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1 Introduction

The LHC Higgs Cross Section Working Group is focused on various steps of the analysis
chain:

Data — Pseudo-observables — Model-independent EFT — BSM Models .

This note concerns model-independent interpretations of the data in the framework of
effective field theory (EFT) beyond the Standard Model (SM), which is a part of the
scope of the Working Group 2. The purpose of this note is to propose a common EFT
language and conventions that could be universally used in LHC Higgs analyses and be
implemented in numerical tools.

In the EFT approach, the basic assumption is that the mass scale A of new particles
in the UV theory beyond the SM is larger than the electroweak scale v, A > v. If
this is the case, physics at energies £ < A can be parametrized by the SM Lagrangian
supplemented by a set of higher-dimensional operators. These operators are constructed
out of the SM fields, and respect the local SU(3) x SU(2) x U(1) symmetry of the SM.
The coefficients of d > 4-dimensional operators in the EFT Lagrangian are of order
1/A%* and their contribution to amplitudes of physical processes at the energy scale of
order v scales! as (v/A)?*. The leading new physics effects are expected from operators
with d = 6 whose effects scale as (v/A)? (all dimension-5 operators violate the lepton
number; experimental constraints dictate that their coefficients must be suppressed at
the level unobservable at the LHC). Since (v/A)? < 1 by construction, EFT is suitable
to describe small deviations from the SM predictions, except for observables that vanish
or are suppressed by small parameters in the SM.

L Apart from the scaling with A, the effects of higher-dimensional operators also scale with appropriate
powers of couplings in the UV theory. The latter may be important to assess the validity range of the
EFT description.
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An operator basis is a complete, non-redundant set of dimension-6 operators. Com-
plete means that any dimension-6 operator is either a part of the basis, or can be obtained
from a combination of operators in the basis using equations of motion, integration by
parts, field redefinitions, and Fierz transformations. Non-redundant means it is a mini-
mal such set. Any basis leads to the same physical predictions concerning possible new
physics effects. Several bases have been proposed in the literature, and they may be
convenient for specific applications. In this note we propose a basis that is particularly
convenient for LHC Higgs analyses.

Preparing this proposal, we have taken into account the following guidelines:

The formulation should be simple enough that it can be used by people not ac-
quainted with the nuts and bolts of EFTs.

The relationship between parameters of the EFT and (pseudo)-observables should
be transparent.

The constraints on EFT parameters from electroweak precision observables should
be easy to impose.

The formalism should be easily implementable in Monte-Carlo codes.

The formalism should be flexible enough, such that, in the future, the application
scope may be extended beyond the original one. In particular, the formalism should
be applicable outside Higgs physics and allow one to also combine non-LHC data.

A connection to the pseudo-observables in the extended kappa formalism should
be straightforward.

Limits of the EFT validity range should be easy to define.

The formalism should be well suited to include higher-order QCD and electroweak
corrections.

The salient features of our proposal are the following:

We restrict ourselves to EFT with dimension-6 operators in the linear formulation
of electroweak symmetry breaking. This means that, much as the SM, the theory
contains the Higgs field H in the doublet representation of the SM SU(2) group.
The Lagrangian is invariant under the local SU(3) x SU(2)x U (1), and the SU(2) x
U(1) — U(1) electroweak symmetry breaking is b the vacuum expectation value
(VEV) of the field H.

In the spirit of Ref. [1], we proceed with a classification of the operators that more
easily map to independent interaction terms of the SM mass eigenstates, in par-
ticular the W, Z, and the Higgs boson. Such interaction terms are invariant under
SU(3) x U(1) color and electromagnetic symmetry, but they do not necessarily
correspond to SU(2)-invariant operators. However, they allow us to identify a set
of independent couplings from which a complete basis of SU(2)-invariant terms
is constructed. We denote the latter the Higgs basis. The advantage of this for-
mulation is that the effective couplings are related in a simpler way to quantities
observable in experiments, compared to other proposals.
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e We choose the independent couplings such that the constraints from the Z and W
partial decay widths (measured with a per-mille precision by the LEP experiment)
can be easily incorporated. These are among the most stringent constraints on
EFT parameters, and they have an important impact on possible signals in Higgs
searches. It is unlikely that, at any point in the future, the precision of LHC
Higgs searches will be such that the couplings constrained by LEP can be probed
by the LHC with a comparable accuracy. Therefore it is recommended that the
the electroweak constraints on Z and W boson couplings to fermions are always
imposed when analyzing LHC data, especially on Higgs physics. Other precision
observables, such as WW production or off-shell fermion scattering, lead to less
stringent constraints that are not discussed in this note (see e.g. [2, 3, 4] for a
recent discussion).

