## Energy peaks and future progress on the top quark mass measurement

Roberto Franceschini December 12th

Work in Progress with K. Agashe, D. Kim and M. Schulze



# Top mass combination

1403.4427 - First combination of Tevatron and LHC measurements of the top-quark mass

### LHC/Tevatron NOTE

ATLAS-CONF-2014-008

CDF Note 11071 CMS PAS TOP-13-014 D0 Note 6416





March 17, 2014

| Experiment | tī final state               | $\mathcal{L}_{int} [fb^{-1}]$ | $m_{top} \pm (stat.) \pm (syst.) [GeV]$ | Total uncertainty on mtop [GeV] ([%]) | Reference |
|------------|------------------------------|-------------------------------|-----------------------------------------|---------------------------------------|-----------|
| CDF        | l+jets                       | 8.7                           | → 172.85 ± 0.52 ± 0.99 ←                | <u>1.12</u> (0.65)                    | [8]       |
|            | dilepton                     | 5.6                           | $170.28 \pm 1.95 \pm 3.13$              | 3.69 (2.17)                           | [9]       |
|            | all jets                     | 5.8                           | $172.47 \pm 1.43 \pm 1.41$              | 2.01 (1.16)                           | [10]      |
|            | $E_{\rm T}^{\rm miss}$ +jets | 8.7                           | $173.93 \pm 1.26 \pm 1.36$              | 1.85 (1.07)                           | [11]      |
| D0         | <i>l</i> +jets               | 3.6                           | 174.94 ± 0.83 ± 1.25                    | 1.50 (0.86)                           | [12]      |
|            | dilepton                     | 5.3                           | $174.00 \pm 2.36 \pm 1.49$              | 2.79 (1.60)                           | [13]      |
| ATLAS      | <i>l</i> +jets               | 4.7                           | $172.31 \pm 0.23 \pm 1.53$              | 1.55 (0.90)                           | [14]      |
| , incas    | dilepton                     | 4.7                           | $173.09 \pm 0.64 \pm 1.50$              | 1.63 (0.94)                           | [15]      |
| CMS        | <i>l</i> +jets               | 4.9                           | → 173.49 ± 0.27 ± 1.03 ←                | <u>1.06</u> (0.61)                    | [16]      |
|            | dilepton                     | 4.9                           | $172.50 \pm 0.43 \pm 1.46$              | 1.52 (0.88)                           | [17]      |
|            | all jets                     | 3.5                           | $173.49 \pm 0.69 \pm 1.23$              | 1.41 (0.81)                           | [18]      |

### LHC-7 is on par with TeVatron

173.34± 0.27(stat) ± 0.71 (syst) GeV dominated by systematics l+jets dilepton all jets

# Many measurements



# Many measurements?



# Many measurements?



## CMS PAS TOP-14-001 172.04 ± 0.19 (stat.+JSF) ± 0.75 (syst.) GeV

### Ideogram Method (Kinematic fit)

|                                                                     | MG5+Py6 or POWHEG                                                                    | $\delta m_t^{2D}$ (GeV) | $\delta$ JSF        | $\delta m_t^{1D}$ (GeV) |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------|---------------------|-------------------------|
| Experimental uncertainties                                          |                                                                                      |                         |                     |                         |
| CMS Preliminary, 19.7 fb <sup>-1</sup> , $\sqrt{s} = 8$ TeV, I+jets | $\frac{1}{2000}$ CMS Preliminary, 19.7 fb <sup>-1</sup> , $\sqrt{s} = 8$ TeV, I+jets | 0.10                    | 0.001               | 0.06                    |
| い<br>If contour                                                     | This measurement                                                                     | 0.18                    | 0.007               | 1.17                    |
| <sup>-</sup> 1.012                                                  | N E                                                                                  | 0.03                    | < 0.001             | 0.03                    |
| $3\sigma$ contour                                                   |                                                                                      | 0.09                    | 0.001               | 0.01                    |
| 1.01                                                                |                                                                                      | 0.26                    | 0.004               | 0.07                    |
|                                                                     |                                                                                      | 0.02                    | < 0.001             | 0.01                    |
| 1.008                                                               |                                                                                      | 0.27                    | 0.005               | 0.17                    |
|                                                                     |                                                                                      | 0.11                    | 0.001               | 0.01                    |
| 1.006                                                               |                                                                                      |                         |                     |                         |
|                                                                     |                                                                                      | 0.41                    | 0.004               | 0.32                    |
| 1.004                                                               | 400                                                                                  | 0.06                    | 0.001               | 0.04                    |
| 1.002                                                               |                                                                                      | 0.16                    | < 0.001             | 0.15                    |
| 1.002                                                               |                                                                                      |                         |                     |                         |
| 171.5 172 172.5                                                     | 0.184 0.186 0.188 0.19                                                               | 0.09                    | 0.001               | 0.05                    |
| m <sub>t</sub> [Gev]                                                | factorization scales                                                                 | $0.12{\pm}0.13$         | $0.004 {\pm} 0.001$ | $0.25{\pm}0.08$         |
|                                                                     | ME-PS matching threshold                                                             | $0.15 \pm 0.13$         | $0.003 {\pm} 0.001$ | $0.07 {\pm} 0.08$       |
|                                                                     | ME generator                                                                         | $0.23 \pm 0.14$         | $0.003 {\pm} 0.001$ | $0.20 {\pm} 0.08$       |
|                                                                     | Modeling of non-perturbative QCD                                                     |                         |                     |                         |
|                                                                     | Underlying event                                                                     | $0.14 \pm 0.17$         | $0.002 \pm 0.002$   | $0.06 \pm 0.10$         |
|                                                                     | Color reconnection modeling                                                          | $0.08 \pm 0.15$         | $0.002{\pm}0.001$   | $0.07 {\pm} 0.09$       |

