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1 Introduction1

The LHC Higgs Cross Section Working Group is focused on various steps of the analysis2

chain:3

Data → Pseudo-observables → Model-independent EFT → BSM Models .4

This note concerns model-independent interpretations of the data in the framework of5

effective field theory (EFT) beyond the Standard Model (SM), which is a part of the6

scope of the Working Group 2. The purpose of this note is to propose a common EFT7

language and conventions that could be universally used in LHC Higgs analyses and be8

implemented in numerical tools.9

In the EFT approach, the basic assumption is that the mass scale Λ of new particles10

in the UV theory beyond the SM is larger than the electroweak scale v, Λ � v. If11

this is the case, physics at energies E � Λ can be parametrized by the SM Lagrangian12

supplemented by a set of higher-dimensional operators. These operators are constructed13

out of the SM fields, and respect the local SU(3)× SU(2)×U(1) symmetry of the SM.14

The coefficients of d > 4-dimensional operators in the EFT Lagrangian are of order15

1/Λd−4, and their contribution to amplitudes of physical processes at the energy scale of16

order v scales1 as (v/Λ)d−4. The leading new physics effects are expected from operators17

with d = 6 whose effects scale as (v/Λ)2 (all dimension-5 operators violate the lepton18

number; experimental constraints dictate that their coefficients must be suppressed at19

the level unobservable at the LHC). Since (v/Λ)2 < 1 by construction, EFT is suitable20

to describe small deviations from the SM predictions, except for observables that vanish21

or are suppressed by small parameters in the SM.22

1Apart from the scaling with Λ, the effects of higher-dimensional operators also scale with appropriate
powers of couplings in the UV theory. The latter may be important to assess the validity range of the
EFT description.
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An operator basis is a complete, non-redundant set of dimension-6 operators. Com-23

plete means that any dimension-6 operator is either a part of the basis, or can be obtained24

from a combination of operators in the basis using equations of motion, integration by25

parts, field redefinitions, and Fierz transformations. Non-redundant means it is a mini-26

mal such set. Any basis leads to the same physical predictions concerning possible new27

physics effects. Several bases have been proposed in the literature, and they may be28

convenient for specific applications. In this note we propose a basis that is particularly29

convenient for LHC Higgs analyses.30

Preparing this proposal, we have taken into account the following guidelines:31

- The formulation should be simple enough that it can be used by people not ac-32

quainted with the nuts and bolts of EFTs.33

- The relationship between parameters of the EFT and (pseudo)-observables should34

be transparent.35

- The constraints on EFT parameters from electroweak precision observables should36

be easy to impose.37

- The formalism should be easily implementable in Monte-Carlo codes.38

- The formalism should be flexible enough, such that, in the future, the application39

scope may be extended beyond the original one. In particular, the formalism should40

be applicable outside Higgs physics and allow one to also combine non-LHC data.41

- A connection to the pseudo-observables in the extended kappa formalism should42

be straightforward.43

- Limits of the EFT validity range should be easy to define.44

- The formalism should be well suited to include higher-order QCD and electroweak45

corrections.46

The salient features of our proposal are the following:47

• We restrict ourselves to EFT with dimension-6 operators in the linear formulation48

of electroweak symmetry breaking. This means that, much as the SM, the theory49

contains the Higgs field H in the doublet representation of the SM SU(2) group.50

The Lagrangian is invariant under the local SU(3)×SU(2)×U(1), and the SU(2)×51

U(1) → U(1) electroweak symmetry breaking is b the vacuum expectation value52

(VEV) of the field H.53

• In the spirit of Ref. [1], we proceed with a classification of the operators that more54

easily map to independent interaction terms of the SM mass eigenstates, in par-55

ticular the W, Z, and the Higgs boson. Such interaction terms are invariant under56

SU(3) × U(1) color and electromagnetic symmetry, but they do not necessarily57

correspond to SU(2)-invariant operators. However, they allow us to identify a set58

of independent couplings from which a complete basis of SU(2)-invariant terms59

is constructed. We denote the latter the Higgs basis. The advantage of this for-60

mulation is that the effective couplings are related in a simpler way to quantities61

observable in experiments, compared to other proposals.62
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• We choose the independent couplings such that the constraints from the Z and W63

partial decay widths (measured with a per-mille precision by the LEP experiment)64

can be easily incorporated. These are among the most stringent constraints on65

EFT parameters, and they have an important impact on possible signals in Higgs66

searches. It is unlikely that, at any point in the future, the precision of LHC67

Higgs searches will be such that the couplings constrained by LEP can be probed68

by the LHC with a comparable accuracy. Therefore it is recommended that the69

the electroweak constraints on Z and W boson couplings to fermions are always70

imposed when analyzing LHC data, especially on Higgs physics. Other precision71

observables, such as WW production or off-shell fermion scattering, lead to less72

stringent constraints that are not discussed in this note (see e.g. [2, 3, 4] for a73

recent discussion).74

• The disadvantage of the Higgs basis is that the operator list is cumbersome, being75

defined by the identification of a set of independent interaction terms after elec-76

troweak symmetry breaking. For this reason, we also map the Higgs basis to a set77

of manifestly SU(3) × SU(2) × U(1) invariant operators before electroweak sym-78

metry breaking. For the latter, in this note we use operators in the Warsaw basis79

of Ref. [5] and in the SILH basis of Ref. [6], but it is straightforward to work out a80

map to any other basis used in the literature. Working with SU(3)×SU(2)×U(1)81

invariant operators may be more convenient for certain calculations (for example,82

when renormalization group running of the Wilson coefficients needs to be calcu-83

lated).84

• We do not demand that the dimension-6 operators are flavor blind. While generic85

constraints on flavor violation are strong, it is plausible that there is a large hier-86

archy between the coefficients of dimension-6 operators corresponding to different87

fermion generations. In particular, many models predict the coefficients of opera-88

tors involving the 3rd generation to be much larger than those involving the first89

two generations. Keeping the more general approach will allow us to obtain much90

more robust constraints on new physics.91

• We allow CP violating operators to be present in our basis. In particular, we92

discuss the most general set of Higgs couplings to matter that include CP violating93

couplings.94

• We assume that dimension-6 operators conserve the baryon and lepton number.95

In Section 2, to define our notation and conventions, we write down the Standard96

Model (SM) Lagrangian. In Section 3 we introduce an effective Lagrangian summa-97

rizing the new interactions of the SM mass eigenstates that arise in the presence of98

dimension-6 operators beyond the SM. The mapping between the couplings in that ef-99

fective Lagrangian and Wilson coefficients of SU(3)×SU(2)×U(1) invariant dimension-6100

operators in the Warsaw basis is worked out in Section 4. In Section 5 we define the101

Higgs basis, which is spanned by a subset of the independent couplings of the effective102

Lagrangian.103
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2 Standard Model Lagrangian104

The SM Lagrangian in our notation takes the form105

LSM = −1

4
Ga
µνG

a
µν −

1

4
W i
µνW

i
µν −

1

4
BµνBµν +DµH

†DµH + µ2
HH

†H − λ(H†H)2

+
∑
f∈q,`

if̄LγµDµfL +
∑

f∈u,d,e

if̄RγµDµfR

−
[
H̃†ūRyuqL +H†d̄RydV

†
CKMqL +H†ēRye`L + h.c.

]
. (2.1)

Here, Ga
µ, W i

µ, and Bµ denote the gauge fields of the SU(3) × SU(2) × U(1) local106

symmetry. The corresponding gauge couplings are denoted by gs, g, g′; we also define the107

electromagnetic coupling e = gg′/
√
g2 + g′2, and the Weinberg angle sθ = g′/

√
g2 + g′2.108

The field strength tensors are defined as Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν , W

i
µν =109

∂µW
i
ν − ∂νW i

µ + gεijkW j
µW

k
ν , Bµν = ∂µBν − ∂νBµ. The Higgs doublet is denoted as H,110

and we also define H̃i = εijH
∗
k . It acquires the VEV 〈H†H〉 = v2/2. In the unitary111

gauge we have H = (0, (v+ h)/
√

2), where h is the Higgs boson field. After electroweak112

symmetry breaking, the electroweak gauge boson mass eigenstates are defined as W± =113

(W 1∓ iW 2)/
√

2, Z = cθW
3−sθB, A = sθW

3 +cθB, where cθ =
√

1− s2
θ. The tree-level114

masses of W and Z bosons are given by mW = gv/2, mZ =
√
g2 + g′2v/2. The left-115

handed Dirac fermions qL = (uL, VCKMdL) and `L = (νL, eL) are doublets of the SU(2)116

gauge group, and the right-handed Dirac fermions uR, dR, eR are SU(2) singlets. All117

fermions are 3-component vectors in the generation space, and yf are 3×3 matrices. We118

work in the basis where the fermion mass matrix is diagonal with real, positive entries.119

In this basis, yf are diagonal, and the fermion masses are given by mfi = v[yf ]ii/
√

2.120

For later convenience, we explicitly write down the mass terms:121

LSM
mass =

g2v2

4
W+
µ W

−
µ +

(g2 + g′2)v2

8
ZµZµ +

∑
f∈u,d,e

mf f̄f, (2.2)

the gauge boson couplings to fermions:122

LSM
vff = eAµ

∑
f∈u,d,e

Qf f̄γµf + gsG
a
µ

∑
f∈u,d

f̄γµT
af,

+
g√
2

(
W+
µ ūLγµVCKMdL +W+

µ ν̄LγµeL + h.c.
)

+
√
g2 + g′2Zµ

∑
f∈u,d,e,ν

(
T 3
f f̄LγµfL − s2

θQf f̄γµf
)
, (2.3)

the couplings of a single Higgs boson to gauge bosons and fermions:123

LSM
h =

h

v

[
g2v2

2
W+
µ W

−
µ +

(g2 + g′2)v2

4
ZµZµ

]
− h

v

∑
f

mf f̄f (2.4)

the couplings involving two or more gauge bosons124

LSM
hh =

h2

2v2

[
g2v2

2
W+
µ W

−
µ +

(g2 + g′2)v2

4
ZµZµ

]
− m2

h

2v
h3 − m2

h

8v2
h4, (2.5)
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and the triple and quartic self-interactions of the vector bosons:125