e The disadvantage of the Higgs basis is that the operator list is cumbersome, being
defined by the identification of a set of independent interaction terms after elec-
troweak symmetry breaking. For this reason, we also map the Higgs basis to a set
of manifestly SU(3) x SU(2) x U(1) invariant operators before electroweak sym-
metry breaking. For the latter, in this note we use operators in the Warsaw basis
of Ref. [5] and in the SILH basis of Ref. [6], but it is straightforward to work out a
map to any other basis used in the literature. Working with SU(3) x SU(2) x U(1)
invariant operators may be more convenient for certain calculations (for example,
when renormalization group running of the Wilson coefficients needs to be calcu-

lated).

e We do not demand that the dimension-6 operators are flavor blind. While generic
constraints on flavor violation are strong, it is plausible that there is a large hier-
archy between the coefficients of dimension-6 operators corresponding to different
fermion generations. In particular, many models predict the coefficients of opera-
tors involving the 3rd generation to be much larger than those involving the first
two generations. Keeping the more general approach will allow us to obtain much
more robust constraints on new physics.

e We allow CP violating operators to be present in our basis. In particular, we
discuss the most general set of Higgs couplings to matter that include CP violating
couplings.

e We assume that dimension-6 operators conserve the baryon and lepton number.

In Section 2, to define our notation and conventions, we write down the Standard
Model (SM) Lagrangian. In Section 3 we introduce an effective Lagrangian summa-
rizing the new interactions of the SM mass eigenstates that arise in the presence of
dimension-6 operators beyond the SM. The mapping between the couplings in that ef-
fective Lagrangian and Wilson coefficients of SU(3)x SU(2) x U (1) invariant dimension-6
operators in the Warsaw basis is worked out in Section 4. In Section 5 we define the
Higgs basis, which is spanned by a subset of the independent couplings of the effective
Lagrangian.
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2 Standard Model Lagrangian

The SM Lagrangian in our notation takes the form

1 1. .. 1
LM = = 3G G = Wi Wi = 3 Buw By + D,H'D,H + 3 H'H — \(H'H)?
+ Z Z.]?L’YuDqu + Z Z']?R’YuDufR
feql fEu,d,e
— [F[TﬂRyqu + HTJRdeCTKMQL + HTéRyefL + hC] . (21)

Here, G% W/, and B, denote the gauge fields of the SU(3) x SU(2) x U(1) local
symmetry. The corresponding gauge couplings are denoted by g5, g, ¢’; we also define the
electromagnetic coupling e = g¢'/+/ g% + ¢’?, and the Weinberg angle sy = ¢'/+/g% + ¢'>.
The field strength tensors are defined as G, = 0,G}, — 9,G, + gs feeah G, W, =
Wi — 0,W), + geijngWf, B,, = 8,B, — 9,B,. The Higgs doublet is denoted as H,
and we also define H; = e;;H. Tt acquires the VEV (HTH) = v?/2. In the unitary
gauge we have H = (0, (v+ h)/v/2), where h is the Higgs boson field. After electroweak
symmetry breaking, the electroweak gauge boson mass eigenstates are defined as W+ =
(WrFiW?) /2, Z = cgW3 —s54B, A = s4W*+cyB, where ¢y = /1 — s2. The tree-level
masses of W and Z bosons are given by my = gv/2, my = \/¢> + ¢’>v/2. The left-
handed Dirac fermions q;, = (ur, Vexmdy) and ¢, = (v, er) are doublets of the SU(2)
gauge group, and the right-handed Dirac fermions ug, dg, eg are SU(2) singlets. All
fermions are 3-component vectors in the generation space, and y; are 3 x 3 matrices. We
work in the basis where the fermion mass matrix is diagonal with real, positive entries.
In this basis, y; are diagonal, and the fermion masses are given by my, = v[ys]i/V/2.
For later convenience, we explicitly write down the mass terms:

