

HH production modes in MADGRAPH5_AMC@NLO

Marco Zaro

LPTHE - UPMC Paris VI

LHC Higgs XS HH subgroup meeting

November 20, 2014

Alwall, Frederix, Frixione, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Hirschi, MZ arXiv: 1405.0301

Full automation (and extreme simplicity)

- Start the MG5/aMC@NLO shell
 \$./bin/mg5_aMC
- Generate the process
 - > generate $p p > h h t t \sim [QCD]$
- Write the code
 - > output my_ttHH_nlo
- Launch the event generation/fixed order computation
 - > launch

HH in aMC@NLO

R. Frederix, S. Frixione, F. Maltoni, O. Mattelaer, P. Torrielli, E. Vryonidou, MZ arXiv: 1401.7340,

The code for all channels (but gg→HH) can be generated automatically including NLO+PS effects

Process	Syntax	Cross section (pb)			
Single Higgs production		LO 13 TeV		NLO 13 TeV	
h.1 $pp \rightarrow HH$ (Loop improved)	p p > h h	$1.772 \pm 0.006 \cdot 10^{-2}$	+29.5% +2.1% -21.4% -2.6%	$2.763 \pm 0.008 \cdot 10^{-2}$	+11.4% +2.1% -11.8% -2.6%
h.2 $pp \rightarrow HHjj$ (VBF)	p p > h h j j \$\$ w+ w- z	$6.503 \pm 0.019 \cdot 10^{-4}$	$+7.2\% +2.3\% \\ -6.4\% -1.6\%$	$6.820 \pm 0.026 \cdot 10^{-4}$	$+0.8\% +2.4\% \\ -1.0\% -1.7\%$
h.3 $pp \rightarrow HHW^{\pm}$	p p > h h wpm	$4.303 \pm 0.005 \cdot 10^{-4}$	+0.9% +2.0% -1.3% -1.5%	$5.002 \pm 0.014 \cdot 10^{-4}$	$+1.5\% +2.0\% \\ -1.2\% -1.6\%$
h.4 $pp \rightarrow HHZ$	p p > h h z	$2.701 \pm 0.007 \cdot 10^{-4}$	$+0.9\% +2.0\% \\ -1.3\% -1.5\%$	$3.130 \pm 0.008 \cdot 10^{-4}$	$+1.6\% +2.0\% \\ -1.2\% -1.5\%$
h.5 $pp \rightarrow HHt\bar{t}$	p p > h h t t \sim	$6.756 \pm 0.007 \cdot 10^{-4}$	+30.2% +1.8% -21.6% -1.8%	$7.301 \pm 0.024 \cdot 10^{-4}$	$+1.4\% +2.2\% \\ -5.7\% -2.3\%$
h.6 $pp \rightarrow HHtj$	p p > h h tt j	$1.844 \pm 0.008 \cdot 10^{-5}$	$+0.0\% +1.8\% \\ -0.6\% -1.8\%$	$2.444 \pm 0.009 \cdot 10^{-5}$	+4.5% +2.8% -3.1% -3.0%

HH in aMC@NLO

R. Frederix, S. Frixione, F. Maltoni, O. Mattelaer, P. Torrielli, E. Vryonidou, MZ arXiv:1401.7340,

• The code for all channels (but $gg \rightarrow HH$) can be generated automatically including NLO+PS effects

λ_{HHH} dependence

Marco Zaro, 20-11-2014

Beyond total rates

- More than total rates needed for realistic pheno studies
 - Selection/acceptance cuts are imposed on particles in the final state
 - One may want to look to specific differential distributions
- Accurate (i.e. at N^{≥1}LO) and realistic (i.e. matched with PS) fully differential predictions are necessary!

Fully differential predictions

What can we learn from subdominant HH production modes?

- Complimentary information on the Higgs self coupling
- Extra information on other SM interactions:
 - E.g.:VVHH vertex in VBF (and VHH)

λ_{HHH} dependence in gg \rightarrow HH

λ_{HHH} dependence in VBF

LHCPhenoNet

λ_{HHH} dependence in tTHH

LHCPhenoNet

λ_{VVHH} dependence in VBF

• λ_{VVHH} changed in a custodial way (same scaling factor for W and Z)

More on the inclusion of top-mass effects

from Maltoni, Vryonidou, Zaro, arXiv: 1408.6542

 Does the inclusion of the exact mt dependence in the reals spoil cancelations between reals and virtuals?

More on the inclusion of top-mass effects

from Maltoni, Vryonidou, Zaro, arXiv: 1408.6542

 Does the inclusion of the exact mt dependence in the reals spoil cancelations between reals and virtuals?

m_t uncertainties in gg \rightarrow HH

• Top-mass uncertainty (in m_t and y_t) at LO and NLO:

 $\frac{\Delta\sigma}{\sigma} \simeq 0.6\% \frac{\Delta m_t}{1 \text{GeV}}$

• Beware! Width effects: -3% at the LO

Conclusions

- All HH production modes available at NLO+PS accuracy in MadGraph5_AMC@NLO
 - Codes publicly available for *all* channels
- Subdominant production modes can provide precious complimentary information on SM parameters not constrained so far: λ_{HHH} , λ_{VVHH} , ...