LSM
tgc = ie

[(
W+
µνW

−
µ −W−

µνW
+
µ

)
Aν + AµνW

+
µ W

−
ν

]
+ igcθ

[(
W+
µνW

−
µ −W−

µνW
+
µ

)
Zν + ZµνW

+
µ W

−
ν

]
− gsf

abc∂µG
a
νG

b
µG

c
ν . (2.6)

126

LSM
qgc =

g2

2

(
W+
µ W

+
µ W

−
ν W

−
ν −W+

µ W
−
µ W

+
ν W

−
ν

)
+ g2c2

θ

(
W+
µ ZµW

−
ν Zν −W+

µ W
−
µ ZνZν

)
+ g2s2

θ

(
W+
µ AµW

−
ν Aν −W+

µ W
−
µ AνAν

)
+ g2cθsθ

(
W+
µ ZµW

−
ν Aν +W+

µ AµW
−
ν Zν − 2W+

µ W
−
µ ZνAν

)
− g2

sf
abcfadeGb

µG
c
νG

d
µG

e
µ. (2.7)

These couplings depend on just 5 input parameters: gs, g, g′, mh and v. The Higgs boson127

mass mh has been precisely measured at the LHC, while the strong coupling constant128

is extracted from jet production data. The remaining 3 parameters are customarily129

derived from the observable Fermi constant GF (more precisely, from the measured130

muon lifetime τµ = 192π3/G2
Fm

5
µ), Z boson massmZ , and the low-energy electromagnetic131

coupling α(0). The tree-level relations between the input observables and the electroweak132

parameters are given by:133

GF =
1√
2v2

, α =
g2
Lg

2
Y

4π(g2
L + g2

Y )
, mZ =

√
g2
L + g2

Y v

2
. (2.8)

3 Effective Lagrangian134

In this section we introduce an effective Lagrangian describing interactions of Higgs135

and matter mass eigenstates when the SM is extended by dimension-6 operators. The136

Lagrangian is of the form137

Leff = LSM + ∆L. (3.1)

Here, LSM is the SM Lagrangian introduced in Section 2, ∆L contains new interactions138

beyond the SM. The effect of the new interactions is either to shift the coupling strength139

away from the SM predictions or to introduce a new tensor structure of interactions that140

is absent in the SM Lagrangian. In particular, these interactions are relevant to describe141

new physics effects in precisions tests of the SM and in Higgs searches at the LHC. Each142

term in ∆L Lagrangian may be generated by dimension-6 operators beyond the SM, thus143

each coupling is O(Λ−2) in the EFT expansion. However, at this point, we do not yet144

define the relations between various couplings that are required by the linearly realized145

electroweak symmetry at the level of dimension-6 operators. Therefore, the couplings of146

the effective Lagrangian do not span a dimension-6 basis. Later in Section 5 we will write147

down the relations between different couplings and define a dimension-6 basis. We stress148

that Leff is intended to be used in the framework of the dimension-6 EFT Lagrangian;149

if it is used in a different context, care should be taken to define a consistent expansion150

(akin to the 1/Λ expansion in the EFT).151

The effective Lagrangian Leff has the following features:152
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• All kinetic terms of SM mass eigenstates are canonically normalized. In particular,153

there is no kinetic mixing between the Z boson and the photon.154

• Tree-level relations between the electroweak parameters and input observables are155

the same as the SM ones in Eq. (2.8). In particular, the photon and the gluon156

interact with fermions as in Eq. (2.3), and there is no correction to the Z boson157

mass term.158

• Two-derivative self-interactions of the Higgs boson are absent.159

• For each fermion pair, the coefficient of the vertex-like Higgs interaction term160

δg h
v
Vµf̄γµf is equal to the161

In general, dimension-6 operators can induce corrections to the Lagrangian that do not162

respect these features. However, all 4 above features can always be achieved, without163

any loss of generality, by using equations of motion, integrating by parts, and redefining164

the fields and couplings. The required set of transformation starting from the Warsaw165

basis will be presented in Section 4.166

To facilitate presentation, we split ∆L into the following parts,167

∆L = ∆Lmass +∆Lvertex +Ldipole +∆Ltgc +∆Lqgc +∆Lh +Lhvff +Lhdvff +∆Lh2 +Lother.
(3.2)

Below we define each term in order of appearance.168

3.1 Quadratic terms169

By construction, there is no corrections to quadratic terms of the SM mass eigenstates170

with the exception of the shift of the W boson mass in Eq. (2.2):171

∆Lmass = 2δm
g2v2

4
W+
µ W

−
µ . (3.3)

3.2 Gauge boson interactions with fermions172

Two types of corrections to the SM gauge boson interactions with fermions may be173

introduced by dimension-6 operators. One is the so-called vertex corrections, which are174

shift the W and Z couplings to fermions away from the SM Lagrangian of Eq. (2.3):175

∆Lvertex =
g√
2

(
W+
µ ν̄Lγµδg

W`
L eL +W+

µ ūγµδg
Wq
L VCKMdL +W+

µ ūRγµδg
Wq
R dR + h.c.

)
+

√
g2 + g′2Zµ

[ ∑
f∈u,d,e,ν

f̄Lγµδg
Zf
L fL +

∑
f∈u,d,e

f̄Rγµδg
Zf
R fR

]
, (3.4)

where all the δg are 3× 3 Hermitian matrices in the generation space, except for δgWq
R176

which is a general 3× 3 complex matrix.177
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The other type are the dipole interactions between the gauge boson and fermions,178

which are not present in the SM Lagrangian. We parametrize them as follows:179

Ldipole = − 1

4v

[
gs
∑
f∈u,d

f̄σµνT
adGffG

a
µν + e

∑
f∈u,d,e

f̄σµνdAffAµν

+
√
g2 + g′2

∑
f∈u,d,e

f̄σµνdZffZµν +
√

2g
(
d̄σµνdWquW

−
µν + h.c.

)]

− 1

4v

[
gs
∑
f∈u,d

f̄σµνT
ad̃GffG̃

a
µν + e

∑
f∈u,d,e

f̄σµν d̃AffÃµν

+
√
g2 + g′2

∑
f∈u,d,e

f̄σµν d̃ZffZ̃µν +
√

2g
(
d̄σµν d̃WquW̃

−
µν + h.c.

)]
, (3.5)

where σµν = i[γµ, γν ]/2, and all the dV f and d̃V f are Hermitian 3× 3 matrices.180

3.3 Gauge boson self-interactions181

These couplings are defined via cubic interactions of gauge bosons, in addition to the182

SM ones in Eq. (2.6):183

∆Ltgc = ie
[
δκγAµνW

+
µ W

−
ν + κ̃γÃµνW

+
µ W

−
ν

]
+ igcθ

[
δg1,z

(
W+
µνW

−
µ −W−

µνW
+
µ

)
Zν + δκz ZµνW

+
µ W

−
ν + κ̃z Z̃µνW

+
µ W

−
ν

]
+ i

e

m2
W

[
λγW

+
µνW

−
νρAρµ + λ̃γW

+
µνW

−
νρÃρµ

]
+ i

gcθ
m2
W

[
λzW

+
µνW

−
νρZρµ + λ̃zW

+
µνW

−
νρZ̃ρµ

]
+

c3G

v2
g3
sf

abcGa
µνG

b
νρG

c
ρµ +

c̃3G

v2
g3
sf

abcG̃a
µνG

b
νρG

c
ρµ, (3.6)

The couplings of electroweak gauge bosons follow the customary parametrization of184

Ref. [9].185
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∆Lqgc = δgW 4

g2

2

(
W+
µ W

+
µ W

−
ν W

−
ν −W+

µ W
−
µ W

+
ν W

−
ν

)
+ δgW 2Z2g2c2

θ

(
W+
µ ZµW

−
ν Zν −W+

µ W
−
µ ZνZν

)
+ δgW 2Zγg

2cθsθ
(
W+
µ ZµW

−
ν Aν +W+

µ AµW
−
ν Zν − 2W+

µ W
−
µ ZνAν

)
− g2

2

λW 4

m2
W

(
W+
µνW

−
νρ −W−

µνW
+
νρ

) (
W+
µ W

−
ρ −W−

µ W
+
ρ

)
− g2c2

θ

λW 2Z2

m2
W

[
W+
µ

(
ZµνW

−
νρ −W−

µνZνρ
)
Zρ +W−

µ

(
ZµνW

+
νρ −W+

µνZνρ
)
Zρ
]

− e2λW 2A2

m2
W

[
W+
µ

(
AµνW

−
νρ −W−

µνAνρ
)
Aρ +W−

µ

(
AµνW

+
νρ −W+

µνAνρ
)
Aρ
]

− egcθ
λW 2AZ

m2
W

[
W+
µ

(
AµνW

−
νρ −W−

µνAνρ
)
Zρ +W−

µ

(
AµνW

+
νρ −W+

µνAνρ
)
Zρ
]

− egcθ
λW 2ZA

m2
W

[
W+
µ

(
ZµνW

−
νρ −W−

µνZνρ
)
Aρ +W−

µ

(
ZµνW

+
νρ −W+

µνZνρ
)
Aρ
]

+ 3g3
s

c4G

v2
fabcf cdeGa

µνG
b
νρG

d
ρG

e
µ + CP odd, (3.7)

where CP odd stands for analogous terms with λz → λ̃z, c4G → c̃4G, and one of the field186

strength tensor replaced by the dual one.187

3.4 Single Higgs couplings188

This part is the most relevant one from the point of view of the LHC Higgs phenomenol-189

ogy. First, we define the following single Higgs boson couplings to a pair of the SM190

fields:191

∆Lh =
h

v

[
2δcwm

2
WW

+
µ W

−
µ + δczm

2
ZZµZµ

− h

v

∑
f∈u,d,e

∑
ij

√
mfimfj [δyf ]ij

[
cosφfij f̄ifj − i sinφfij f̄iγ5fj

]
.

+cww
g2

2
W+
µνW

−
µν + c̃ww

g2

2
W+
µνW̃

−
µν + cw2g

2
(
W−
µ ∂νW

+
µν + h.c.