0.75

0.012

1.29

Total

# ATLAS-CONF-2013-046

### $m_{top} = 172.31 \pm 0.23 \text{ (stat)} \pm 0.27 \text{ (JSF)} \pm 0.67 \text{ (bJSF)} \pm 1.35 \text{ (syst)} \text{ GeV}$ 3D Method (Kinematic Fit)

|                                              | 2d-analysis         |       | 3d-analysis                |       |       |
|----------------------------------------------|---------------------|-------|----------------------------|-------|-------|
|                                              | $m_{\rm top}$ [GeV] | JSF   | $m_{\rm top}  [{\rm GeV}]$ | JSF   | bJSF  |
| Measured value                               | 172.80              | 1.014 | 172.31                     | 1.014 | 1.006 |
| Data statistics                              | 0.23                | 0.003 | 0.23                       | 0.003 | 0.008 |
| Jet energy scale factor (stat. comp.)        | 0.27                | n/a   | 0.27                       | n/a   | n/a   |
| bJet energy scale factor (stat. comp.)       | n/a                 | n/a   | 0.67                       | n/a   | n/a   |
| Method calibration                           | 0.13                | 0.002 | 0.13                       | 0.002 | 0.003 |
| Signal MC generator                          | 0.36                | 0.005 | 0.19                       | 0.005 | 0.002 |
| Hadronisation                                | 1.30                | 0.008 | 0.27                       | 0.008 | 0.013 |
| Underlying event                             | 0.02                | 0.001 | 0.12                       | 0.001 | 0.002 |
| Colour reconnection                          | 0.03                | 0.001 | 0.32                       | 0.001 | 0.004 |
| ISR and FSR (signal only)                    | 0.96                | 0.017 | 0.45                       | 0.017 | 0.006 |
| Proton PDF                                   | 0.09                | 0.000 | 0.17                       | 0.000 | 0.001 |
| single top normalisation                     | 0.00                | 0.000 | 0.00                       | 0.000 | 0.000 |
| W+jets background                            | 0.02                | 0.000 | 0.03                       | 0.000 | 0.000 |
| QCD multijet background                      | 0.04                | 0.000 | 0.10                       | 0.000 | 0.001 |
| Jet energy scale                             | 0.60                | 0.005 | 0.79                       | 0.004 | 0.007 |
| <i>b</i> -jet energy scale                   | 0.92                | 0.000 | 0.08                       | 0.000 | 0.002 |
| Jet energy resolution                        | 0.22                | 0.006 | 0.22                       | 0.006 | 0.000 |
| Jet reconstruction efficiency                | 0.03                | 0.000 | 0.05                       | 0.000 | 0.000 |
| <i>b</i> -tagging efficiency and mistag rate | 0.17                | 0.001 | 0.81                       | 0.001 | 0.011 |
| Lepton energy scale                          | 0.03                | 0.000 | 0.04                       | 0.000 | 0.000 |
| Missing transverse momentum                  | 0.01                | 0.000 | 0.03                       | 0.000 | 0.000 |
| Pile-up                                      | 0.03                | 0.000 | 0.03                       | 0.000 | 0.001 |
| Total systematic uncertainty                 | 2.02                | 0.021 | 1.35                       | 0.021 | 0.020 |
| Total uncertainty                            | 2.05                | 0.021 | 1.55                       | 0.021 | 0.022 |

# Status

## measurement at ≤0.5%! ⇒ precision QCD

### • precision is systematics limited (JES, ..., hadronization)



methods are (somewhat or tightly) tied to MC
fundamentally based on a Leading Order picture
mixed status w.r.t. effect of new physics

### Each methods based on different <u>assumptions/beliefs</u>

- kinematics of the event (going beyond tī→ bWbW)
- MC <u>choices</u> (NLO, scales range & functional form ...

... width treatment, color neutralization, radiation in decays, hadronization)

# Ideal situation

Have many inherently different methods

possibly based on different experimental objects/quantities

- deal with reconstructed jets
- only-leptons
- only-tracks

# Many measurements



The strength of the future LHC top mass measurement will build on the **diversity of methods** ⇒ not very useful to talk about "*single best measurement*"

# Many measurements

due to different hypothesis, different mass measurement methods can result in significantly disagreeing measurements: **QCD or new physics effect?** 



The strength of the future LHC top mass measurement will build on the **diversity of methods** ⇒ not very useful to talk about "*single best measurement*"





| Source                      | $\delta M_{\rm t}$ (GeV) |
|-----------------------------|--------------------------|
| Jet Energy Scale            | $+1.3 \\ -1.8$           |
| Jet Energy Resolution       | $\pm 0.5$                |
| Lepton Energy Scale         | $+0.3 \\ -0.4$           |
| Fit Range                   | $\pm 0.6$                |
| Background Shape            | $\pm 0.5$                |
| Jet and Lepton Efficiencies | $^{+0.1}_{-0.2}$         |
| Pileup                      | < 0.1                    |
| QCD effects                 | $\pm 0.6$                |
| Total                       | $+1.7 \\ -2.1$           |

## Ideal situation



#### CMS-PAS-FTR-13-017

1310.0799 - Juste, Mantry, Mitov, Penin, Skands, Varnes, Vos, Wimpenny -Determination of the top quark mass circa 2013: methods, subtleties, perspective

# On mass measurements

- Lorentz invariants
- resonance reconstruction

# Ideal mass measurements



 $(P_{\mu} + P_{\mu})^{2} \rightarrow m_{z}^{2}$ 

#### Lorentz invariant

#### insensitive to:

- Parton Distribution Functions
- Production Mode (qq or gg, SM or BSM, ISR, ...)

