Nonlinear Higgs EFT at Run-2

Oscar Catà LMU Munich

LHCHXSWG meeting, CERN, July 15, 2015

(based on collaborations with G. Buchalla, A. Celis and C. Krause)

Motivation -

- Higgs couplings currently SM-like to $\mathcal{O}(10\%)$.
- With this precision, nature of Higgs mechanism still unclear.
- Bottomline of this talk:
 - (i) Nonlinear Lagrangian as systematic EFT.
 - (ii) Natural framework to test for sizable nonstandard Higgs effects.
 - (iii) Well-defined limit to the SM.
- Assuming the existence of a mass gap, most conservative and least biased EFT choice.

Nonlinear EFT at LO

Leading order Lagrangian:

[Ferruglio'93; Contino et al.'10; Buchalla+OC+Krause'13]

$$\mathcal{L}_{(\chi=2)} = -\frac{1}{2} \langle W_{\mu\nu} W^{\mu\nu} \rangle - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + i \sum_{j} \bar{f}_{j} \not\!\!{D} f_{j} + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h$$
$$+ \frac{v^{2}}{4} \langle D_{\mu} U D^{\mu} U^{\dagger} \rangle f_{U}(h) - v \left[\bar{\psi} f_{\psi}(h) U P_{\pm} \psi + \text{h.c.} \right] - V(h)$$

with

$$f_{U}(h) = 1 + \sum_{j} a_{j}^{U} \left(\frac{h}{v}\right)^{j}; \quad f_{\psi}(h) = Y_{\psi} + \sum_{j} Y_{\psi}^{(j)} \left(\frac{h}{v}\right)^{j}; \quad V(h) = \sum_{j \geq 2} a_{j}^{V} \left(\frac{h}{v}\right)^{j}$$

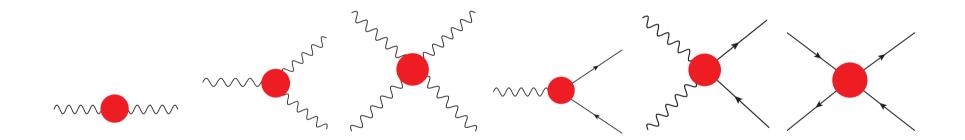
- $\mathcal{L}_{LO} \neq \mathcal{L}_{SM}$ due to red-coded Higgs functions: large deviations (at the percent level) naturally expected.
- Expansion in loops, or equivalently in chiral dimensions

$$[\varphi; h; A_{\mu}]_{\chi} = 0, \qquad [\partial_{\mu}; \bar{\psi}\Gamma\psi; g; y]_{\chi} = 1$$

Nonlinear EFT at NLO

Operator building at every order: assemble building blocks (U, ψ, X) and derivatives in accordance with the power-counting formula.

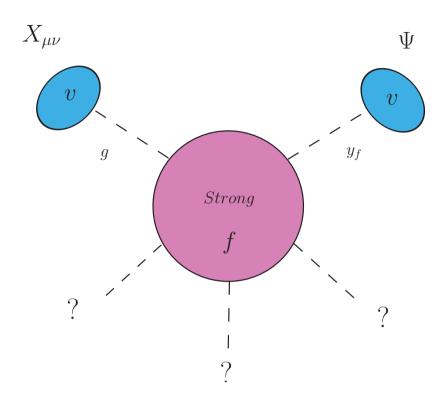
• NLO: 6 classes, which correspond to corrections to the vertices



with an arbitrary number of Higgs insertions.

• Of relevance in processes that are subleading (loop-suppressed) in the SM, e.g., $h \to \gamma \gamma$, $h \to gg$, $h \to Z\gamma$.

Scales of the problem



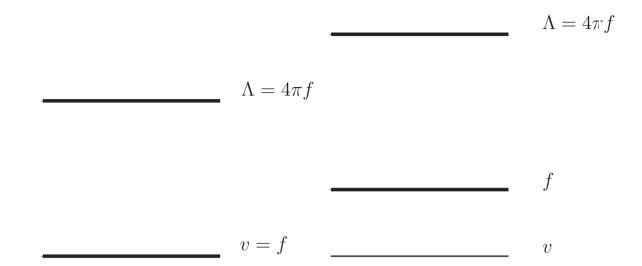
• Multiscale problem: v, f, $\Lambda = 4\pi f$. Dynamics is described with the dimensionless parameters

$$\xi = \frac{v^2}{f^2} \qquad \ell = \frac{f^2}{\Lambda^2} \sim \frac{1}{16\pi^2}$$

• Strong sector can be decoupled, e.g. vacuum misalignment mechanism [Georgi et al'84]. SM recovered as a limiting case.

Playing with the ξ knob —

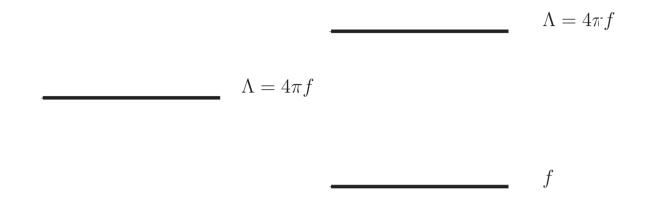
• Transition between nondecoupling (composite) and decoupling (fundamental) interactions.