)
+cgg

g2
s

4
Ga
µνG

a
µν + cγγ

e2

4
AµνAµν + czγ

eg

2cθ
ZµνAµν + czz

g2

4c2
θ

ZµνZµν

+cz2g
2Zµ∂νZµν + cγ2gg

′Zµ∂νAµν

+c̃gg
g2
s

4
Ga
µνG̃

a
µν + c̃γγ

e2

4
AµνÃµν + c̃zγ

eg

2cθ
ZµνÃµν + c̃zz

g2

4c2
θ

ZµνZ̃µν

]
. (3.8)

The terms in the first two lines shift the SM couplings in Eq. (2.4), while the remaining192

terms introduce Higgs couplings to matter with a tensor structure that is absent in the193

SM Lagrangian. Here Xµν = ∂µXν − ∂νXµ, and X̃µν = εµνρσ∂ρXσ. Note that, using194

equations of motion, we could get rid of certain 2-derivative interactions between the195

Higgs and gauge bosons: hZµ∂νZνµ, hZµ∂νAνµ, and hW±
µ ∂νW

∓
νµ. These interactions196

would then be traded for contact interactions of the Higgs, gauge bosons and fermions197
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in Eq. (3.9). However, one of the defining features of our effective Lagrangian is that198

the coefficients of the latter couplings are equal to the corresponding vertex correction199

in Eq. (3.4). This form can be always obtained, without any loss of generality, starting200

from an arbitrary dimension-6 Lagrangian provided the 2-derivative hVµ∂νVνµ are kept201

in the Lagrangian.202

Next, couplings of the Higgs boson to a gauge field and two fermions, which are203

not present in the SM Lagrangian, may be generated by dimension-6 operators. We204

define the following vertex-like contact interactions between the Higgs, electroweak gauge205

bosons, and fermions:206

Lhvff =
√

2g
h

v
W+
µ

(
ūLγµδg

hWq
L VCKMdL + ūRγµδg

hWq
R dR + ν̄Lγµδg

hW`
L eL

)
+ h.c.

+ 2
h

v

√
g2 + g′2Zµ

[ ∑
f=u,d,e,ν

f̄Lγµδg
hZf
L fL +

∑
f=u,d,e

f̄Rγµδg
hZf
R fR

]
, (3.9)

As indicated before, we demand the coefficients of these interaction to be equal to the207

corresponding vertex correction in Eq. (3.4):208

δghZf = δgZf , δghWf = δgWf . (3.10)

In addition, we also define the following dipole-type contact interactions of the Higgs209

boson:210

LD=6
hdvff = − h

4v2

[
gs
∑
f∈u,d

f̄σµνT
adhGffG

a
µν + e

∑
f∈u,d,e

f̄σµνdhAffAµν

+
√
g2
L + g2

Y

∑
f∈u,d,e

f̄σµνdhZffZµν +
√

2gL
(
d̄σµνdhWquW

−
µν + h.c.

)]

− h

4v2

[∑
f∈u,d

f̄σµνT
ad̃hGffG̃

a
µν + e

∑
f∈u,d,e

f̄σµν d̃hAffÃµν

+
√
g2
L + g2

Y

∑
f∈u,d,e

f̄σµν d̃hZffZ̃µν +
√

2gL

(
d̄σµν d̃hWquW̃

−
µν + h.c.

)]
.(3.11)

3.5 Couplings of two or more Higgs bosons211

To describe double Higgs production via gluon fusion (gg → hh) at the LHC we need,212

apart from a subset of the single Higgs couplings introduced in Section 3.4, the following213

interactions with two or more Higgs bosons:214

∆LD=6
hh = −δλ3vh

3+
h2

v2

g2
s

8

(
c(2)
gg G

a
µνG

a
µν + c̃(2)

gg G
a
µνG̃

a
µν

)
− h2

2v2

∑
f ;ij

√
mfimfj

[
f̄i,R[y

(2)
f ]ijfj,L + h.c.

]
.

(3.12)
Other couplings with two Higgs bosons are present in ∆L. Specifically, these are the215

couplings h2V V to the SM electroweak gauge bosons, and h2ffV contact interactions.216

As these do not play the role in the double Higgs production processes currently studied217

at the LHC, we do not display them here.218
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3.6 Other terms219

In the subsections above we wrote down interactions terms in the effective Lagrangian220

that are relevant for SM precisions tests and for Higgs searches at the LHC. The remain-221

ing terms, which are not explicitly displayed in this note, are contained in Lother. The222

include 4-fermion terms, corrections quartic and higher Higgs boson self-interactions,223

self-interactions of more than 4 vector bosons, interactions of 2 or more Higgs bosons224

with SM matter, couplings of a single Higgs boson to 3 or more gauge bosons. Currently,225

these terms are relevant neither for SM precision tests nor for single and double Higgs226

production and decay at the LHC. If there’s phenomenological interest, any of the terms227

in Lother can be explicitly written down in this note.228

4 Mapping Effective Lagrangian to Warsaw Basis of229

Dimension-6 Operators230

We turn to discussing the map between the couplings of the effective Lagrangian intro-231

duced in Section 3 and Wilson coefficients of dimension-6 operators in the electroweak232

basis before electroweak symmetry breaking. The complete set of dimension-6 opera-233

tors can be written in many different equivalent bases which are related by the use of234

equations of motion and integration by parts. Here we work with the so-called War-235

saw basis of Ref. [5, 10], which is distinguished by the simplest tensor structure of the236

higher-dimensional operators. The analogous procedure can be applied to other bases:237

see Appendix A.1 for the map between the effective Lagrangian and the SILH basis.238

The Lagrangian in the Warsaw basis is given by2
239

Lwarsaw = LSM +
1

Λ2

∑
i

ĉiOi, (4.1)

where the SM Lagrangian LSM was introduced in Section 2, Λ is the mass scale of240

new particles, Oi are the dimension-6 operators in the Warsaw basis summarized in241

Table 1, can ĉi is the Wilson coefficient multiplying the operator Oi. The scale Λ appears242

explicitly to emphasize this is the EFT expansion parameter, and Eq. (4.1) contains the243

zeroth- and the first-order term in this expansion. However, observables calculated in244

the EFT depend only on the combination ĉi/Λ
2. Therefore, working with the low-energy245

EFT, it is more convenient to redefine ĉi → ciΛ
2/v2. In the following we will display all246

the formula using the redefine Wilson coefficients ci.247

To map the Wilson coefficients of dimension-6 operators in the Warsaw basis to the248

couplings in the effective Lagrangian we need first to bring Lwarsaw into the same form249

as Leff in Eq. (3.1). This can be achieved by a series of transformations using equations250

of motion, integration by parts, and rescaling of the fields and couplings. To begin with,251

2We use a different notation than the original reference. We also replaced the operator |H†DµH|2 by
(H†DµH −DµH

†H)2. For Yukawa-type operators Of we subtracted v2 so that these operators do not
contribute to off-diagonal mass terms. This way we avoid tedious rotations of the fermion fields to bring
them back to the mass eigenstate basis. Starting with the Yukawa couplings −Hf̄ ′R(Y ′

f + c′fH
†H/v2)f ′L

we can bring them to the form in Eq. (2.1) and Table 1 by defining f ′L,R = UL,RfL,R, cf = U†
Rc

′
fUL,

Yf = U†
R(Y ′

f + c′f/2)UL, where UL,R are unitary rotations to the mass eigenstate basis.
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the operator OWB leads to a kinetic mixing between the hypercharge and SU(2) gauge252

bosons, OWB → −1/2gg′W 3
µνBµν . To get rid of it, we use the equations of motion:253

∂νBνµ = g′
(v + h)2

4

(
gW 3

µ − g′Bµ

)
− g′jYµ ,

∂νW
3
νµ = −g (v + h)2

4

(
gW 3

µ − g′Bµ

)
− gj3

µ − gε3jkW j
νW

k
νµ, (4.2)

where jYµ =
∑

f Yf f̄γµf , and j3
µ = q̄γµT

3PLq + ¯̀γµT
3PL`. Using this,254

−cWB
gg′

2
W 3
µνBµν → cWBe

2

[
(v + h)2

4

(
gW 3

µ − g′Bµ

)2 − gW 3
µj

Y
µ − g′Bµj

3
µ

− g
2

2g′
ε3jkW j

µW
k
νBµν − g′ε3jkBµW

j
νW

k
νµ

]
= cWBe

2

[
(g2 + g′2)(v + h)2

4
Z2
µ − eAµjem

µ +
√
g2 + g′2Zµ

(
j3
µ − c2

θj
em
µ

)]
+ icWB

g2g′

(g2 + g′2)3/2

[
g2(gAµν − g′Zµν)W+

µ W
−
ν

−g′2(gAµ − g′Zµ)(W+
µνW

−
ν −W−

µνW
+
ν )
]
, (4.3)

where jem
µ = j3

µ + jYµ is the electromagnetic current. Next, the operators OBB, OWW ,255

and OGG change the normalization of the kinetic terms of the gauge bosons. To recover256

the canonical normalization we redefine the gauge fields as257

Bµ → Bµ

(
1 +

cBBg
′2

4

)
, W i

µ → W i
µ

(
1 +

cWWg
2

4

)
, Ga

µ → Ga
µ

(
1 +

cGGg
2
s

4

)
. (4.4)

We ignore here the contribution of the operator ÕGG to the QCD θ-term (we can always258

assume it cancels agains the θ-term in the SM Lagrangian, or is dynamically removed259

by an axion field). The operator OH changes the normalization of the Higgs boson260

kinetic term, and also induces Higgs boson self-interactions that contain two derivatives.261

To recover the canonical normalization and remove the 2-derivative self-interactions we262

redefine the Higgs field as263

h→ h

(
1− cH −

h

v
cH −

h2

3v2
cH

)
. (4.5)

The relation between the Higgs VEV v0 and the mass parameter in the SM Lagrangian264

is affected by the O6H operator:265

v2
0 =

µ2
H

λ

(
1 +

3

4λ
c6H

)
, (4.6)

while the relation between Higgs boson mass and the quartic coupling in the SM La-266

grangian is affected by both O6H and OH :267

m2
h = 2v2

0

(
λ− 2cHλ−

3

2
c6H

)
. (4.7)
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We have to make sure that the gauge couplings and the Higgs VEV have the same268

meaning as in the SM. In other words, the relation between the couplings and the observ-269

ables employed to determine them This is a non-trivial requirement, because dimension-6270

operators affect the observables used to extract these parameters. We have seen that the271

operator OWB shifts the electric charge and the Z boson mass. Similarly, the operator272

OT shifts the Z boson mass term. Furthermore, one of the O`` operators leads to the 4-273

fermion coupling v−2[c``]1221(ν̄µ,Lγρνe,L)(ēLγρµL) that contributes to the muon decay at274

the linear level and thus shifts the Fermi constant. Finally, the leptonic vertex operator275