## Less ideal mass measurements

One particle is just lost



Need to come up with a trick

#### for example:

- Transverse Mass (use mET)
- pT (nuisances are back: qq or gg, SM or BSM, ISR, ...)

# ... and it can get worse

any BSM with some sort of Matter Parity (e.g. RPC SUSY)



can we make a mass measurement without ever mentioning the unobservable particle  $\chi$ ?

## "useful" top is semi-invisible



can we make a mass measurement without ever mentioning the unobservable particle W?

top quark reconstruction is entangled with *some* picture of the kinematics (fixed order?)



Top decay at NLO just added in current NLO+PS generators (1412.1828)

















does (not) distinguish where the final state came from (t, t\*, bW, bWg, bqqg)

need (not) to define the top

might (not) depend on the production mechanism

# (Alternative) Methods

- Energy Peaks 1209.0772 + WIP
- Generalized Medians 1405.2395
- Leptonic Mellin moments 1407.2763
- B-hadron life-time Lxy hep-ex/0501043
- J/ψ hep-ph/9912320
- do/ds(ttj) 1303.6415
- Inclusive σ(tt) 1307.1907

# Lorentz variant quantities

# Given suitable conditions, Lorentz variant quantities can tell us a lot about the invariants

# Energy Peaks

# A simple, yet subtle, invariance of the two body decay

1209.0772 - Agashe, Franceschini and Kim



Event-by-event we cannot tell anything

Fixed top boost decay Massless b-quark (for now)  $E_{e,b} = E_{b}^{*} (\chi + \chi \beta \cos \vartheta)$ 

unpolarized top sample  $\rightarrow$  cos $\theta$  is flat





# Lab-frame energy distribution



There is no difference when the b-mass is taken into account provided  $\gamma_{top} < 500$ 

back

## How special is this invariance?



The sensitivity to the **boost distribution** is the key

## Independent of decay dynamics



captures the peak for both stop and top: pure kinematics

## Applicable for any decay of W



## W is just a spectator and is not used (barring selections, triggers)

## $W \rightarrow \tau v$ as good as $W \rightarrow \mu v$

## No need to form combinations



## just put 2 b per event into the histogram










#### New physics in the top sample



As long as it gives unpolarized real tops does not change the result

- properties similar to Lorentz invariants
- without the need to form combinations

# Useful in practice?

### b-jet energy

100 pseudo-experiments from <u>MadGraph5+Pythia6.4+Delphes</u> (**ATLAS-2012-097**)



2-parameters fit: peak position, width of the distribution

Proof of the concept: 5/fb LHC 7 TeV  $m_{top} = 173.1 \pm 2.5 \text{ GeV}$  1209.0772 - Agashe Franceschini and KimMessage: LO effects are well under control  $\rightarrow$  CMS at work!

# very encouraging LO result with b-jet energy

after having explored a number of **new physics applications** of this idea

- 1212.5230 Agashe, RF, Kim, Wardlow
- 1309.4776 Agashe, RF, Kim
- 1403.3399 Chen, Davoudiasl, Kim
- Agashe, RF, Kim, Wardlow WIP
- Agashe, RF, Kim, Hong WIP

### extension to NLO in progress

your inputs are very welcome

#### NLO virtues Agashe, Franceschini, Kim, Schulze - in preparation

- Invariance holds for pp→tt @ NLO
- Not sensitive to Initial State Radiation
- Not sensitive to Parton Distribution Functions
- Not sensitive to the exact energy of the collider

#### only sensitive to the NLO decay t→bWg

#### Insensitive to production at NLO

Agashe, Franceschini, Kim, Schulze - in preparation

Production NLO only affects the boost distribution of top



The energy peak position is unchanged

$$E_{b}^{\mu\nu k} = \frac{m_{t}^{2} - m_{w} + m_{b/j}}{2m_{t}} = E_{b}^{*}$$

# NLO virtues

- Invariance holds for pp→tt @ NLO
- Not sensitive to Initial State Radiation
- Not sensitive to Parton Distribution Functions
- Not sensitive to the exact energy of the collider

#### only sensitive to the NLO decay t→bWg

#### Effect of initial state radiation

ISR only affects the boost distribution of top

Agashe, Franceschini, Kim, Schulze - in preparation



# NLO virtues

- Invariance holds for pp→tt @ NLO
- Not sensitive to Initial State Radiation
- Not sensitive to Parton Distribution Functions
- Not sensitive to the exact energy of the collider

#### only sensitive to the NLO decay t→bWg

### Decay at NLO



### Peak shift at NLO

1212.5230 - Agashe, Franceschini, Kim, Wardlow Agashe, Franceschini, Kim, Schulze - in preparation



### Peak shift at NLO







### NLO: production

(MCFM)

Agashe, Franceschini, Kim, Schulze - in preparation



very little sensitive to the scale choice (less than 400 MeV on mtop)