- The transition can be gauged with the parameter $\xi = \frac{v^2}{f^2}$:
 - $\xi \to 1$: Strongly-coupled regime (purely loop expansion).
 - $\ell < \xi < 1$: Strong-dominated dynamics (hybrid expansion in (ℓ, ξ)).
 - $\xi \sim \ell \sim 10^{-2}$: Effectively a dimensional expansion.
 - $\xi \to 0$: decoupling (SM) limit.
- ullet At present, experimental bound at $\xi \sim 10^{-1}$ vs $\ell \sim 10^{-2}$. Strong-dominated dynamics is the setting to explore given the current precision.

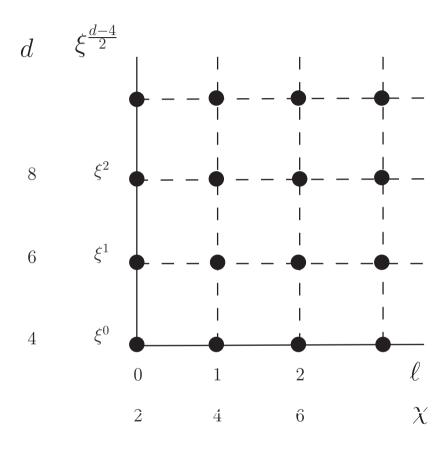
Playing with the ξ knob —

• Transition between nondecoupling (composite) and decoupling (fundamental) interactions.

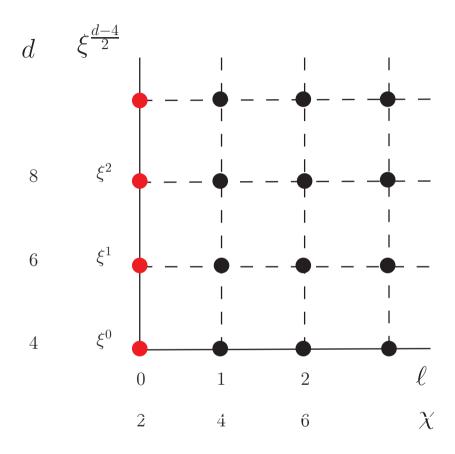


- The transition can be gauged with the parameter $\xi = \frac{v^2}{f^2}$:
 - $\xi \to 1$: Strongly coupled regime (purely loop expansion)
 - $\ell < \xi < 1$: Strong-dominated dynamics (hybrid expansion in (ℓ, ξ)).
 - $\xi \sim \ell \sim 10^{-2}$: Effectively a dimensional expansion.
 - $\xi \to 0$: decoupling (SM) limit.
- At present, experimental bound at $\xi \sim 10^{-1}$ vs $\ell \sim 10^{-2}$. Strong-dominated dynamics is the setting to explore given the current precision.

Loop vs dimensional expansion -

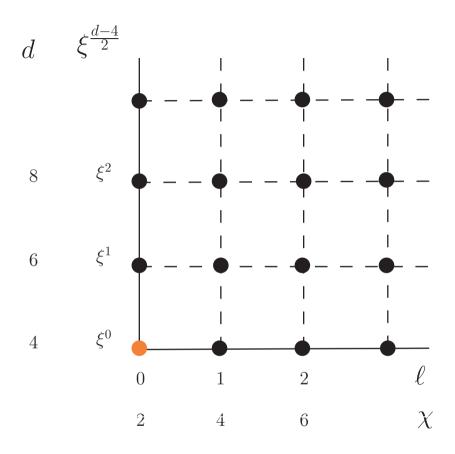


Loop vs dimensional expansion



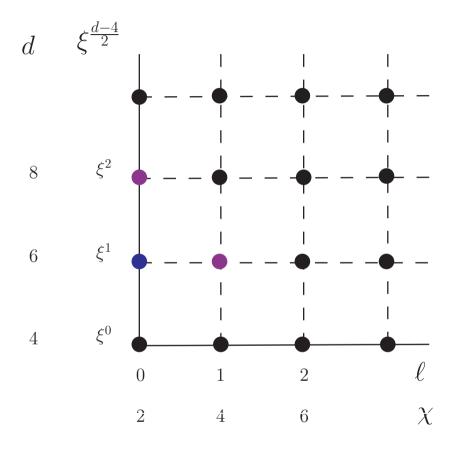
ullet \mathcal{L}_{LO} amounts to a resummation of the ξ expansion.

Loop vs dimensional expansion



• \mathcal{L}_{SM} is recovered from \mathcal{L}_{LO} when $\xi \to 0$.

