

Higgs pair production at the LHC without gluon fusion

LHC Higgs XS Working Group, HH Subgroup, CERN Julien Baglio | 20/11/2014

INSTITUT FÜR THEORETISCHE PHYSIK

Outline

Overview

2 Vector boson fusion

Ouble Higgs-strahlung

Associated production with a top quark pair

S Conclusion

Overview

J. Baglio - VBF and Higgsstrahlung HH production at the LHC

2/13

Vector boson fusion at NLO

 $pp \rightarrow qq \rightarrow qq WW/ZZ \rightarrow qqHH$: the second production channel at the LHC

LO inclusive cross section known for a while [Keung, Mod.Phys.Lett. A2 (1987) 765; Eboli et al, Phys.Lett. B197 (1987) 269; Dicus, Kao, Willenbrock, Phys.Lett. B203 (1988) 457; Dobrovolskaya, Novikov, Z.Phys. C52 (1991) 427; see also Djouadi, Kilian, Mühlleitner, Zerwas, Eur.Phys.J. C10 (1999) 45]

QCD corrections: NLO corrections to inclusive rates and differential distributions [J.B. et al. JHEP 1304 (2013) 151] implemented in VBFNLO (publicly available)

[Arnold et al Comput.Phys.Comm. 180 (2009) 1661; J.B. et al, arXiv:1404.3940]

Calculation also done by MadGraph5_aMC@NLO collaboration [Frederix et al, Phys.Lett. B732 (2014) 142]

 $\simeq +7\%$ correction (similar to single Higgs case)

\sqrt{s} [TeV]	$\sigma^{ m NLO}$ [fb]
8	0.49
14	2.01
33	12.05
100	79.55

Vector boson fusion

Infrared singularities in VBFNLO

■ What about Infrared singularities? Soft and collinear singularies arise in the calculation, notabely cumbersome for a Monte-Carlo program as they arise in different phase-spaces ⇒ substraction method to handle them!

$$\sigma^{\rm NLO} = \int_{\phi_n} d\sigma^{\rm Born} + \int_{\phi_n} d\sigma^{\rm virt} + \int_{\phi_{n+1}} d\sigma^{\rm real}$$

with each contribution divergent \Rightarrow cancel soft & collinear singularities before Monte-Carlo integration:

$$\sigma^{\rm NLO} = \int_{\phi_n+1} \left(d\sigma^{\rm real}|_{\varepsilon=0} - d\sigma^A|_{\varepsilon=0} \right) + \int_{\phi_n} \left(d\sigma^{\rm Born} + d\sigma^{\rm virt} + \int_{\phi_1} d\sigma^A \right)|_{\varepsilon=0}$$

where $d\sigma^{A}$ a substraction term with the following properties:

dσ^A cancels soft & collinear divergences of dσ^{real}
 ∫_{φ1} dσ^A done (partially) analytically in d dimensions ⇒ I, P, K operators, left-over collinear singularities absorbed into PDFs

The calculation has been done in VBFNLO with Catani-Seymour dipoles

[Catani, Seymour, Nucl.Phys. B485 (1997) 291]

Vector boson fusion

J. Baglio - VBF and Higgsstrahlung HH production at the LHC

4/13

UNIVERSITAT

Vector boson fusion: theoretical uncertainties

- $qq \rightarrow HHqq$ is a clean process:
 - Scale uncertainty: $\Delta^{\text{scale}} \simeq +2\%/-1\%$ at 14 TeV Good precision compared to LO $\Delta^{\text{scale}} \simeq \pm 10\%$

• PDF uncertainty: $\Delta_{90\% CL}^{PDF+\alpha_s} \simeq +6\%/-4\%$ at 14 TeV

Total uncertainty: $\simeq +8\%/-5\%$ ($\simeq +6\%/-4\%$ at 100 TeV) [J.B. *et al*, JHEP 1304 (2013) 151] NNLO QCD corrections in the structure function approach: +0.5% on top of the NLO result, scale uncertainty at the percent level [L. Liu-Sheng *et al*, Phys.Rev. D89 (2014) 073001]

Vector boson fusion

J. Baglio - VBF and Higgsstrahlung HH production at the LHC

5/13

Vector boson fusion: differential distributions

VBFNLO can also produce NLO differential distributions for $VBF \rightarrow H(\rightarrow b\bar{b})H(\rightarrow XX)jj$:

Cuts can also be implemented

Vector boson fusion

\sqrt{s} [TeV]	$\sigma_{WHH}^{ m NNLO}$ [fb]	$\sigma_{ZHH}^{ m NNLO}$ [fb]
8	0.21	0.14
14	0.57	0.42
33	1.99	1.68
100	8.00	8.27

Double Higgs-strahlung

Theoretical uncertainties in double Higgs-strahlung

- $pp \rightarrow VHH$ is also a very clean process:
 - Scale uncertainty: calculated at NNLO with $\frac{1}{2}\mu_0 \le \mu_R, \mu_F \le 2\mu_0, \mu_0 = M_{VHH};$ $\Delta^{\text{scale}} < 1\%$ in WHH channel

In ZHH channel, worse due to $gg \rightarrow ZHH$: $\Delta_{ZHH}^{\text{scale}} \simeq \pm 3\%$

• PDF uncertainty: total $\Delta_{90\%CL}^{PDF+\alpha_s} \simeq \pm 4\% \ (\simeq \pm 3\% \text{ at } 100 \text{ TeV})$

Double Higgs-strahlung

Double Higgs-strahlung differential distributions

VHH is known fully differentially at NLO:

Frederix et al, Phys.Lett. B732 (2014) 142

Double Higgs-strahlung

$t\bar{t}HH$: the third process at the LHC, the second at greater energies

Process known only at LO for a while due to a very complicated topologies with pentagons and hexagons diagrams at NLO

NLO corrections: tackled in 2014 with MadGraph5_aMC@NLO ! [Frederix *et al*, Phys.Lett. B732 (2014) 142] $\Rightarrow -20\% - 30\%$ effect on inclusive rates

\sqrt{s} [TeV]	$\sigma_{t\bar{t}HH}^{ m NLO}$ [fb]
8	0.177
13	0.792
14	0.981

Strong reduction of scale uncertainty: from +40%/-25% down to +3%/-10% at 13 TeV; central scale $\mu_0^4 = m_T(H_1)m_T(H_2)m_T(t)m_T(\bar{t})$

Associated production with a top quark pair

ttHH production

$t\bar{t}HH$: the third process at the LHC, the second at greater energies

[Frederix et al, Phys.Lett. B732 (2014) 142]

Associated production with a top quark pair

Sensitivity to the triple Higgs coupling

The VBF mode is the most sensitive channel to the triple Higgs coupling

Update of a study done in [Djouadi, Kilian, Mühlleitner, Zerwas, Eur. Phys. J C10 (1999) 45]

[J.B. et al, JHEP 1304 (2013) 151]

Associated production with a top quark pair

Conclusion

HH production in other channels than gluon fusion:

- Inclusive VBF and Double Higgs-strahlung productions known at NNLO QCD and have very limited theoretical uncertainties < 10%
- VBF process perfectly ready for NLO differential analyses
- $t\bar{t}HH$ process the second process for very high energies \Rightarrow to be considered for VLHC?
- VBF the most sensitive to the triple Higgs coupling ⇒ worth investigating it in details!