the current 
value of the counter, that is the delay after the gate start
– Common-start configuration
– In order to distinguish between hits belonging to different gates, 

some additional logic is need to tag the data

clock   f→

N bit
counter

reset

gate FIFO
N bit

counter

hit



Andrea.Negri@unipv.it DAQ HW 38

Actual TDCs
● Real TDCs provide advanced functionalities for 

fine-tuning the hit-trigger matching
– Internal programmable delays
– Internal generation of programmable gates
– Programmable rejection frames

Common-stop TDCCommon-stop TDC
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Real life wire chamber & TDC
● XDWC: delay wire chambers 

– used on the SPS extracted lines to measure beam profiles

● Two cathode planes provide X and Y positions
– Measurement based on the delay gained along a delay line
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Real life wire chamber & TDC
● XDWC: delay wire chambers 

– used on the SPS extracted lines to measure beam profiles

● Two cathode planes provide X and Y positions
– Measurement based on the delay gained along a delay line

t

trigger

top

bottom

scintillator
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Raw time data
● Take a run (some thousands events)

– Individual channel distribution

TDC countTDC count

LEFT RIGHT

TDC count TDC count

TOP BOTTOM
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Un-calibrated beam profile
● Beam sizes are still in TDC counts

– Not very useful, though
– How do we convert this into a known scale (e.g. cm)?

TDC counts TDC counts

TOP - BOTTOM RIGHT - LEFT
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Outline
● Introduction
● Measure energy deposition

– Scintillator setup
– Photomultiplier
– Analog-to-Digital conversion
– Charge-to-Digital conversion
– QDC in real life

● Measure position
– Wire chamber setup
– Time-to-Digital conversion
– TDC in real life

● Corollary: calibration
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Calibration
● Both experiments provide relative measurements 

– Values obtained via our systems are in some (known) 
relation with the interesting quantities

● Scintillator

● MDWC

● Our instruments need to be calibrated in order to give 
us the answer we are looking for
– We have to determine the parameters that transform the raw 

data into a physics quantity
– The parameters normally depend on the experimental setup 

(e.g. cable length, delay settings, HV settings, … )

● NB: calibration mechanisms/procedures shall be 
foreseen in the design of our detector and DAQ
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E.g.: Crystal for isotope id

Readout (ADC)

Crystal HPGe
Trigger and front-end

by Sergio Ballestrero
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Ge crystal calibration
● 152Eu reference source allows for definition of the parameters 

describing functional relation between ADC count and E
– Known  emission lines

● Find the peaks and fit

by Sergio Ballestrero
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Ge crystal calibration
● 152Eu reference source allows for definition of the parameters 

describing functional relation between ADC count and E
– Known  emission lines

● Find the peaks and fit
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Isotope identification
● Calibrate crystal setup can be used to identify 

isotopes generated in -irradiated samples

by Sergio Ballestrero
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Back to XDWC: calibration
● XDWC chamber have 3 calibration inputs 

– allow for independent calibrations of X and Y axes 
with only 3 different sets of data

– Calibration input simulate 
signals from particles 
respectively hitting

● Right-top (X=Y=30mm)
● Center (X=Y=0mm)
● Left-bottom (X=Y=-30mm)

– Interpolating the three points 
in t-x space, the parameters 
of the calibration equation 
can be measured

● Calibration shall be done with final setup and TDC

X (mm)

Y(mm)

30

- 30

- 30 30
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Back to XDWC: calibration
● XDWC chamber have 3 calibration inputs 

– allow for independent calibrations of X and Y axes 
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respectively hitting
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– Interpolating the three points 
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Calibrated XDWC

X (cm)

Y (cm)

Y (cm)

X (cm)

RIGHT - LEFT

TOP - BOTTOM Beam profile
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Wrap-up
● Digitization techniques produce data directly manageable 

by digital systems (e.g. a computer) 
– Greatly simplifies the down-stream data-handling
– Available on a variety of platforms: VME, PCI, USB, … 
– Root of every modern DAQ system

● Frequently you have to open the 
“black box” and see where numbers 
come from
– Real electronics does not 

behave as the ideal one

● Trade-offs between speed/precision/cost exist
– You have to choose the solution that best suits you

● Physics quantities are derived from raw data via calibration 
– Calibration procedures to be foreseen for your detector/DAQ
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