#### NLO: production



#### NLO: production & decay



#### decay NLO sensitive to the scale choice: ±1 GeV on mtop

#### NLO: production & decay



#### decay NLO sensitive to the scale choice: ±1 GeV on mtop



decay NLO sensitive to the scale choice: ±1 GeV on mtop

# Mild corrections from NLO

Agashe, Franceschini, Kim, Schulze - in preparation

$$\hat{E} = E_{LO}^* \cdot \begin{bmatrix} 1 + f_{pol} + \epsilon_{FSR} \\ \uparrow & \uparrow \\ \leq 3 \cdot 10^{-3} &\leq 0.1 \end{bmatrix} \begin{pmatrix} C_{bWg} + \underbrace{\delta_{int} + \delta_{PDFs} + \dots}_{\delta_{prod}} \end{pmatrix} \end{bmatrix}$$

$$O_{NLO} = O_{LO} \cdot \left[ 1 + \underbrace{\delta_{int} + \delta_{PDFs} + \dots}_{\delta_{prod}} \right]$$

# jet veto?

Agashe, Franceschini, Kim, Schulze - in preparation



#### $t \rightarrow bWg$ removed by a jet-veto? how about veto-uncertainties?

# No quarks in the real world

. . .

- b-jet observables Agashe, Franceschini and Kim in preparation
  - jet energy
- B-hadron observables Agashe, Franceschini and Kim in preparation
  - hadron energy
  - hadron boost
  - hadron decay length

### Shower effects



Agashe, Franceschini and Kim - in preparation







- the log-enhanced part of the phase-space is clustered in jets —> use jet mass
- hard gluons are suppressed by  $\alpha/4\pi \longrightarrow$  mild corrections

a case for fixed order or resummed energy distributions?

#### variations around Lorentz Invariance



what is the "small parameter"  $\Delta_{TH}$  that "breaks" (true or effective) LI?

Σ

# We are not alone ...

# Generalized medians

1405.2395



 $\Delta TH \sim 1 - \sigma exclusive / \sigma inclusive \sim 1 - efficiency \sim 0.2$ 

#### Generalized medians

1405.2395



beyond JES ...

#### More (B hadron) peak observables

The strength of the future LHC top mass measurement will build on the **diversity of methods** ⇒ not very useful to talk about "*single best measurement*"



Lxy method hep-ex/0501043 J/ψ method hep-ph/9912320 More Peaks Agashe, RF, Kim - in progress

# B hadron observables

B physics in the top sample

Fragmentation: the b quark energy peak is translated into a (broader) B hadron energy peak

- more exclusive final states
- non-JES uncertainties
- <u>hadronization uncertainties</u>
## B <u>hadron</u> energy peak

get the hadron energy entirely from tracks



B'-> 3 TRACKS

## Exclusive Decay (Fully reconstructible with tracks)

$$B_{s}^{0} \to J/\psi \phi \to \mu^{-} \mu^{+} K^{+} K^{-} \qquad \text{II06.4048} \\ B^{0} \to J/\psi K_{S}^{0} \to \mu^{-} \mu^{+} \pi^{+} \pi^{-} \qquad \text{II04.2892} \\ B^{+} \to J/\psi K^{+} \to \mu^{+} \mu^{-} K^{+} \qquad \text{II01.0131} \\ I_{309.6920} \\ \Lambda_{b} \to J/\psi \Lambda \to \mu^{+} \mu^{-} p \pi^{-} \qquad \text{I205.0594} \end{cases}$$

J/psi modes  $b \xrightarrow{few \cdot 10^{-3}} J/\psi + X \xrightarrow{10^{-1}} \ell \overline{\ell} + X$ 

J/psi but no need to require leptonic W decay

## D modes

$$B^{0} \xrightarrow[3\cdot10^{-3}]{} D^{-}\pi^{+} \xrightarrow[10^{-2}]{} K^{0}_{S}\pi^{-}\pi^{+}$$

$$B^{0} \xrightarrow[3\cdot10^{-3}]{} D^{-}\pi^{+} \xrightarrow[10^{-2}]{} K^{-}\pi^{+}\pi^{-}\pi^{+}$$

$$B^{0} \xrightarrow[3\cdot10^{-3}]{} D^{-}\pi^{+} \xrightarrow[3\cdot10^{-2}]{} K^{0}_{S}\pi^{+}\pi^{-}\pi^{+}$$

# $\frac{B hadron}{\gamma boost factor}$



Does the **ratio**  $\gamma = E/m$  help to get rid of exp. uncertainties?

3D decay length discussion with J. Incandela

Time of decays is harder to measure than the position

Experiments measure decay length L

![](_page_75_Picture_3.jpeg)

Jet Energy Scale does not affect λ, nor L

## Mean decay length invariance

 $\gamma = E/m$ 

- A peak in the energy distribution of the b quark implies a peak in the boost factor distribution
- Not so interesting because the boost is not measured directly

![](_page_76_Figure_4.jpeg)

up to m<sup>2</sup>/E<sup>2</sup> effects the *mean* decay length of the *b* quark has a peak at the top rest frame value

How to get the distribution of  $\lambda$  from the observed L?