S g*v? (9> + g*)v?

mass 4 W:W;L_+ ZHZM+ Z mfff? (22)

f€u,d,e

the gauge boson couplings to fermions:

Ly = eAy D Qufwf +9.G5 Y TS,

feu,de feu,d

i (W,j_ﬂL'YMVCKMdL + W;DL%eL + hC)

V2
+ VE+92Z0 Y (THuwfe — 55Qsfuf) (2.3)

f€u,d,ev

_|_

the couplings of a single Higgs boson to gauge bosons and fermions:

h 921}2 B 92 +g/2 U2 h _
f

the couplings involving two or more gauge bosons

h2 921}2 B (92 +g’2)02 m2 m2
Eil;\t/[ = @ [TWIW# + TZMZ#:| - 2—5}13 - 8_’Ui;h47 (25)
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and the triple and quartic self-interactions of the vector bosons:
Lo = e [(WhW, =W, W, ) A, + A, WiW, ]
+ igeg [(WEW, = WL WH) Z, + Z,, W,W, ]
— gsf“bCGMGZGZG,C,. (2.6)

Lo = g; (WIWIW, W, = WIW, WIW,) + g*c; (WrZ,W, Z, - W, W, 2,2,
g°ss (W;AMWV_A,, — W:WM_AVAV)

gPcoso (W Z W, A, + WA W, Z, —2WiW, Z,A)

A aeeredens (2.7)

+ +

These couplings depend on just 5 input parameters: g, g, ¢’, my and v. The Higgs boson
mass my, has been precisely measured at the LHC, while the strong coupling constant
is extracted from jet production data. The remaining 3 parameters are customarily
derived from the observable Fermi constant Gp (more precisely, from the measured
muon lifetime 7, = 1927°/G%m?,), Z boson mass mz, and the low-energy electromagnetic
coupling (0). The tree-level relations between the input observables and the electroweak
parameters are given by:

1 2 2 2 2
Gp = o= 9L VIL T GV (2.8)

— T = ) mz
V202 4m (g7 + 9v) 2

3 Effective Lagrangian

In this section we introduce an effective Lagrangian describing interactions of Higgs
and matter mass eigenstates when the SM is extended by dimension-6 operators. The
Lagrangian is of the form

Loz =LM+AL. (3.1)

Here, £5M is the SM Lagrangian introduced in Section 2, AL contains new interactions
beyond the SM. The effect of the new interactions is either to shift the coupling strength
away from the SM predictions or to introduce a new tensor structure of interactions that
is absent in the SM Lagrangian. In particular, these interactions are relevant to describe
new physics effects in precisions tests of the SM and in Higgs searches at the LHC. Each
term in AL Lagrangian may be generated by dimension-6 operators beyond the SM, thus
each coupling is O(A2) in the EFT expansion. However, at this point, we do not yet
define the relations between various couplings that are required by the linearly realized
electroweak symmetry at the level of dimension-6 operators. Therefore, the couplings of
the effective Lagrangian do not span a dimension-6 basis. Later in Section 5 we will write
down the relations between different couplings and define a dimension-6 basis. We stress
that L.g is intended to be used in the framework of the dimension-6 EFT Lagrangian;
if it is used in a different context, care should be taken to define a consistent expansion
(akin to the 1/A expansion in the EFT).
The effective Lagrangian L.g has the following features:
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o All kinetic terms of SM mass eigenstates are canonically normalized. In particular,
there is no kinetic mixing between the Z boson and the photon.

e Tree-level relations between the electroweak parameters and input observables are
the same as the SM ones in Eq. (2.8). In particular, the photon and the gluon
interact with fermions as in Eq. (2.3), and there is no correction to the Z boson
mass term.

e Two-derivative self-interactions of the Higgs boson are absent.

e For each fermion pair, the coefficient of the vertex-like Higgs interaction term
5g%V#ffy#f is equal to the

In general, dimension-6 operators can induce corrections to the Lagrangian that do not
respect these features. However, all 4 above features can always be achieved, without
any loss of generality, by using equations of motion, integrating by parts, and redefining
the fields and couplings. The required set of transformation starting from the Warsaw
basis will be presented in Section 4.