OH` also shifts the Fermi constant. To undo these effects, we need to ensure that the276

photon and the gluon couple to the electromagnetic and strong currents as in Eq. (2.3).277

Furthermore, the Z boson mass term in the Lagrangian should be as in Eq. (2.2), and278

the tree-level µ → eν̄eνµ decay width should be given by Γ =
m5
µ

384π3v4
. This is achieved279

by the following redefinition of the coupling constants and the VEV:280

gs → gs

(
1− cGG

g2
s

4

)
,

g → g

(
1− cWW

g2

4
− cWB

g2g′2

g2 − g′2
+ (cT − δv)

g2

g2 − g′2

)
,

g′ → g′
(

1− cBB
g′2

4
+ cWB

g2g′2

g2 − g′2
− (cT − δv)

g′2

g2 − g′2

)
,

v0 → v (1 + δv) , (4.8)

where δv = ([c′H`]11 + [c′H`]22)/2− [c``]1221/4.281

One last transformation is needed to match the Higgs basis. At this point, the282

coefficients of the contact interactions in Eq. (3.9) differ from the vertex corrections283

by flavor universal terms depending only on the electric charge and the isospin of the284

fermions. It is possible to get rid of the latter using equations of motion for the gauge285

bosons, so as to traded them into zero- and two-derivative Higgs boson interactions with286

gauge bosons of the form hVµVµ and hVµ∂νVµν .287

After all these transformations the Lagrangian takes the same form as LHiggs Basis.288

The dictionary between the coefficients of dimension-6 operators and the independent289

and dependent couplings in LHiggs Basis goes as follows. The shift of the W boson mass290

is given by291

δm =
1

g2 − g′2
[
−g2g′2cWB + g2cT − g′2δv

]
. (4.9)

The shift of W and Z boson couplings to leptons are given by292

δgW`
L = c′H` + f(1/2, 0)− f(−1/2,−1),

δgZνL =
1

2
c′H` −

1

2
cH` + f(1/2, 0),

δgZeL = −1

2
c′H` −

1

2
cH` + f(−1/2,−1),

δgZeR = −1

2
cHe + f(0,−1), (4.10)

where293

f(T 3, Q) = I3

[
−QcWB

g2g′2

g2 − g′2
+ (cT − δv)

(
T 3 +Q

g′2

g2 − g′2

)]
, (4.11)
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and I3 is the 3 × 3 identity matrix. Vertex corrections to W and Z boson couplings to294

quarks are given by295

δgWq
L = c′Hq + f(1/2, 2/3)− f(−1/2,−1/3),

δgWq
R = −1

2
cHud,

δgZuL =
1

2
c′Hq −

1

2
cHq + f(1/2, 2/3),

δgZdL = −1

2
c′Hq −

1

2
cHq + f(−1/2,−1/3),

δgZuR = −1

2
cHu + f(0, 2/3),

δgZdR = −1

2
cHd + f(0,−1/3). (4.12)

The coefficients of vertex-like contact interactions between the Higgs boson, W or Z296

boson, and two fermions in Eq. (3.9) are given by297

cV f = δgV f . (4.13)

The shifts of the Higgs couplings to W and Z are given by298

δcw = −cH − cWB
4g2g′2

g2 − g′2
+ 4cT

g2

g2 − g′2
− δv3g2 + g′2

g2 − g′2
,

δcz = −cH − 3δv. (4.14)

The two-derivative Higgs couplings to gauge bosons are given by299

cgg = cGG, c(2)
gg = cGG,

cγγ = cWW + cBB − 4cWB,

czz =
g4cWW + g′4cBB + 4g2g′2cWB

(g2 + g′2)2
,

cz2 = − 2

g2
(cT − δv) ,

czγ =
g2cWW − g′2cBB − 2(g2 − g′2)cWB

g2 + g′2
,

cγ2 =
2

g2 − g′2
(
(g2 + g′2)cWB − 2cT + 2δv

)
,

cww = cWW ,

cw2 =
2

g2 − g′2
(
g′2cWB − cT + δv

)
.

(4.15)

and the same for the CP-odd couplings c̃gg, c̃γγ, c̃zγ, c̃zz, c̃ww, with c → c̃ on the right300

hand side. The Yukawa interactions are given by301

[δyf ]ij cosφfij =
vRe[cf ]ij√

2mfimfj

− δij (cH + δv) ,

[δyf ]ij sinφfij =
vIm[cf ]ij√

2mfimfj

. (4.16)
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The coefficients of Yukawa-type interactions of two Higgs bosons with fermions in Eq. (3.12)302

are given by303

[y
(2)
f ]ij = 3[δyf ]ije

iφij + (cH + 3δv)δij. (4.17)

The anomalous triple gauge couplings of electroweak gauge bosons are given by304

δg1,z =
g2 + g′2

g2 − g′2
(
−g′2cWB + cT − δv

)
,

δκγ = g2cWB,

δκz = −2cWB
g2g′2

g2 − g′2
+
g2 + g′2

g2 − g′2
(cT − δv) ,

λγ = −3

2
g4c3W ,

λz = −3

2
g4c3W ,

κ̃γ = g2c̃WB,

κ̃z = −g′2c̃WB,

λ̃γ = −3

2
g4c̃3W ,

λ̃z = −3

2
g4c̃3W . (4.18)

The Higgs cubic interaction is given by305

δλ3 = −λ (3cH + δv)− c6H . (4.19)

To summarize, in the Warsaw basis the Higgs boson couplings to matter and itself306

depend on linear combinations of the following Wilson coefficients:307

cH , cT , cGG, cWW , cBB, cWB, c̃GG, c̃WW , c̃BB, c̃WB, cu, cd, ce, c6H

c′H`, cH`, cHe, c
′
Hq, cHq, cHu, cHd, cHud. (4.20)

In the limit the Wilson coefficients are flavor blind this makes 22 parameters affecting the308

processes of Higgs production and decay. All these coefficients are necessary to describe309

the results of LHC searches in a general EFT approach. At the same time, electroweak310

precision tests constrain (often stringently) linear combinations of the following Wilson311

coefficients:312

cT , cWB, c
′
H`, cH`, cHe, c

′
Hq, cHq, cHu, cHd, cHud, c3W , c̃3W , [c``]12;21. (4.21)

In principle, there is not any theoretical obstacle to present the results of LHC Higgs313

analyses as constraints on the Wilson coefficients in Eq. (4.20). The practical difficulty is314

that some linear combinations of these parameters are already stringently constrained by315

electroweak precisions tests, such that they cannot yield observables effects at the LHC.316

In the next section we propose a more convenient parametrization where the strongly317

and weakly constrained combinations of Wilson coefficients are separated.318
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5 Higgs Basis319

In this section we propose another parametrization of the effective dimension-6 La-320

grangian in the linear realization of electroweak symmetry. The formalism is similar to321

Ref. [1], however the parametrization we propose here is slightly different. The goal is322

to choose a particular basis of operators that can be more directly connected (at least323

at tree-level) to observable quantities in Higgs physics. The basis, which we call the324

Higgs basis, is spanned by particular combinations of dimension-6 operators. Each of325

these combinations maps to a simple interaction term of the SM mass-eigenstate fields326

that can be probed by experiment. In fact, we will define the Higgs basis by a subset of327

the couplings in the effective Lagrangian Eq. (3.1). We will refer to this subset as the328

independent couplings.329

We stress that the Higgs basis should be regarded as one of many possible bases of330

the dimension-6 Lagrangian beyond the SM. In particular, the independent couplings331

can be related by a linear transformation to parameters defining any other such basis in332

the literature; the linear transformation to the Warsaw basis [5] can be extracted from333

Section 4, and the transformation to the SILH [6] basis will be given in Appendix A.1.334

At the same time, the independent couplings can be easily connected to Higgs pseudo-335

observables at the amplitude level, as defined e.g. in Ref. [7].336

The number of couplings in the effective Lagrangian of Eq. (3.1) is larger than the337

number of Wilson coefficients in a dimension-6 EFT basis. Therefore, some of the338

couplings can be expressed by the independent couplings; we call them the dependent339

couplings. The relations between dependent and independent couplings can be inferred340

from the matching between the effective Lagrangian and the Warsaw basis in Section 4.341

These relations hold at the level of the dimension-6 Lagrangian, and they are in general342

not respected in the presence of dimension-8 and higher operators. Of course, the choice343

which couplings are independent and which are dependent is a subjective choice dictated344

by convenience. In our case, the choice of the independent couplings was motivated by345

their direct connection to observables constrained by electroweak precision tests and346

Higgs searches. However, other choices can be envisaged and may be more convenient347

for other applications.348

5.1 Independent Couplings349

We select a subset of coupling in the effective Lagrangian of Eq. (3.1) that has a 1-to-1350

mapping to the Wilson coefficients in the Warsaw basis (or any other dimension-6 basis).351

This subset of independent couplings defines the Higgs basis. It can be used on par with352

any other basis to describe the effect of dimension-6 operators on physical observables.353

The first group of independent couplings are the ones affecting W boson mass and354

the Z and W boson couplings to fermions:355

δm, δgZeL , δgZeR , δgW`
L , δgZuL , δgZuR , δgZdL , δgZdR , δgWq

R ,

dGu, dGd, dAe, dAu, dAd, dZe, dZu, dZd, d̃Gu, d̃Gd, d̃Ae, d̃Au, d̃Ad, d̃Ze, d̃Zu, d̃Zd.