![](_page_77_Picture_1.jpeg)

1209.0772 - Agashe, Franceschini and Kim from MC: exponential ansatz work well

![](_page_77_Figure_3.jpeg)

![](_page_77_Figure_4.jpeg)

$$\frac{d\varepsilon}{dE_{\rm b}} \propto \frac{d\varepsilon}{d\chi_{\rm b}} \propto \frac{d\varepsilon}{d\chi}$$

How to get the distribution of  $\lambda$  from the observed L?

$$\frac{d \varepsilon}{d L} = \int_{\varepsilon} \frac{-L}{\lambda} \otimes p d \beta(\lambda) d \lambda$$

For now we just predicted the mode of  $pdf(\lambda)$ 

$$pdf(\lambda) = e^{-\omega \left(\frac{\lambda}{\lambda_{o}} + \frac{\lambda_{o}}{\lambda_{o}}\right)}?$$

# Summary

- $0.5\% \Rightarrow \text{precision QCD}$
- combination of methods  $\Rightarrow$  testing <u>different assumptions</u>
- to reconstruct or not?
- Energy peaks
- pheno-Lorentz invariance (Energy Peaks & Generalized Medians 1405.2395)
- first results for Energy Peaks @ NLO (production & decay)
- Beyond JES

## Back-up

## $\mu_{\rm F} \neq \mu_{\rm R}$

![](_page_81_Figure_1.jpeg)

![](_page_82_Figure_0.jpeg)

![](_page_83_Figure_0.jpeg)

![](_page_84_Figure_0.jpeg)

![](_page_85_Figure_0.jpeg)

![](_page_86_Figure_0.jpeg)

## Fit Variations p&d-NLO

![](_page_87_Figure_1.jpeg)

## Fit Variations p&d-NLO

![](_page_88_Figure_1.jpeg)

## $OMCFM fixed \mu = m_{top}$ (E=67.9 GeV)

![](_page_89_Figure_1.jpeg)

![](_page_89_Figure_3.jpeg)

1par Exp(x+1/x)

Events/4. GeV

2 pars Exp(x+1/x)

![](_page_89_Figure_5.jpeg)

## pNLO MCFM fixed $\mu = m_{top}$ (E=67.9 GeV)

1 par Exp(x+1/x)

![](_page_90_Figure_2.jpeg)

## NLO

![](_page_92_Figure_0.jpeg)

![](_page_93_Figure_0.jpeg)

## New methods

- Leptonic Mellin moments 1407.2763
- Generalized Medians 1405.2395

# Leptonic Mellin moments

10>

- Take "top like" events
- no explicit reconstruction of the top
- observe the shape of some distribution of the leptons

![](_page_95_Figure_4.jpeg)

## MC: correlate the leptonic shape to *m*top

example: **pT of** *t* **(**non-Lorentz invariant) use Mellin's moments to parametrize the shape

# Leptonic Mellin moments

- no need for an "auxiliary" definition of "top"
  no fixed picture of the kinematics
  naturally an inclusive variable (pp→ l<sup>+</sup>+tags+X)
  as clean as a lepton (theoretically and experimentally)
- anything that is not simulated might be harmful
  several theoretical subtle effects potentially
  - relevant for any template method

1407.2763 - Frixione, S. and Mitov, A. - Determination of the top quark mass from leptonic observables

#### functional form of fact. scale

![](_page_97_Figure_3.jpeg)

1 σ-th bias σ-th might also change

rate and distributions might feel differently theory variations

1407.2763 - Frixione, S. and Mitov, A. - Determination of the top quark mass from leptonic observables

### theory modeling: LO, NLO, LO+PS, NLO+PS ( $\otimes$ spin correlations)

- <u>understand the combination</u>
- asses missing effects: NNLO, extra radiation types

#### effect of shower

| obs.                             | $\Delta PS@NLO$         | bias@NLO | $\Delta PS@LO$          | bias@LO |
|----------------------------------|-------------------------|----------|-------------------------|---------|
| ртī                              | $-0.35^{+1.14}_{-1.16}$ | +0.12    | $-2.17^{+1.50}_{-1.80}$ | -0.67   |
| $p_{T\overline{\ell}+\ell}$      | $-4.74^{+1.98}_{-3.10}$ | +11.14   | $-9.09^{+0.76}_{-0.71}$ | +14.19  |
| $M_{\overline{\ell}+\ell}$       | $+1.52^{+2.03}_{-1.80}$ | -8.61    | $+3.79^{+3.30}_{-4.02}$ | -6.43   |
| $E_{\overline{\ell}}+E_{\ell}$   | $+0.15^{+2.81}_{-2.91}$ | -0.23    | $-1.79^{+3.08}_{-3.75}$ | -1.47   |
| $p_{T\overline{\ell}}+p_{T\ell}$ | $-0.30^{+1.09}_{-1.21}$ | +0.03    | $-2.13^{+1.51}_{-1.81}$ | -0.67   |

impact of shower: use of partonic NNLO

1407.2763 - Frixione, S. and Mitov, A. - Determination of the top quark mass from leptonic observables

#### theory modeling: LO, NLO, LO+PS, NLO+PS (⊗ spin correlations)

|                                  | effect c                 | effect of spin correlation |                          |         |  |  |  |  |  |
|----------------------------------|--------------------------|----------------------------|--------------------------|---------|--|--|--|--|--|
| obs.                             | $\Delta PS@NLO$          | bias@NLO                   | $\Delta PS@LO$           | bias@LO |  |  |  |  |  |
| $p$ т $\overline{\ell}$          | $+0.29^{+1.17}_{-1.14}$  | +0.41                      | $-0.08^{+1.66}_{-1.96}$  | -0.75   |  |  |  |  |  |
| $p_{T\overline{\ell}+\ell}$      | $-12.32^{+1.62}_{-2.13}$ | -1.18                      | $-12.58^{+0.90}_{-0.94}$ | +1.60   |  |  |  |  |  |
| $M\overline{\ell}{+}\ell$        | $+9.45^{+2.36}_{-2.16}$  | +0.84                      | $+8.00^{+3.74}_{-4.26}$  | +1.57   |  |  |  |  |  |
| $E_{\overline{\ell}} + E_{\ell}$ | $+0.39^{+2.93}_{-3.16}$  | +0.16                      | $-0.11^{+3.42}_{-4.16}$  | -1.58   |  |  |  |  |  |
| $p_{T\overline{\ell}}+p_{T\ell}$ | $+0.22^{+1.12}_{-1.28}$  | +0.25                      | $-0.06^{+1.65}_{-2.07}$  | -0.73   |  |  |  |  |  |