To facilitate presentation, we split AL into the following parts,

AL = Aﬁma,ss + A‘Cvertex + ‘Cdipole + A‘Ctgc + A‘cqg;c + AEh + £hvff + ﬁhdvff + A‘Chz + ‘Cother-
(3.2)
Below we define each term in order of appearance.

3.1 Quadratic terms

By construction, there is no corrections to quadratic terms of the SM mass eigenstates
with the exception of the shift of the W boson mass in Eq. (2.2):

2,,2

AL = 25mI— W W (3.3)

3.2 Gauge boson interactions with fermions

Two types of corrections to the SM gauge boson interactions with fermions may be
introduced by dimension-6 operators. One is the so-called vertex corrections, which are
shift the W and Z couplings to fermions away from the SM Lagrangian of Eq. (2.3):

A‘Cvertex = % (WjﬂLPy,ué‘gglﬁeL + W:ﬂ’yu(sgg/qVCKMdL + WJQR’Yu(SngquR + hC)
+ VP92, | > frndgl fo+ > Frrder fR] 7 (3.4)
f€u,d,ev f€Eu,d,e

where all the dg are 3 x 3 Hermitian matrices in the generation space, except for 592/‘1
which is a general 3 x 3 complex matrix.



178 The other type are the dipole interactions between the gauge boson and fermions,
179 which are not present in the SM Lagrangian. We parametrize them as follows:

1 - _
Edipole = _E [gs Z faleadefGZu te Z fauvdAffAuu

f€eu,d f€u,d,e

+vg? + ¢ Z foudzif 2, + V2g (Jawdwqqu; + h.c.)

f€u,d,e

1 _ ~ ~ _ ~ ~
_E [gs Z fauuTadefGZy +e Z fUquAffAuu

feu,d f€u,d,e

+\/g2 —+ g/2 Z fUpVJfoZMV + \/ég <JO-MVCZWqUWl;/ + hC)] s (35)

f€u,d,e

1w where 0, = i[7,,7,]/2, and all the dy; and glvvf are Hermitian 3 x 3 matrices.

w 3.3 (Gauge boson self-interactions
122 These couplings are defined via cubic interactions of gauge bosons, in addition to the
183 SM ones in Eq. (2.6):
ALige = ie [0k, A WV, + iy A W, |
- igen [grs (W Wy = W W) Zy 4 0k Zu WEW,, + Fe Z W W, |

i AW W At AW W A | i85 AW W 2+ AW W 2
miy my

c c ~
+ GGG G+ S gl GGG (3.6)

vp~ pp 02 s vp~ pp

18 The couplings of electroweak gauge bosons follow the customary parametrization of
165 Ref. [9]
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2
g —r— - _
ALgge = Ogws (WSWIW, W, — WIW W W)
+ Ogwegegicy (WS Z,W, 2, - W/W, Z,2,)
+ Ogwazgicose (W, Z W, Ay + W,SAW, Z, —2WIW, Z,A,)

2
g A _ _ _ _
= S (W W, =W W) (WIW, — W, W)
w
A2z ~ ~ _
_ g WVZ%VZ (Wi (ZuW,, =W, Zp) Zo+ W, (ZuW,), =W} 2,,) Z,)]
AWz 42 _ _ .
B 62 z%: [le (Al“’WI/p - W,LLVAVP) AP + W'LL (A/LI/W;; - W;;Ayp) Ap]
A2
- o [V (AW = Wi o) 2, W (V= W) 7]
A
o9 ZZA [W: (Z‘“’Wv_ﬂ o W/;/ZVP) Ay + Wu_ (ZWWVJ; - W:;/ZVP) AP]
C4G aoc rfcae a (S
+ :ag;j‘F feefeteae, Gl GIGE + CP odd, (3.7)

where CP odd stands for analogous terms with A, — 5\2, caq — Caq, and one of the field
strength tensor replaced by the dual one.