(5.1)

Here the mass correction δm is defined in Eq. (3.3), the vertex corrections δg’s are356

defined in Eq. (3.4), and the dipole moments di are defined in Eq. (3.5). While they are357
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free parameters from the EFT point of view, precision measurements constrain them to358

be small. In particular, most of the parameters in the first line are constrained to be359

. 10−2 − 10−4 [12]. The remaining parameters are constrained by measurements of the360

magnetic and electric dipole moments. Therefore, even if combinations of dimension-6361

operators defined the independent couplings in Eq. (5.1) affect the Higgs observables, it362

is a well-motivated assumption to neglect them in LHC Higgs analyses whose precision363

is worse than the existing constraints.364

The second group of independent couplings are the ones describing the interactions365

of the Higgs boson with the SM gauge boson, fermions, and with itself:366

cgg, δcz, cγγ, czγ, czz, cz2, c̃gg, c̃γγ, c̃zγ, c̃zz,

δyu, δyd, δye, sinφu, sinφd, sinφ`, δλ3. (5.2)

They are defined by Eq. (3.8), except for the last one which is defined in Eq. (3.12). As367

opposed to the ones in Eq. (5.1), the combinations of Wilson coefficients corresponding368

to the independent couplings in Eq. (5.2) are weakly constrained by SM precision tests.369

In fact, the strongest limits on these couplings typically come from Higgs searches. An370

important task of the LHC collaborations is to provide model-independent limits on the371

parameters in Eq. (5.2).372

The third group of independent couplings are related gauge bosons self-couplings:373

λz, λ̃z, c3G, c̃3G. (5.3)

They are defined in Eq. (3.6). These couplings do not affect Higgs searches, and they374

are only weakly constrained by SM precision tests.375

To complete the definition of the Higgs basis, one has to include the independent376

couplings corresponding to 4-fermion operators. We choose to parametrize them by the377

same set of Wilson coefficients as in the Warsaw basis:378

c``, cqq, c
′
qq, c`q, c

′
`q, cquqd, c

′
quqd, c`equ, c

′
`equ, c`edq,

c`e, c`u, c`d, cqe, cqu, c
′
qu, cqd, c

′
qd, cee, cuu, cdd, ceu, ced, cud, c

′
ud. (5.4)

The parameters cff have 4 flavor indices. The non-trivial question which subset of all379

possible combinations of flavor indices constitute an independent set is worked out in380

Ref. [10]. In the Higgs basis we take the same choice of independent 4-fermion couplings381

as in that reference, with one exception. As explained in the next subsection, in the382

Higgs basis the coupling [c`]1221 is a dependent coupling that can be expressed by δm383

and δg’s. Therefore [c`]1221 is not among the independent couplings defining the Higgs384

basis.385

5.2 Dependent Couplings386

The remaining couplings in the effective Lagrangian are called the dependent couplings387

because, at the level of a dimension-6 EFT Lagrangian, they can be expressed by the388

independent couplings defining the Higgs basis. To obtain the relations between the389

dependent and independent couplings one can use the matching between the Warsaw390

basis and the effective Lagrangian worked out in Section 4. The procedure is to solve391
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for the Warsaw basis Wilson coefficients in terms of the independent couplings and392

eliminating the former from the expressions for the dependent couplings.393

We start with the dependent couplings in Eq. (3.8) describing the single Higgs boson394

interactions with matter. They can be expressed by the independent couplings as3
395

δcw = δcz + 4δm,

cww = czz + 2s2
θczγ + s4

θcγγ,

c̃ww = c̃zz + 2s2
θ c̃zγ + s4

θ c̃γγ,

cw2 =
1

g2 − g′2
[
g2cz2 + g′2czz − e2s2

θcγγ − (g2 − g′2)s2
θczγ

]
,

cγ2 =
1

g2 − g′2
[
2g2cz2 + (g2 + g′2)czz − e2cγγ − (g2 − g′2)czγ

]
. (5.5)

Next, all the couplings with two higgs bosons in Eq. (3.12) can be expressed by the396

independent couplings:397

c(2)
gg = cgg, c̃(2)

gg = c̃gg,

[y
(2)
f ]ij = 3[δyf ]ije

iφij − δcz δij, (5.6)

The dependent vertex corrections are expressed by the independent ones as398

δgZνL = δgZeL + δgW`
L , δgWq

L = δgZuL − δgZdL . (5.7)

Note that we choose the W couplings to leptons (rather than the Z couplings to neutri-399

nos) as our independent couplings, because in the flavor non-universal case the former are400

more directly constrained by experiment (in particular, in leptonic W decays measured401

at LEP).402

Next, all but two triple gauge couplings in Eq. (3.6) are dependent couplings ex-403

pressed by the independent couplings as404

δg1,z =
1

2(g2 − g′2)

[
cγγe

2g′2 + czγ(g
2 − g′2)g′2 − czz(g2 + g′2)g′2 − cz2(g2 + g′2)g2

]
δκγ = −g

2

2

(
cγγ

e2

g2 + g′2
+ czγ

g2 − g′2

g2 + g′2
− czz

)
,

κ̃γ = −g
2

2

(
c̃γγ

e2

g2 + g′2
+ c̃zγ

g2 − g′2

g2 + g′2
− c̃zz

)
,

δκz = δg1,z − t2θδκγ, κ̃z = −t2θκ̃γ,
λγ = λz, λ̃γ = λ̃z. (5.8)

Note that δg1,z, δκγ, and κ̃γ are dependent couplings here, unlike in Ref. [1]. Our405

motivation is that the Higgs basis should be parametrized such that the connection406

with Higgs observables is the simplest. However, for the sake of studying WW and407

WZ production a different set of independent couplings would be more convenient. For408

example, one could choose the independent couplings as δg1,z, δκγ, λz, κ̃γ, λ̃z, and409

consider cz2, czz, and c̃zz as dependent couplings expressed by this set.410

3The relation between cww, c̃ww and other parameters can also be viewed as a consequence of the
accidental custodial symmetry at the level of the dimension-6 operators [8].
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Finally, we discuss how the Wilson coefficient [c``]1221 of the 2-electron-2-muon oper-411

ator is expressed by the independent couplings. One feature of the effective Lagrangian412

Eq. (3.1) is that the tree-level relations between the SM electroweak parameters and413

input observables are not affected by new physics. On the other hand, one of the four-414

fermion couplings in the Lagrangian,415

LD=6
4f ⊃ [c``]1221(¯̀

1,Lγρ`2,L)(¯̀
2,Lγρ`1,L) (5.9)

does affect the relation between the parameter v and the muon decay width from which416

GF = 1/
√

2v2 is determined:417

Γ(µ→ eνν)

Γ(µ→ eνν)SM

≈ 1 + 2[δgWe
L ]11 + 2[δgWe

L ]22 − 4δm− [c``]1221. (5.10)

Therefore, the muon decay width is unchanged with respect to the SM when [c``]1221 is418

related to δm and δg as419

[c``]1221 = 2δ[gWe
L ]11 + 2[δgWe

L ]22 − 4δm. (5.11)

In other words, due to the fact that we defined δm as an independent coupling in the420

Higgs basis , [c``]1221 has to be a dependent coupling. Of course, one could equivalently421

choose [c``]1221 to define the Higgs basis, and remove δm from the list of independent422

couplings.423

5.3 Final comments424

In summary, the Higgs basis is parametrized by the independent couplings in Eqs. (5.1),425

5.2), (5.3), (5.4). In total, the Higgs basis, much as any complete basis at the dimension-6426

level, is parametrized by 2499 independent real couplings [10]. One should not, however,427

be intimidated by this number. The point is that a much smaller subset in Eq. (5.2) is428

adequate for EFT analyses of Higgs data at the leading order in new physics parameters.429

For example, to describe single Higgs production and decay processes in full generality430

one needs 10 bosonic and 2 × 3 × 3 × 3 = 54 fermionic couplings. Furthermore, 31 of431

these couplings are CP-odd, therefore they affect the Higgs signal strength measurement432

only at the quadratic level, while flavor off-diagonal Yukawa couplings only affect exotic433

Higgs decays. In the limit where fermionic couplings are flavor blind, 9 parameters are434

enough to describe leading order EFT corrections to the existing Higgs signal strength435

measurements at the LHC.436

We conclude with a number of comments.437

• The relations between independent and dependent couplings in Eqs. (5.5), (5.6),438

(5.7), (5.8), Eq. (5.11) are consequences of the linear realization of electroweak439

symmetry breaking at the level of dimension-6 EFT operators. They are an es-440

sential part of the definition of the Higgs basis. If the independent and dependent441

couplings were unrelated, then LHiggs Basis would not be a dimension-6 basis but442

would belong to a more general class of theories. Such theories are outside of the443

scope of this note.444
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• The independent couplings in Eq. (5.1) are probed by precision measurements of Z445

and W production and decays at LEP. In particular, assuming vertex corrections446

are flavor blind, all the independent couplings in Eq. (5.1) are constrained to be447

smaller than O(10−3) (for the leptonic vertex corrections and δm ≡ δmW/mW ),448

or O(10−2) (for the quark vertex corrections) [2, 4, 11]. Dropping the assumption449

of flavor blindness, all the leptonic, bottom and charm quark vertex corrections450

are still constrained, in a model-independent way, at the level of O(10−2) or better451

[12]. These constraints imply these couplings are too small to have any measurable452

effects at the LHC, therefore we recommend to impose the electroweak bounds on453

such constraints before analyzing LHC data. The 1st generation quark vertex cor-454

rections are less constrained in a model-independent way, though one combination455

of them is tightly constrained by measurements of the hadronic Z decays at LEP.456

Furthermore, the top quark vertex corrections are poorly constrained (at the O(1)457

level) by experiment, especially the right-handed top couplings to Z. If feasible,458

the light quark and top couplings should be considered as free parameters in ex-459

perimental analyses at the LHC, as this may provide new valuable information to460

constrain these couplings.461

• The Higgs basis is convenient for extracting constraints on dimension-6 operators462

from Higgs and electroweak precision data. However, it may not be the opti-463

mal basis for some other applications. In particular, computing renormalization464

group running of the couplings or matching to concrete BSM model may be more465

straightforward in the language of SU(3)× SU(2)× U(1) invariant operators.466

• Customarily, the SM electroweak parameters are extracted from α(0), mZ and GF .467

One could also use mW instead of GF , as suggested in Ref. [2]. This formalism468

leads to the same relations between the independent and dependent couplings as469

written down here, except that δm = 0 by definition, and that [c``]1221 becomes an470

independent couplings. The downside of this formalism is that the SM predictions471

for all observables would have to be recalculated, as all existing high-precision472

calculations use GF as an input.473

• The number of independent couplings in Eq. (5.2) relevant for Higgs observables474

is still large. At the early stages of the LHC run-2 it may be reasonable to em-475

ploy simplified analyses with a smaller number of parameters. There are several476

motivated assumptions about the underlying UV theory that reduce the number477

of parameters:478

– Flavor universality, in which case the matrices mfδyf and sinφf reduce to a479

single number for each f = u, d, e.480

– Minimal flavor violation, in which case the dominant entries in δyf are [δyu]33481

and [δyd]33, while other diagonal entries are suppressed by the respective mass482

square ratio.483

– CP conservation, in which case all CP-odd couplings vanish: c̃i = 0 = sinφf .484