#### impact of shower: use of factorized NNLO

1407.2763 - Frixione, S. and Mitov, A. - Determination of the top quark mass from leptonic observables

### theory modeling: LO, NLO, LO+PS, NLO+PS (⊗ spin correlations)

#### $pT\overline{\ell}, E\overline{\ell}+E\ell, pT\overline{\ell}+pT\ell$

| LO+PS+MS | $173.61^{+1.10}_{-1.34}[1.0]$ |
|----------|-------------------------------|
| NLO+PS   | $174.40^{+0.75}_{-0.81}[3.5]$ |
| LO+PS    | $173.68^{+1.08}_{-1.31}[0.8]$ |
| fNLO     | $174.73_{-0.74}^{+0.72}[5.5]$ |
| fLO      | $175.84^{+0.90}_{-1.05}[1.2]$ |

 $p_{T\overline{\ell}}, E_{\overline{\ell}} + E_{\ell}, p_{T\overline{\ell}} + p_{T\ell}, p_{T\overline{\ell}+\ell}, M_{\overline{\ell}+\ell}$ 

| LO+PS+MS | $175.98^{+0.63}_{-0.69}[16.9]$   |
|----------|----------------------------------|
| NLO+PS   | $175.43_{-0.80}^{+0.74}[29.2]$   |
| LO+PS    | $187.90^{+0.6}_{-0.6}[428.3]$    |
| fNLO     | $174.41_{-0.73}^{+0.72}[96.6]$   |
| fLO      | $197.31_{-0.35}^{+0.42}[2496.1]$ |

![](_page_100_Figure_7.jpeg)

#### discrepancy highlights poor QCD description

1407.2763 - Frixione, S. and Mitov, A. - Determination of the top quark mass from leptonic observables

### theory modeling: LO, NLO, LO+PS, NLO+PS (⊗ spin correlations)

#### $pT\overline{\ell}, E\overline{\ell}+E\ell, pT\overline{\ell}+pT\ell$

| LO+PS+MS | $173.61^{+1.10}_{-1.34}[1.0]$ |
|----------|-------------------------------|
| NLO+PS   | $174.40^{+0.75}_{-0.81}[3.5]$ |
| LO+PS    | $173.68^{+1.08}_{-1.31}[0.8]$ |
| fNLO     | $174.73_{-0.74}^{+0.72}[5.5]$ |
| fLO      | $175.84^{+0.90}_{-1.05}[1.2]$ |

#### $p_{T\overline{\ell}}, E_{\overline{\ell}} + E_{\ell}, p_{T\overline{\ell}} + p_{T\ell}, p_{T\overline{\ell}+\ell}, M_{\overline{\ell}+\ell}$

| LO+PS+MS | $175.98^{+0.63}_{-0.69}[16.9]$   |
|----------|----------------------------------|
| NLO+PS   | $175.43_{-0.80}^{+0.74}[29.2]$   |
| LO+PS    | $187.90^{+0.6}_{-0.6}[428.3]$    |
| fNLO     | $174.41_{-0.73}^{+0.72}[96.6]$   |
| fLO      | $197.31_{-0.35}^{+0.42}[2496.1]$ |

#### discrepancy highlights poor QCD description

1407.2763 - Frixione, S. and Mitov, A. - Determination of the top quark mass from leptonic observables

### theory modeling: LO, NLO, LO+PS, NLO+PS (⊗ spin correlations)

#### $pT\overline{\ell}, E\overline{\ell}+E\ell, pT\overline{\ell}+pT\ell$

| LO+PS+MS | $173.61^{+1.10}_{-1.34}[1.0]$ |
|----------|-------------------------------|
| NLO+PS   | $174.40^{+0.75}_{-0.81}[3.5]$ |
| LO+PS    | $173.68^{+1.08}_{-1.31}[0.8]$ |
| fNLO     | $174.73_{-0.74}^{+0.72}[5.5]$ |
| fLO      | $175.84^{+0.90}_{-1.05}[1.2]$ |

 $p_{T\overline{\ell}}, E_{\overline{\ell}} + E_{\ell}, p_{T\overline{\ell}} + p_{T\ell}, p_{T\overline{\ell}+\ell}, M_{\overline{\ell}+\ell}$ 

| LO+PS+MS | $175.98^{+0.63}_{-0.69}[16.9]$   |
|----------|----------------------------------|
| NLO+PS   | $175.43_{-0.80}^{+0.74}[29.2]$   |
| LO+PS    | $187.90^{+0.6}_{-0.6}[428.3]$    |
| fNLO     | $174.41_{-0.73}^{+0.72}[96.6]$   |
| fLO      | $197.31_{-0.35}^{+0.42}[2496.1]$ |

![](_page_102_Picture_7.jpeg)