3.4 Single Higgs couplings

This part is the most relevant one from the point of view of the LHC Higgs phenomenol-
ogy. First, we define the following single Higgs boson couplings to a pair of the SM
fields:

h
AL, = " [25cwm%,VW:W; +5czmQZZMZM

_ % Z Z Vg [0yslij [cos qbf]flf] — 48in gb{jﬁ%f]] .

feu,de ij

2 2
g _ . g . _
+cww5W,jVWW + cwwEW,ijW + cpog? (W, 9,W} +he.)
2 2

2 (& €
a2 Gl Gty + o T A Ay + oy 5 Ly A + oy

2w
269 463 Hr=H

+¢.00° 240y Z s + 099 2,0, A
2

~ gg a a ~ € A . €g It ~
+CQQZGMVG/U/ + C"/’YZAMVAHV + CZ’YQ_CQZMVANV + Cyy

P -
12 | - (38)

The terms in the first two lines shift the SM couplings in Eq. (2.4), while the remaining
terms introduce Higgs couplings to matter with a tensor structure that is absent in the
SM Lagrangian. Here X,, = 0,X, — 0,X,, and )2',“, = €upe0,X,. Note that, using
equations of motion, we could get rid of certain 2-derivative interactions between the
Higgs and gauge bosons: hZ,0,2,,, hZ,0,A,,, and th&,Wi. These interactions
would then be traded for contact interactions of the Higgs, gauge bosons and fermions

8
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in Eq. (3.9). However, one of the defining features of our effective Lagrangian is that
the coefficients of the latter couplings are equal to the corresponding vertex correction
in Eq. (3.4). This form can be always obtained, without any loss of generality, starting
from an arbitrary dimension-6 Lagrangian provided the 2-derivative hV,0,V,,, are kept
in the Lagrangian.

Next, couplings of the Higgs boson to a gauge field and two fermions, which are
not present in the SM Lagrangian, may be generated by dimension-6 operators. We
define the following vertex-like contact interactions between the Higgs, electroweak gauge
bosons, and fermions:

h
Lhoss = \/ﬁg;W: (ﬂL’YuégzquCKMdL+ﬂR’yﬂ5g;L;iquR+ﬁL’y#§g%WZ6L)—|—h,c,
h _ _
+ 2NP 922, | Y finda o+ megszfR], (3.9)
f:u,d,e,u f:u,d7e

As indicated before, we demand the coefficients of these interaction to be equal to the
corresponding vertex correction in Eq. (3.4):

5" =671, §g"T = g™, (3.10)

In addition, we also define the following dipole-type contact interactions of the Higgs
boson:

_ h - ~
‘Cl?d;?f = T3 [gs Z fJuVTathffGZy +e Z fo-uudhAffA/u/

402
feu,d f€u,d,e

+4/91 + g% Z fouwdnzsf Zu +V2gr1 (doywdpweuWV,, + h.c.)

f€Eu,d,e

h ~ . _ L ~
[ Z JouT ey fG, + € Z foudnarfAL

402
fEu,d f€u,d,e

R G Y fouwdnzifZu + V201 (ciawdhwqu’%; + h.c.)](?).ll)
f€Eu,d,e
3.5 Couplings of two or more Higgs bosons

To describe double Higgs production via gluon fusion (g9 — hh) at the LHC we need,
apart from a subset of the single Higgs couplings introduced in Section 3.4, the following
interactions with two or more Higgs bosons:

h? g2

— a a ~ a Na h2 £
LR = —adaoh*+ 5 % (2G5, G + GG ) =5 D, | funly N fya + e

v 8 I3
(3.12)
Other couplings with two Higgs bosons are present in AL. Specifically, these are the
couplings h?V'V to the SM electroweak gauge bosons, and h%f fV contact interactions.
As these do not play the role in the double Higgs production processes currently studied

at the LHC, we do not display them here.
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3.6 Other terms