– Custodial symmetry, in which case δm = 0.4485

4Custodial symmetry implies several relations between Higgs couplings to gauge bosons: δcw = δcz,
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We stress that independent couplings should not be arbitrarily set to zero with-486

out an underlying symmetry assumption. Furthermore, the relations between the487

dependent and independent couplings should be consistently imposed, so as to488

preserve the weak SU(2) local symmetry.489

• The independent couplings are formally of order v2/Λ2, where Λ is the scale of490

new physics. For completeness, it is important to define the range of independent491

couplings such that the EFT description is valid. The rule of thumb is that this is492

the case when the independent couplings are . 1; more sophisticated criteria will493

be worked out in the future when specific Higgs processes are discussed.494

A Dictionary495

In this section we give a translation between the Higgs basis parameters and several496

other bases of dimension-6 operators proposed in the literature. On request, translation497

to other bases may be added in the future.498

A.1 SILH basis499

Another D = 6 basis choice commonly used in the literature is the SILH basis [6, 8].5500

In this section we present the translation between the couplings in the Higgs basis and501

Wilson coefficients of dimension-6 operator in the SILH basis.502

The SILH Lagrangian is written as503

LSILH = LSM +
1

v2

∑
i

siOi. (A.1)

Compared to the Warsaw basis defined in Section 4, the SILH basis of dimension-6504

operators introduces the following nine new operators:505

OW =
ig

2

(
H†σi

←→
DµH

)
DνW

i
µν ,

OB =
ig′

2

(
H†
←→
DµH

)
∂νBµν ,

OHW = ig
(
DµH

†σiDνH
)
W i
µν ,

OHB = ig′
(
DµH

†DνH
)
Bµν ,

OH̃W = ig
(
DµH

†σiDνH
)
W̃ i
µν ,

OH̃B = ig′
(
DµH

†DνH
)
B̃µν ,

O2W = DµW
i
µνDρW

i
ρν ,

O2B = ∂µBµν∂ρBρν ,

O2G = DµG
a
µνDρG

a
ρν . (A.2)

cw2 = c2θcz2 + s2θcγ2, cww = czz + 2s2θczγ + s4θcγ , and c̃ww = c̃zz + 2s2θ c̃zγ + s4θ c̃γ . The last three are
satisfied automatically at the level of dimension-6 Lagrangian, while the first one is true for δm = 0,
see Eq. (5.5).

5In this note, the SILH basis is understood simply as a particular choice of a non-redundant set of
D=6 operators whose Wilson coefficients are arbitrary. We do not assume any hierarchy of the Wilson
coefficients motivated by particular strongly coupled UV completions that was discussed in Refs. [6, 8].
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Consequently, in order to have a non-redundant set of operators, 9 operators present506

in the Warsaw basis must be absent in the SILH basis. The absent ones are 4 bosonic507

operators OWW , O
W̃W

, OWB, OW̃B, 2 vertex operators [OH`]11, [O′H`]11, and 3 four-508

fermion operators [O``]12;21, [O``]11;22, [O′uu]33;33. The remaining operators are the same509

as in the Warsaw basis, and we use the normalizations in Table 1, which are often510

different than in Refs. [6, 8].6511

One way to derive the translation is to first transform the operators in Eq. (A.2) to512

the Warsaw basis using integration by parts, Fierz transformations, and the equations513

of motion:514

∂νBµν =
ig′

2
H†
←→
DµH + g′

∑
f=q,`

Yf f̄LγµfL + g′
∑

f=u,d,e

Yf f̄RγµfR,

DνW
i
µν =

ig

2
H†σi

←→
DµH +

g

2

∑
f=q,`

f̄Lσ
iγµfL,

DνG
a
µν = gsq̄LT

aγµqL + gs
∑
f∈u,d

q̄RT
aγµqR. (A.3)

6The original references do not discuss the flavor structure explicitly, and the flavor indices of the
absent operators are not specified. Here, for concreteness, we made a particular though somewhat
arbitrary choice of these indices.
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Using these, one can obtain:515

OHB = OB −
1

4
OWB −OBB,

OHW = OW −
1

4
OWB −OWW ,

OH̃B = −1

4
OW̃B −OB̃B,

OH̃W = −1

4
OW̃B −OW̃W

,

OB = g′2

[
−1

4
OT +

1

2

∑
f∈q,u,d,`,e

Yf
∑
i

[OHf ]ii

]
,

OW = g2

[
−1

4
OH +OHD +

1

4

∑
f∈q,`

∑
i

[O′Hf ]ii

]
,

O2B = g′2

[
−1

4
OT +

∑
f∈q,u,d,`,e

Yf
∑
i

[OHf ]ii +
∑

f1f2∈q,u,d,`,e

Yf1Yf2
∑
i,j

[Of1f2 ]ii;jj

]
,

O2W = g2

[
−1

4
OH +OHD +

1

2

∑
f∈q,`

∑
i

[O′Hf ]ii

+
∑
ij

(
1

2
[O``]ij;ji −

1

4
[O``]ii;jj +

1

2
[O`q]ii;jj +

1

4
[Oqq]ii;jj

)]
,

O2G = g2
s

∑
i,j

[
1

4
[O′qq]ij;ji +

1

4
[Oqq]ij;ji −

1

6
[Oqq]ii;jj + 2[O′qu]ii;jj + 2[O′qd]ii;jj

+ 2[O′ud]ii;jj +
1

2
[O′uu]ij;ji −

1

6
[O′uu]ii;jj +

1

2
[O′dd]ij;ji −

1

6
[O′dd]ii;jj

]
. (A.4)

The operator OHD = |H|2|DµH|2 appearing above is present neither in the Warsaw nor516

in the SILH basis. One can remove it from the Lagrangian by rescaling the Higgs field517

and the Yukawa couplings as H → H(1 + ε|H|2/v2), yf → yf (1− ε/2). To lowest order518

in ε, this rescaling generates the following terms in the Lagrangian519

∆L = ε

(
2OHD +OH − 4λO6H +

∑
f∈u,d,e

∑
i

[yf ]ii[Of ]ii

)
. (A.5)

Thus, to get rid of the OHD operator generated by the transformation from the SILH520

to the Warsaw basis we need to choose ε = −g2(sW + sHW + s2W )/2. Effectively, this521

amount to replacing in Eq. (A.4):522

OHD → −
1

2
OH + 2λO6H −

1

2

∑
f∈u,de

∑
i

[yf ]ii[Of ]ii. (A.6)

We are ready to give the translation between the Wilson coefficient in the SILH and523
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Warsaw basis:524

cH = sH −
3g2

4
(sW + sHW + s2W ) ,

cT = sT −
g′2

4
(sB + sHB + s2B) ,

c6H = s6H + 2λg2 (sW + sHW + s2W ) ,

cWB = −1

4
(sHB + sHW ) ,

cBB = sBB − sHB,
cWW = −sHW ,

c̃WB = −1

4
(s̃HB + s̃HW ) ,

c̃BB = s̃BB − s̃HB,
c̃WW = −s̃HW , (A.7)

525

[cHf ]ij = [sHf ]ij +
g′2Yf

2
(sB + sHB + 2s2B) δij,

[c′Hf ]ij = [s′Hf ]ij +
g2

4
(sW + sHW + 2s2W ) δij, (A.8)

526

[cf ]ij = [sf ]ij − δijg2[yf ]ii
sW + sHW + s2W

2
, (A.9)

527

[c``]ii;ii = [s``]ii;ii +
1

4

(
g′2s2B + g2s2W

)
,

[c``]ii;jj = [s``]ii;jj +
1

2

(
g′2s2B − g2s2W

)
, i < j,

[c``]ij;ji = [s``]ij;ji + g2s2W , i < j, (A.10)

where it is implicit that [sH`]11 = [s′H`]11 = [s``]12;21 = [s``]11;22 = 0. For the 4-lepton528

operators one should take into account that [O``]ji;ij ≡ [O``]ij;ji and [O``]jj;ii ≡ [O``]ii;jj.529

The translation of other 4-fermion Wilson coefficients apart from the one in Eq. (A.10)530

can be easily derived from Eq. (A.4), but it will not be needed in the following. For the531

Wilson coefficients not listed above the translation is trivial: ci = si.532

Given these relations between the Warsaw and SILH basis Wilson coefficients and533

using the results of Section 4, we can derive the translation between the Higgs basis534

couplings and the SILH basis Wilson coefficients:535

δm = − g2g′2

4(g2 − g′2)

(
sW + sB + s2W + s2B −

4

g′2
sT +

2

g2
[s′H`]22

)
, (A.11)

536

f̂(T 3, Q) ≡ 1

4

[
g2s2W + g′2s2B + 4sT − 2[s′H`]22

]
T 3

+
g′2

4(g2 − g′2)

[
−(2g2 − g′2)s2B − g2(s2W + sW + sB) + 4sT − 2[s′H`]22

]
Q,

(A.12)
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537

δgZνL =
1

2
s′H` −

1

2
sH` + f̂(1/2, 0),

δgZeL = −1

2
s′H` −

1

2
sH` + f̂(−1/2,−1),

δgZeR = −1

2
sHe + f̂(0,−1),

δgZuL =
1

2
s′Hq −

1

2
sHq + f̂(1/2, 2/3),

δgZdL = −1

2
s′Hq −

1

2
sHq + f̂(−1/2,−1/3),

δgZuR = −1

2
sHu + f̂(0, 2/3),

δgZdR = −1

2
sHd + f̂(0,−1/3),

δgW`
L = s′H` + f̂(1/2, 0)− f̂(−1/2,−1),

δgWq
L = s′Hq + f̂(1/2, 2/3)− f̂(−1/2,−1/3),

δgWq
R = −1

2
sHud, (A.13)