#### discrepancy highlights poor QCD description

# Top mass combination

ATLAS-CONF-2014-008 CDF Note 11071 CMS PAS TOP-13-014 D0 Note 6416

![](_page_103_Picture_2.jpeg)

March 17, 2014

![](_page_103_Picture_4.jpeg)

|                  | Input measurements and uncertainties in GeV |              |          |                                  |                |        |                |        |                |              |          |             |
|------------------|---------------------------------------------|--------------|----------|----------------------------------|----------------|--------|----------------|--------|----------------|--------------|----------|-------------|
|                  |                                             | CI           | DF       |                                  | D0             |        | ATLAS          |        | CMS            |              | World    |             |
| Uncertainty      | <i>l</i> +jets                              | di- <i>l</i> | all jets | $E_{\mathrm{T}}^{\mathrm{miss}}$ | <i>l</i> +jets | di-l   | <i>l</i> +jets | di-l   | <i>l</i> +jets | di- <i>l</i> | all jets | Combination |
| m <sub>top</sub> | 172.85                                      | 170.28       | 172.47   | 173.93                           | 174.94         | 174.00 | 172.31         | 173.09 | 173.49         | 172.50       | 173.49   | 173.34      |
| Stat             | 0.52                                        | 1.95         | 1.43     | 1.26                             | 0.83           | 2.36   | 0.23           | 0.64   | 0.27           | 0.43         | 0.69     | 0.27        |
| iJES             | 0.49                                        | n.a.         | 0.95     | 1.05                             | 0.47           | 0.55   | 0.72           | n.a.   | 0.33           | n.a.         | n.a.     | 0.24        |
| stdJES           | 0.53                                        | 2.99         | 0.45     | 0.44                             | 0.63           | 0.56   | 0.70           | 0.89   | 0.24           | 0.78         | 0.78     | 0.20        |
| flavourJES       | 0.09                                        | 0.14         | 0.03     | 0.10                             | 0.26           | 0.40   | 0.36           | 0.02   | 0.11           | 0.58         | 0.58     | 0.12        |
| bJES             | 0.16                                        | 0.33         | 0.15     | 0.17                             | 0.07           | 0.20   | 0.08           | 0.71   | 0.61           | 0.76         | 0.49     | 0.25        |
| MC               | 0.56                                        | 0.36         | 0.49     | 0.48                             | 0.63           | 0.50   | 0.35           | 0.64   | 0.15           | 0.06         | 0.28     | 0.38        |
| Rad              | 0.06                                        | 0.22         | 0.10     | 0.28                             | 0.26           | 0.30   | 0.45           | 0.37   | 0.30           | 0.58         | 0.33     | 0.21        |
| CR               | 0.21                                        | 0.51         | 0.32     | 0.28                             | 0.28           | 0.55   | 0.32           | 0.29   | 0.54           | 0.13         | 0.15     | 0.31        |
| PDF              | 0.08                                        | 0.31         | 0.19     | 0.16                             | 0.21           | 0.30   | 0.17           | 0.12   | 0.07           | 0.09         | 0.06     | 0.09        |
| DetMod           | < 0.01                                      | < 0.01       | < 0.01   | < 0.01                           | 0.36           | 0.50   | 0.23           | 0.22   | 0.24           | 0.18         | 0.28     | 0.10        |
| <i>b</i> -tag    | 0.03                                        | n.e.         | 0.10     | n.e.                             | 0.10           | < 0.01 | 0.81           | 0.46   | 0.12           | 0.09         | 0.06     | 0.11        |
| LepPt            | 0.03                                        | 0.27         | n.a.     | n.a.                             | 0.18           | 0.35   | 0.04           | 0.12   | 0.02           | 0.14         | n.a.     | 0.02        |
| BGMC             | 0.12                                        | 0.24         | n.a.     | n.a.                             | 0.18           | n.a.   | n.a.           | 0.14   | 0.13           | 0.05         | n.a.     | 0.10        |
| BGData           | 0.16                                        | 0.14         | 0.56     | 0.15                             | 0.21           | 0.20   | 0.10           | n.a.   | n.a.           | n.a.         | 0.13     | 0.07        |
| Meth             | 0.05                                        | 0.12         | 0.38     | 0.21                             | 0.16           | 0.51   | 0.13           | 0.07   | 0.06           | 0.40         | 0.13     | 0.05        |
| MHI              | 0.07                                        | 0.23         | 0.08     | 0.18                             | 0.05           | < 0.01 | 0.03           | 0.01   | 0.07           | 0.11         | 0.06     | 0.04        |
| Total Syst       | 0.99                                        | 3.13         | 1.41     | 1.36                             | 1.25           | 1.49   | 1.53           | 1.50   | 1.03           | 1.46         | 1.23     | 0.71        |
| Total            | 1.12                                        | 3.69         | 2.01     | 1.85                             | 1.50           | 2.79   | 1.55           | 1.63   | 1.06           | 1.52         | 1.41     | 0.76        |

## t→bW**g**

![](_page_105_Figure_0.jpeg)

P. Nason @ TOP LHC WG meeting (21-23 May 2014)

#### t mass pseudo observables

![](_page_106_Figure_1.jpeg)

Notice small peak in  $W^+b$  plot, due to x = 1 peak in b fragmentation function.

P. Nason @ TOP LHC WG meeting (21-23 May 2014)

![](_page_107_Figure_0.jpeg)

Effect of different fragmentation behaviour shows up in  $M_{l+b}$ , but not in  $M_{l+b \text{ jet}}$ .