In the subsections above we wrote down interactions terms in the effective Lagrangian
that are relevant for SM precisions tests and for Higgs searches at the LHC. The remain-
ing terms, which are not explicitly displayed in this note, are contained in Lyie,- The
include 4-fermion terms, corrections quartic and higher Higgs boson self-interactions,
self-interactions of more than 4 vector bosons, interactions of 2 or more Higgs bosons
with SM matter, couplings of a single Higgs boson to 3 or more gauge bosons. Currently,
these terms are relevant neither for SM precision tests nor for single and double Higgs
production and decay at the LHC. If there’s phenomenological interest, any of the terms
in Lotner can be explicitly written down in this note.

4 Mapping Effective Lagrangian to Warsaw Basis of
Dimension-6 Operators

We turn to discussing the map between the couplings of the effective Lagrangian intro-
duced in Section 3 and Wilson coefficients of dimension-6 operators in the electroweak
basis before electroweak symmetry breaking. The complete set of dimension-6 opera-
tors can be written in many different equivalent bases which are related by the use of
equations of motion and integration by parts. Here we work with the so-called War-
saw basis of Ref. [5, 10], which is distinguished by the simplest tensor structure of the
higher-dimensional operators. The analogous procedure can be applied to other bases:
see Appendix A.1 for the map between the effective Lagrangian and the SILH basis.
The Lagrangian in the Warsaw basis is given by?

/:'warsaw = LSM + % Z ézoza (41)
where the SM Lagrangian £3M was introduced in Section 2, A is the mass scale of
new particles, O; are the dimension-6 operators in the Warsaw basis summarized in
Table 1, can ¢; is the Wilson coefficient multiplying the operator O;. The scale A appears
explicitly to emphasize this is the EFT expansion parameter, and Eq. (4.1) contains the
zeroth- and the first-order term in this expansion. However, observables calculated in
the EFT depend only on the combination ¢;/A?. Therefore, working with the low-energy
EFT, it is more convenient to redefine ¢; — ¢;A?/v?. In the following we will display all
the formula using the redefine Wilson coefficients ¢;.

To map the Wilson coefficients of dimension-6 operators in the Warsaw basis to the
couplings in the effective Lagrangian we need first to bring L.saw into the same form
as Leg in Eq. (3.1). This can be achieved by a series of transformations using equations
of motion, integration by parts, and rescaling of the fields and couplings. To begin with,

2We use a different notation than the original reference. We also replaced the operator |H TD#H |2 by
(H TD,LH -D,H TH)2. For Yukawa-type operators O + we subtracted v? so that these operators do not
contribute to off-diagonal mass terms. This way we avoid tedious rotations of the fermion fields to bring
them back to the mass eigenstate basis. Starting with the Yukawa couplings —Hfl’%(YJﬁ + CIfHTH/’UQ)fi

we can bring them to the form in Eq. (2.1) and Table 1 by defining f; r = Ur ,rfL,R, ¢f = UIT%C}UL,
Yy = U};(Yf' + ¢%/2)Ur, where Up g are unitary rotations to the mass eigenstate basis.

10
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the operator Oy g leads to a kinetic mixing between the hypercharge and SU(2) gauge
bosons, Oy p — —1/Qgg’Wj’l,Bm,. To get rid of it, we use the equations of motion:

v+ h)? .
0,Buy = g'% (W, = 9'By) — g,
v+ h)? , o
oW, = —g% (W3 = ¢'B,) — gjis — 9" WIW},, (4.2)

where j) =37, Yy fyuf, and j3 = gy, 7% Ppq + 4, T? Pl. Using this,

q9q v+ h)? 2 . .
_CWBTWEVBMV - cwpe? {% (ng’ - g'BN) — ng’jZ — g’Bujg
2
9° 3jktiritisk ! 3ik it17k
=5 WiW, By = g S BaWIW,
2 2 2
+ v+ h com ) om
= cwpe’ Fg 7 i( ) Zp — eAudi™ + N9+ 9% 2, (5, — <4,
9°q