Loop vs dimensional expansion



ullet Beyond LO in the double expansion: $\mathcal{L}_{LO}(\xi^2)$ is in general more important than $\mathcal{L}_{NLO}(\xi)$.

$$\xi = \frac{v^2}{f^2}; \qquad \frac{\xi}{16\pi^2} = \frac{v^2}{f^2} \left(\frac{f^2}{\Lambda^2}\right); \qquad \xi^2 = \frac{v^2}{f^2} \left(\frac{v^2}{f^2}\right)$$

EFT fitting strategy at the LHC -

Run-2 prospects:

[Numbers borrowed from H. Kroha at Aspen 2014]

$\Delta \mu / \mu [\%] (300 \text{ fb}^{-1})$	$\gamma\gamma$	\overline{WW}	ZZ	au au	bb	$\mu\mu$	$Z\gamma$
ATLAS	14 (9)	13 (8)	12 (6)	22 (16)	_	39 (38)	147 (145)
CMS	12 (6)	11 (6)	11 (7)	14 (8)	14 (11)	42 (40)	<mark>62</mark> (62)

$\Delta\kappa/\kappa [\%] (300~{\rm fb^{-1}})$	$\gamma\gamma$	WW	ZZ	gg	au au	bb	tt	$\mu\mu$	$Z\gamma$
ATLAS	13 (8)	8 (7)	8 (7)	11 (9)	18 (13)	$\kappa_ au$	<mark>22</mark> (20)	23 (21)	<mark>79</mark> (78)
CMS	7 (5)	6 (4)	6 (4)	8 (6)	8 (6)	13 (10)	15 (14)	23 (23)	41 (41)

Precision goal between 5-10%.

EFT fitting strategy at the LHC

Experiment is allowing right now deviations in the LO SM Higgs couplings around 10%. This is 2 orders of magnitude bigger than the EW precision reached at LEP.

Proposal for Run-2:

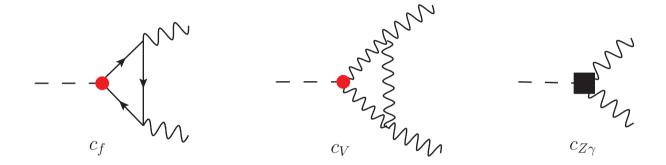
[Buchalla+OC+Celis+Krause'15]

$$\mathcal{L} = 2c_{V} \left(m_{W}^{2} W_{\mu} W^{\mu} + \frac{1}{2} Z_{\mu} Z^{\mu} \right) \frac{h}{v} - \sum_{f=t,b,\tau} c_{f} y_{f} \bar{f} f h + c_{gg} \frac{g_{s}^{2}}{16\pi^{2}} G_{\mu\nu} G^{\mu\nu} \frac{h}{v} + c_{\gamma\gamma} \frac{e^{2}}{16\pi^{2}} F_{\mu\nu} F^{\mu\nu} \frac{h}{v}$$

- Subset of nonlinear operators capturing leading corrections to single Higgs processes: $h \to \bar{f} f$ and $h \to X_{\mu} X_{\mu}$. Corrections at $\mathcal{O}(10\%)$ naturally expected.
- Easy to handle: fit to experimental data with only 6 parameters.
- Precision goal around 5%: feasible target for Run-2.
- New physics at NLO precision not required for Run-2.
- Very similar to κ formalism but EFT-based. In particular, this means that it can be systematically improved with well-known QFT tools if needed (renormalization, etc.)

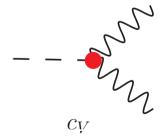
Examples at NLO: $h \to Z\gamma$ and $h \to ZZ$

 $h \to Z\gamma$ loop-suppressed in the SM.



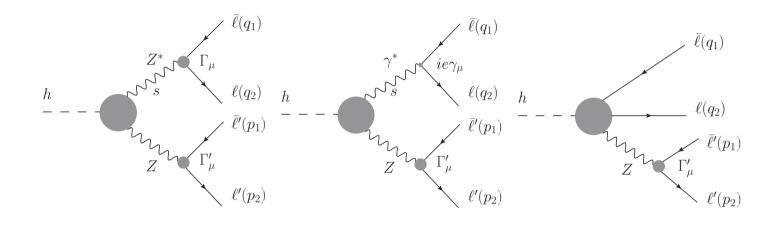
Non-Higgs couplings are suppressed (NNLO). Fewer operators than in the linear case.

 $h \to ZZ$ tree-level in the SM $(hZ_{\mu}Z_{\mu})$



Examples at NLO: $h \to Z\gamma$ and $h \to ZZ$

 $h \to ZZ^*$ at NLO $(hZ_{\mu\nu}Z_{\mu\nu})$: sensitivity in shapes (asymmetries)



- Decorrelations wrt linear case: contact term not constrained by $Z \to \ell^+ \ell^-$ at LEP.
- Easy to make contact with Pseudo-Observables.

Conclusions -

- EFTs are the right tool to extract unbiased information from experimental data. Important to pick the most generic one allowed by current status of experiments.
- At present, $v^2/f^2 \sim 10^{-1}$ and strong dynamics still experimentally allowed. The most conservative fitting procedure is to consider $\mathcal{L}_{\chi=2} \neq \mathcal{L}_{SM}$. Very few parameters, ideal for the LHC (discovery machine). Justification and systematic extension of the so-called κ -formalism.
- Nonlinear fit is (mostly) LO and requires a precision goal of 5%. Fits Run-2 precision prospects.
- NLO level: renormalization programme not (yet) executed but well-defined. Similar to linear case: more operators and precision goal at the permille level.