P. Nason @ TOP LHC WG meeting (21-23 May 2014)
top masses

## Pole vs MSbar masses

$$\overline{m} = m_{MS}(m_{MS})$$

$$\overline{\alpha} = \alpha(\overline{m})$$

$$m_{pole} = \overline{m} \times \left[1 + g_1 \frac{\overline{\alpha}}{\pi} + g_2 \left(\frac{\overline{\alpha}}{\pi}\right)^2 + g_3 \left(\frac{\overline{\alpha}}{\pi}\right)^3\right] \quad \text{where} \qquad g_1 = \frac{4}{3}$$

$$g_2 = 13.4434 - 1.0414 \sum_k \left(1 - \frac{4}{3} \frac{\overline{m}_k}{\overline{m}}\right)$$
Melnikov, van Ritbergen, Phys.Lett. B482 (2000) 99

 $g_3 = 0.6527 n_l^2 - 26.655 n_l + 190.595$ 

In the range  $m_{top} = 171 - 175$  GeV,  $\alpha_s$  is ~constant, and, using the 3-loop expression above,  $m_{pole} = \overline{m} \times [1 + 0.047 + 0.010 + 0.003] = 1.060 \times \overline{m}$ 

showing an excellent convergence. In comparison, the expansion for the bottom quark mass behaves very poorly:

 $m_{pole}^b = \overline{m}^b \times [1 + 0.09 + 0.05 + 0.04]$ 

Assuming that after the 3rd order the perturbative expansion of  $m_{pole}$  vs  $m_{MS}$  start diverging, the smallest term of the series, which gives the size of the uncertainty in the resummation of the asymptotic series, is of O(0.003 \* m), namely O(500 MeV), consistent with  $\Lambda_{QCD}$ 

This same O( $\alpha_s^3$ ) term gives also:  $\overline{m}^{(3-loop)} - \overline{m}^{(2-loop)} = 0.49 \,\text{GeV}$ 

M. Mangano @ TOP LHC WG meeting (21-23 May 2014)

## Meson vs hvy-Q masses

Heavy meson  $\Rightarrow$  (point-like color source) + (light antiquark cloud): properties of "light-quark" cloud are independent of mQ for mQ $\rightarrow \infty$ 

$$\begin{split} m_{M} &= m_{Q} + \bar{\Lambda} - \frac{\lambda_{1} + 3\lambda_{2}}{2m_{Q}} & \langle M | \bar{h}_{Q} (iD)^{2}h_{Q} | M \rangle = -\lambda_{1} \operatorname{tr} \{ \overline{\mathcal{M}} \mathcal{M} \} = 2M \lambda_{1}, \\ \langle M | \bar{h}_{Q} s_{\alpha\beta} G^{\alpha\beta} h_{Q} | M \rangle = -\lambda_{2}(\mu) \operatorname{tr} \{ i\sigma_{\alpha\beta} \overline{\mathcal{M}} s^{\alpha\beta} \mathcal{M} \} = 2d_{M} M \lambda_{2}(\mu), \\ m_{M^{*}} &= m_{Q} + \bar{\Lambda} - \frac{\lambda_{1} - \lambda_{2}}{2m_{Q}} & d_{M^{*}} = -1, \ d_{M} = 3 \\ \text{See e.g. Falk and Neubert, arXiv:hep-ph/9209268vI} \\ \text{where} \quad \bar{\Lambda}, \ \lambda_{1}, \ \lambda_{2} \quad \text{are independent of m}_{Q} \end{split}$$

From the spectroscopy of the B-meson system:

$$\begin{split} m(B^*) - m(B) &= 2 \ \lambda_2/m_b \Rightarrow \lambda_2 \sim 0.15 \ GeV^2 \\ QCD \ sum \ rules: \ \lambda_1 \sim 1 \ GeV^2 \\ QCD \ sum \ rules: \ \Lambda &= 0.5 \ \pm \ 0.07 \ GeV \end{split}$$

thus corrections of O( $\lambda_{1,2}$  /m<sub>top</sub>) are of O(few MeV) and totally negligible

M. Mangano @ TOP LHC WG meeting (21-23 May 2014)

Separation between mQ and  $\Lambda$  is however ambiguous: renormalon ambiguity on the pole mass:

$$egin{aligned} \delta m_{pole} &=\; rac{C_F}{2N_f |eta_0|} \, e^{-C/2} \, m(\mu=m) \exp\left(rac{1}{2N_f eta_0 lpha(m)}
ight) \ &=\; rac{C_F}{2N_f |eta_0|} \, e^{-C/2} \, \Lambda_{QCD} \left(\ln rac{m^2}{\Lambda_{QCD}^2}
ight)^{eta_1/(2eta_0^2)} \,, \end{aligned}$$

where  $\beta_1 = -1/(4\pi N_f)^2 \times (102 - 38N_f/3)$  is the second coefficient of the  $\beta$ -function

## $\delta m_{pole}$ =270 MeV for mtop.

This is smaller than the difference between MSbar masses obtained using the 3-loop or 2-loop MSbar vs pole mass conversion.

It would be very interesting to have a 4-loop calculation of MSbar vs  $m_{pole}$ , to check the rate of convergence of the series, and improve the estimate of the  $m_{pole}$  ambiguity for the top

Beneke and Braun, Nucl. Phys. B426, 301 (1994) Bigi et al, 1994

M. Mangano @ TOP LHC WG meeting (21-23 May 2014)