. 2 + —
ZCWBW [9 (9Aum — g’Zu,,)Wu W,

_QIQ(QAM - g/Zu)(W,Z/Wu_ - W;;W;)] ) (4.3)

where ji" = jfj + j}f is the electromagnetic current. Next, the operators Ogg, Oww,
and Ogg change the normalization of the kinetic terms of the gauge bosons. To recover
the canonical normalization we redefine the gauge fields as

6339'2 i i CWW92 a a CGGQ?
BM—>BM<1+ 1 ),WH—>WH<1+ 1 >’Gu_>Gu(1+T . (44)

We ignore here the contribution of the operator Ogg to the QCD #-term (we can always
assume it cancels agains the f-term in the SM Lagrangian, or is dynamically removed
by an axion field). The operator Oy changes the normalization of the Higgs boson
kinetic term, and also induces Higgs boson self-interactions that contain two derivatives.
To recover the canonical normalization and remove the 2-derivative self-interactions we
redefine the Higgs field as

h h?
h—h (1 — CHy — ;CH — wCH) . (45)

The relation between the Higgs VEV vy and the mass parameter in the SM Lagrangian
is affected by the Ogy operator:

2
2 _ Mg 3
UO - A (]‘ + 4)\061—[) ) (46)

while the relation between Higgs boson mass and the quartic coupling in the SM La-
grangian is affected by both Ogy and Oy:

m; = 2v5 <)\ —2cpg A — 206H> : (4.7)
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We have to make sure that the gauge couplings and the Higgs VEV have the same
meaning as in the SM. In other words, the relation between the couplings and the observ-
ables employed to determine them This is a non-trivial requirement, because dimension-6
operators affect the observables used to extract these parameters. We have seen that the
operator Oy g shifts the electric charge and the Z boson mass. Similarly, the operator
Or shifts the Z boson mass term. Furthermore, one of the Oy operators leads to the 4-
fermion coupling v™2[cur|1221(7.1VpVe.1) (ELY,pz) that contributes to the muon decay at
the linear level and thus shifts the Fermi constant. Finally, the leptonic vertex operator
Oy also shifts the Fermi constant. To undo these effects, we need to ensure that the
photon and the gluon couple to the electromagnetic and strong currents as in Eq. (2.3).
Furthermore, the Z boson mass term in the Lagrangian should be as in Eq. (2.2), and

the tree-level 1 — ev.v, decay width should be given by I' = %. This is achieved

by the following redefinition of the coupling constants and the VEV:

gz
gs — Gs 1_CGGZ ;

92 g2 /2 g2
g — 9 (1 —oww T CWBg2 — g7 + (er — 6v) 2—9/2> )

g/2 929/2 9/2
J = <1 —enp v g — (er—60) T )

vo — v(l+dv), (4.8)

where 6v = ([clg]11 + [Cl22) /2 — [cor)i221 /4

One last transformation is needed to match the Higgs basis. At this point, the
coefficients of the contact interactions in Eq. (3.9) differ from the vertex corrections
by flavor universal terms depending only on the electric charge and the isospin of the
fermions. It is possible to get rid of the latter using equations of motion for the gauge
bosons, so as to traded them into zero- and two-derivative Higgs boson interactions with
gauge bosons of the form hV,V, and hV,0,V,,.

After all these transformations the Lagrangian takes the same form as Lyiggs Basis-
The dictionary between the coefficients of dimension-6 operators and the independent
and dependent couplings in LiggsBasis goes as follows. The shift of the W boson mass

is given by
1
m = g [—9%9"*cwp + g°cr — g*00] . (4.9)
The shift of W and Z boson couplings to leptons are given by

6gE/Z = C/I{£+f(1/270)_f(_1/27_1>7

1 1
Sg7" = 503115 — CHe + f(1/2,0),
1 1
6g7° = —50913 — 5t + f(=1/2,-1),
1
09" = —geme+ f(0,-1), (4.10)
where
3 g29l2 5 g/2
f(T°,Q) =15 —QCWBw—I—(CT—&J) (T +Q92—g’2>] , (4.11)