538

cV f = δgV f , (A.14)
539

δcw = −sH −
g2g′2

g2 − g′2

[
sW + sB + s2W + s2B −

4

g′2
sT +

3g2 + g′2

2g2g′2
[s′H`]22

]
,

δcz = −sH −
3

2
[s′H`]22,

cgg = sGG,

cγγ = sBB,

czz = − 1

g2 + g′2
[
g2sHW + g′2sHB − g′2s2

θsBB
]
,

cz2 =
1

2g2

[
g2(sW + sHW + s2W ) + g′2(sB + sHB + s2B)− 4sT + 2[s′H`]22

]
,

czγ =
sHB − sHW

2
− s2

θsBB,

cγ2 =
sHW − sHB

2
+

1

g2 − g′2
[
g2(sW + s2W ) + g′2(sB + s2B)− 4sT + 2[s′H`]22

]
,

cww = −sHW ,

cw2 =
sHW

2
+

1

2(g2 − g′2)

[
g2(sW + s2W ) + g′2(sB + s2B)− 4sT + 2[s′H`]22

]
, (A.15)

540

[δyf ]ij cosφfij =
vRe[cf ]ij√

2mfimfj

− δij
[
sH +

3g2

4
(sW + sHW + s2W ) +

1

2
[s′H`]22

]
,

[δyf ]ij sinφfij =
vIm[sf ]ij√

2mfimfj

. (A.16)
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541

δλ3 = −λ
(

3sH +
1

2
[s′H`]22

)
− s6H , (A.17)

542

δg1z = − g2 + g′2

4(g2 − g′2)

[
(g2 − g′2)sHW + g2(sW + s2W ) + g′2(sB + s2B)− 4sT + 2[s′H`]22

]
,

δκγ = −g
2

4
[sHW + sHB] ,

δκz = −1

4

(
g2sHW − g′2sHB

)
− g2 + g′2

4(g2 − g′2)

[
g2(sW + s2W ) + g′2(sB + s2B)− 4sT + 2[s′H`]22

]
,

λz = −3

2
g4s3W , λγ = λz,

δκ̃γ = −g
2

4
[s̃HW + s̃HB] ,

δκ̃z =
g′2

4
[s̃HW + s̃HB] ,

λ̃z = −3

2
g4s̃3W , λ̃γ = λ̃z. (A.18)

A.2 SILH’ basis543

to be completed544

A.3 HISZ basis545

To describe the di-boson production, Ref. [13] proposes to use the following 5 operators:546

ÔWW = Tr [WµνWνρWρµ] ,

ÔW = DµH
†WµνDµH,

ÔB = DµH
†BµνDµH,

Ô
W̃W

= Tr
[
WµνWνρW̃ρµ

]
,

ÔW̃ = DµH
†W̃µνDµH. (A.1)

This is a subset of operators considered by Hagiwara et al. (HISZ) in Ref. [9]. The547

dimension-6 Lagrangian contains548

LD=6 ⊃ 1

Λ2

(
dWW ÔWW + dW ÔW + dBÔB + d̃WW ÔW̃W

+ d̃W ÔW̃

)
. (A.2)

These 5 operators contribute to the TGCs and Higgs couplings, but they do not con-549

tribute to oblique or vertex corrections. Thus, they are not strongly constrained by550

electroweak precision tests, and therefore represent a perfectly fine parameterization of551

EFT new physics in di-boson production.552

One should remember that the covariant derivatives in Refs. [9, 13] are defined with553

the opposite sign than here. This amounts to rescaling the gauge fields as Wµ → −Wµ,554
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Bµ → −Bµ in the translation. Then the electroweak field strength tensors defined in555

Ref. [13] are related to the ones used here by556

Bµν → −
i

2
g′Bµν , Wµν → −

i

2
gσiW i

µν . (A.3)

This allows us to relate557

ÔWW = −1

4
O3W , ÔW = −1

2
OHW , ÔB = −1

2
OHB,

Ô
W̃W

= −1

4
O3̃W , ÔW̃ = −1

2
OH̃W . (A.4)

where Oi on the right-hand side are operators in the SILH basis in the normalization of558

Section ??. Thus, the map between the HISZ and SILH coefficients is the following:559

s3W = −1

4

v2

Λ2
dWW , sHW = −1

2

v2

Λ2
dW , sHB = −1

2

v2

Λ2
dB,

s̃3W = −1

4

v2

Λ2
d̃WW , s̃HW = −1

2

v2

Λ2
d̃W . (A.5)

The anomalous TGCs and the HISZ basis Wilson coefficients are related by:560

δg1z =
g2 + g′2

8

v2

Λ2
dW

δκγ =
g2

8

v2

Λ2
(dW + dB) , δκ̃γ =

g2

8

v2

Λ2
d̃W

λz =
3g4

8

v2

Λ2
dWW , λ̃z =

3g4

8

v2

Λ2
d̃WW . (A.6)

Inverting these formulas, the relation between the Wilson coefficients in the HISZ basis561

and the Higgs basis parameters reads562

dWW =
8Λ2

3g4v2
λz,

dW = − 4Λ2

(g2 − g′2)v2

[
g2cz2 + g′2czz − s2

θe
2cγγ − s2

θ(g
2 − g′2)czγ

]
,

dB =
4Λ2

(g2 − g′2)v2

[
g2cz2 + g2czz − c2

θe
2cγγ − c2

θ(g
2 − g′2)czγ

]
,

d̃WW =
8Λ2

3g4v2
λ̃z,

d̃W =
8Λ2

g2v2
δκ̃γ. (A.7)

B Goldstone bosons and gauge fixing563

In the main body of this note we worked in the unitary gauge where the Goldstone boson564

degrees of freedom in the Higgs doublet are set to zero. This is enough for the sake of565

tree-level EFT calculations. However, if the necessity arises to extend the calculations566
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to a loop level, retrieving the Goldstone degrees of freedom is convenient, as this allows567

one to perform the standard gauge fixing procedure. This is done in this appendix.568

We parametrize the Higgs doublet as569

H =

(
iG+

1√
2

(v + h− iG3)

)
(B.1)

where G± and G3 are three Goldstone fields, that will be eaten by the W and Z bosons.570

In the Higgs basis, derivation of the Goldstone boson couplings follows exactly the same571

algorithm as the one applied before to derive the Lagrangian for physical fields: we572

first derive these couplings in the Warsaw basis, and then perform the field and coupling573

redefinitions that take us to the Higgs basis. Of course, all the Goldstone boson couplings574

are dependent ones, that is they can be expressed by the independent couplings defining575

the Higgs basis. As an illustration, below we display a subset of these couplings that576

are relevant for the 1-loop calculation of h→ V V ∗. These are577

1. Goldstone kinetic terms and their mixing with the electroweak gauge fields.578

2. Cubic interactions with one Higgs boson and one or two Goldstone fields.579

3. Cubic interactions with one or two Goldstone fields and one electroweak gauge580

field.581

4. Quartic interactions with one or two Goldstone fields and two electroweak gauge582

fields.583

The relevant part of the Lagrangian is parametrized as584

LG = Lkin
G + LS3

G + LS2V
G + LSV2

G + LSVdV
G + LS2V2

G + LS2dV2

G . (B.2)

where585

Lkin
G = ∂µG+∂µG−+

1

2
(∂µG3)2−βcW

gv

2

(
∂µG+W

−
µ + h.c.

)
−
√
g2 + g′2v

2
∂µG3Zµ, (B.3)

586

LS3

G = −m
2
h

v
βhcchG+G− −

m2
h

2v
βh33hG3G3 (B.4)

587

LS2V
G = βhcW

g

2
∂µh

(
G+W

−
µ + h.c.

)
+ βh3z

√
g2 + g′2

2
∂µhG3Zµ

+ iβ3cW
g

2
∂µG3

(
G+W

−
µ − h.c.

)
− β3hz

√
g2 + g′2

2
∂µG3hZµ

+ ie (∂µG+G− − h.c.)Aµ + iβccZ
g2 − g′2

2
√
g2 + g′2

(∂µG+G− − h.c.)Zµ

− βchW
g

2

(
∂µG+W

−
µ + h.c.

)
h− iβc3W

g

2

(
∂µG+W

−
µ − h.c.

)
G3, (B.5)

588

LSV2

G = iβcWA
egv

2

(
G+W

−
µ − h.c.

)
Aµ − iβcWZ

cθg
′2v

2

(
G+W

−
µ − h.c.

)
Zµ, (B.6)
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589

LSVdV
G = iηcWA

eg

2v

(
G+W

−
µν − h.c.

)
Aµν − iηcWA

eg′

2v

(
G+W

−
µν − h.c.

)
Zµν + (CP− odd).

(B.7)590

LS2V2

G = G+G−

(
e2AµAµ + βccAZ

e(g2 − g′2)√
g2 + g′2

AµZµ + βccZZ
(g2 − g′2)2

4(g2 + g′2)
ZµZµ + βccWW

g2

2
W+
µ W

−
µ

)

+ G3G3

(
β33WW

g2

4
W+
µ W

−
µ + β33ZZ

g2 + g′2

8
ZµZµ

)
+ iβchWA

eg

2

(
G+W

−
µ − h.c.

)
hAµ − βc3WA

eg

2

(
G+W

−
µ + h.c.

)
G3Aµ

− iβchWZ
eg′

2

(
G+W

−
µ − h.c.

)
hZµ + βc3WZ

eg′

2

(
G+W

−
µ + h.c.

)
G3Zµ

+ η′ccWWg
2
L

(
G+G+W

−
µ W

−
µ + h.c.

)
, (B.8)

LS2dV2

G = G+G−
(
ηccA2e2AµνAµν + ηccAZgg

′AµνZµν + ηccZ2(g2 + g′2)ZµνZµν + ηccW 2g2W+
µνW

−
µν

)
+ G3G3

(
η33AAe

2AµνAµν + η33AZgg
′AµνZµν + η33ZZ(g2 + g′2)ZµνZµν + η33WWg

2W+
µνW

−
µν

)
+ ηc3WAeg

(
G+W

−
µν + h.c.

)
G3Aµν + ηc3WZeg

′ (G+W
−
µ + h.c.

)
G3Zµν + (CP− odd).

(B.9)

Above, “CP-odd” stands for analogous terms with Vµν → Ṽµν , and η → η̃. Note the591

Goldstone kinetic terms in Eq. (B.3) are assumed to be canonically normalized. To592

achieve this, one needs to rescale the neutral Goldstone field as593

G3 → G3

(
1 + cT + 2cT

h

v

)
. (B.10)

Moreover, the Lagrangian in Eq. (B.2) does not contain 2-derivative cubic scalar self-594

interactions. To ensure this feature, the Higgs boson field redefinition in Eq. (4.5) has595

to be generalized to596

h→ h

(
1− cH − cH

h

v
− cH

h2

3v2

)
− cH

2G+G− +G3G3

v
− 2cT

G3G3

v
. (B.11)

The above field redefinitions are in addition to the steps described in Section 4. These597

include the gauge coupling rescaling and the use of the equations of motion (that are598

modified to include the Goldstone fields). The final step is to transform the couplings599

from the Warsaw to the Higgs basis using the dictionary provided in Section 4. At the600

end of the day, the coefficients in the Goldstone Lagrangian of Eq. (B.2) take the form601

βcW = 1 + δm, (B.12)

βhcc = 1 + g2cw2 + δcz + 2δm,

βh33 = 1 + g2cz2 + δcz, (B.13)
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βhcW = 1 + g2cw2 + δcz + 3δm,

βh3Z = 1 + g2cz2 + δcz,

β3cW = 1− 2g2cw2 +
3

2
g2cz2 − 3δm,

β3hZ = 1 + δcz,

βccZ = 1 +
g2 + g′2

2(g2 − g′2)

(
−g2cz2 + 4δm

)
,

βchW = 1 + δcz + 3δm,

βc3W = 1− g2

2
cz2 + δm, (B.14)

βcWA = 1 + δm,

βcWZ = 1 +
g2(g2 + g′2)

2g′2
(cz2 − cw2)− 2g2 + g′2

g′2
δm, (B.15)

ηcWA = ηcWZ = czz −
g2 − g′2

g2 + g′2
czγ − e2cγγ, (B.16)

βccAZ = 1 +
g2 + g′2

2(g2 − g′2)

(
−g2cz2 + 4δm

)
,

βccZZ = 1 +
(g2 + g′2)2

(g2 − g′2)2

(
−g

2(g2 − g′2)

g2 + g′2
cz2 + 3g2cw2 + 2δcz + 2

5g4 + 6g2g′2 + g′4

(g2 + g′2)2
δm

)
,

βccWW = 1 + 2g2cz2 + 2δcz + 2δm,

β33ZZ = 1 + 2g2cz2 + 2δcz,

β33WW = 1 + g2(cw2 + cz2) + 2δcz + 4δm,

βchWA = 1 + δcz + 3δm,

βc3WA = 1− g2

2
cz2 + δm,

βchWZ = 1 +
3

2

g2(g2 + g′2

g′2
(cz2 − cw2) + δcz − 3

2g2 + g′2

g′2
δm,

βc3WZ = 1 +
g4

2g′2
cz2 −

g2(g2 + g′2)

2g′2
cw2 −

2g2 + g′2

g′2
δm,

η′ccWW =
g2

2
(cw2 − cz2) + δm, (B.17)
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ηccAA = czz −
g2 − g′2

g2 + g′2
czγ +

(g2 − g′2)2

4(g2 + g′2)
cγγ,

η33AA =
1

8
cγγ,

ηccAZ =
g2 − g′2

g2 + g′2
czz −

g4 − 6g2g′2 + g′4

2(g2 + g′2)2
czγ −

e2(g2 − g′2)

(g2 + g′2)2
cγγ,

η33AZ =
czγ
4
,

ηccZZ =
(g2 − g′2)2

4(g2 + g′2)2
czz −

e2(g2 − g′2)

(g2 + g′2)2
czγ +

e4

(g2 + g′2)2
cγγ,

η33ZZ =
czz
8
,

ηccWW =
1

2
czz + s2

θczγ +
s4
θ

2
cγγ,

η33WW =
1

4
czz +

s2
θ

2
czγ +

s4
θ

4
cγγ,

ηc3WA = −1

2
czz +

g2 − g′2

2(g2 + g′2)
czγ +

e2

2(g2 + g′2)
cγγ,

ηc3WZ =
1

2
czz −

g2 − g′2

2(g2 + g′2)
czγ −

e2

2(g2 + g′2)
cγγ. (B.18)

As soon as the Goldstone bosons are retrieved, gauge fixing can be implemented as in602

any gauge theory. Below we work with the linear Rξ gauge. For the electroweak sector,603

we introduce the following gauge fixing Lagrangian604

Lgf =
1

2ξ

[
F 2
A + F 2

Z + 2F+F−
]
, (B.19)

where605

FA = ∂µAµ,

FZ = ∂µZµ − ξ
√
g2 + g′2v

2
G3

(
1− 2cT + e2cWB

)
,

F± = ∂µW
±
µ − ξ

gv

2
G±. (B.20)

Above, the electroweak parameters g, g′, v and the Goldstone fields G±, G3 are the ones606

before the rescaling in Eq. (4.8) and Eq. (B.10). After the rescaling and going to the607

Higgs basis the gauge fixing Lagrangian becomes608

Lgf =
1

2ξ

(∂µAµ)2 +

(
∂µZµ − ξ

√
g2 + g′2v

2
G3

)2

+ 2
∣∣∣∂µW+

µ − ξ
gv

2
(1 + δm)G+

∣∣∣2
 .

(B.21)
This way, the kinetic mixing between the Goldstone bosons and massive vector bosons609

cancels after introducing the gauge fixing term. At the same time, the Goldstone bosons610
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acquire the gauge dependent masses;611

mG± =
√
ξ
gv

2
(1 + δm) ≡

√
ξmW , mG3 =

√
ξ

√
g2 + g′2v

2
≡
√
ξmZ . (B.22)

Finally, the ghost Lagrangian is given by612

Lghost =
∑
n

[
c̄+
∂δF+

∂αn
+ c̄−

∂δF−
∂αn

+ c̄Z
∂δFZ
∂αn

+ c̄A
∂δFA
∂αn

]
cn (B.23)

where δF is the variation of the gauge fixing term under the infinitesimal SU(2)×U(1)613

gauge symmetry transformations parametrized by αn. Since the F ’s in Eq. (B.20) contain614

the original (unrescaled) gauge and Goldstone fields, their gauge transformations are the615

same as in the SM. After the field and coupling rescaling and going to the Higgs basis,616

Eq. (B.23) leads to the gauge dependent mass terms for the ghost fields:617

mc± =
√
ξ
gv

2
(1 + δm) ≡

√
ξmW , mcZ =

√
ξ

√
g2 + g′2v

2
≡
√
ξmZ , (B.24)

as well as the Higgs and electroweak gauge boson interactions with 2 ghost fields. This618

last step completes the list of ingredients necessary to compute the h→ V V amplitudes619

in EFT at the 1-loop level.620
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H4D2 and H6

OH
[
∂µ(H†H)

]2
OT

(
H†
←→
DµH

)2

O6H (H†H)3

f2H3

Oe −(H†H − v2

2 )ēH†`

Ou −(H†H − v2

2 )ūH̃†q

Od −(H†H − v2

2 )d̄H†q

V 3D3

O3G g3
sf

abcGaµνG
b
νρG

c
ρµ

O
3̃G

g3
sf

abcG̃aµνG
b
νρG

c
ρµ

O3W g3εijkW i
µνW

j
νρW k

ρµ

O
3̃W

g3εijkW̃ i
µνW

j
νρW k

ρµ

V 2H2

OGG
g2s
4 H

†H GaµνG
a
µν

O
G̃G

g2s
4 H

†H G̃aµνG
a
µν

OWW
g2

4 H
†HW i

µνW
i
µν

O
W̃W

g2

4 H
†H W̃ i

µνW
i
µν

OBB
g′2

4 H
†H BµνBµν

O
B̃B

g′2

4 H
†H B̃µνBµν

OWB gg′H†σiHW i
µνBµν

O
W̃B

gg′H†σiH W̃ i
µνBµν

f2H2D

OH` i¯̀γµ`H
†←→DµH

O′H` i¯̀σiγµ`H
†σi
←→
DµH

OHe iēγµēH
†←→DµH

OHq iq̄γµqH
†←→DµH

O′Hq iq̄σiγµqH
†σi
←→
DµH

OHu iūγµuH
†←→DµH

OHd id̄γµdH
†←→DµH

OHud iūγµdH̃
†DµH

f2V HD

OeW g ¯̀σµνeσ
iHW i

µν

OeB g′ ¯̀σµνeHBµν

OuG gsq̄σµνT
auH̃ Gaµν

OuW gq̄σµνuσ
iH̃ W i

µν

OuB g′q̄σµνuH̃ Bµν

OdG gsq̄σµνT
adH Gaµν

OdW gq̄σµνdσ
iHW i

µν

OdB g′q̄σµνdH Bµν

(L̄L)(L̄L) and (L̄R)(L̄R)

O`` (¯̀γµ`)(¯̀γµ`)

Oqq (q̄γµq)(q̄γµq)

O′qq (q̄γµσ
iq)(q̄γµσ

iq)

O`q (¯̀γµ`)(q̄γµq)

O′`q (¯̀γµσ
i`)(q̄γµσ

iq)

Oquqd (q̄ju)εjk(q̄
kd)

O′quqd (q̄jT au)εjk(q̄
kT ad)

O`equ (¯̀je)εjk(q̄
ku)

O′`equ (¯̀jσµνe)εjk(q̄
kσµνu)

O`edq (¯̀je)(d̄qj)

(R̄R)(R̄R)

Oee (ēγµe)(ēγµe)

Ouu (ūγµu)(ūγµu)

Odd (d̄γµd)(d̄γµd)

Oeu (ēγµe)(ūγµu)

Oed (ēγµe)(d̄γµd)

Oud (ūγµu)(d̄γµd)

O′ud (ūγµT
au)(d̄γµT

ad)

(L̄L)(R̄R)

O`e (¯̀γµ`)(ēγµe)

O`u (¯̀γµ`)(ūγµu)

O`d (¯̀γµ`)(d̄γµd)

Oqe (q̄γµq)(ēγµe)

Oqu (q̄γµq)(ūγµu)

O′qu (q̄γµT
aq)(ūγµT

au)

Oqd (q̄γµq)(d̄γµd)

O′qd (q̄γµT
aq)(d̄γµT

ad)

Table 1: A complete, non-redundant set of baryon-and-lepton-number-conserving
dimension-6 operators built from SM fields [5]. In this table, e, u, d are always right-
handed fermions, while ` and q are left-handed. A flavor index is implicit for each fermion
field. For complex operators the complex conjugate operator is implicit. Including the
flavor structure and complex conjugates, this table contains 2499 distinct operators [10].
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