12



20 and I3 is the 3 x 3 identity matrix. Vertex corrections to W and Z boson couplings to
205 quarks are given by

592/(1 = C}—Iq+f<1/272/3)_f(_1/27_1/3)7
1

592/(1 = _§CHud>
Zu 1 / 1
5gL = éch_ §CHq+f<1/272/3)7
1 1
5gfd - _Ec/Hq_ §CHq+f(_1/27_1/3)7
1
1
= —5cHa+ £(0,-1/3). (4.12)

26 The coefficients of vertex-like contact interactions between the Higgs boson, W or Z
207 boson, and two fermions in Eq. (3.9) are given by

V' =5g"7. (4.13)
208 The shifts of the Higgs couplings to W and Z are given by
4g2g/2 92 3g2 + g/2
0Cy, = —cg— CWBg2 e —|—4ch2 —g? ov 2 —g?’
dc, = —cg — 30v. (4.14)

200 The two-derivative Higgs couplings to gauge bosons are given by
2)

Cqg = Caa; Cég = Caa;
Cvy = cww +cpp — 4cwp,
g4C + /4C + 4 2 '20
c _ ww T 3G CBB g g " CwnB
&+ 97 |
2
C,o = —? (CT — (51]) ,
 GPeww — e —2(9° — ¢ ewsn
Coy = 92 4 912 )
2
Q8 T g ((6° + 9")ewn — 2er + 26v)
Cow = CwWw,
2 /2
Cwo = —gCWB—CT+5U.
92 _ g/2 ( )

(4.15)

s0 and the same for the CP-odd couplings C4g, Cyys Cyy Cazy Cuww, With ¢ — ¢ on the right
s hand side. The Yukawa interactions are given by

vRe[cs]y;
[0y lij cos (bzfj = \/Tifm]fj — 0;; (cp + 0v),
[byslijsingl, = _vImlerly (4.16)

V meimfj .
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The coefficients of Yukawa-type interactions of two Higgs bosons with fermions in Eq. (3.12)
are given by

[yj(cz)]” = 3[5yf]ij€i¢ij + (CH + 351})5” (417)
;0 'The anomalous triple gauge couplings of electroweak gauge bosons are given by
2 2
+
0g1,. = ﬁ (—QIQCWB +or — 5?)) ;
0Ky = g2CWB>
2 12 2 2
g9 g +g
5l-€z = —QCWBg2 _ 9/2 92 _ g/z (CT — (SU) s
3
)"7 = _59403{/[/,
3
A, = —§Q4C3W,
Fy = g'Cws,
'%z _glzéWBa
- 3 ..
)"y = _59 C3aw,
- 3 4.
The Higgs cubic interaction is given by
(5)\3 = -\ <3CH + (51)) — CoH - (419)
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To summarize, in the Warsaw basis the Higgs boson couplings to matter and itself
depend on linear combinations of the following Wilson coefficients:

CH, Cr, CGa, Cww, CBB, CwB, CGG, CWw, CBB, CWB, Cu, Cd, Ce, C6H

/ /
Cpes CHO; CHe, Cpgs CHgs CHu, CHds CHud- (4.20)

In the limit the Wilson coefficients are flavor blind this makes 22 parameters affecting the
processes of Higgs production and decay. All these coefficients are necessary to describe
the results of LHC searches in a general EFT approach. At the same time, electroweak
precision tests constrain (often stringently) linear combinations of the following Wilson
coefficients:

/ / ~
cr, ¢wB, Cpy, CHE, CHes Crgs CHqy CHu, CHds CHuds C3W, Caw, [Coeli2;21- (4.21)

In principle, there is not any theoretical obstacle to present the results of LHC Higgs
analyses as constraints on the Wilson coefficients in Eq. (4.20). The practical difficulty is
that some linear combinations of these parameters are already stringently constrained by
electroweak precisions tests, such that they cannot yield observables effects at the LHC.
In the next section we propose a more convenient parametrization where the strongly
and weakly constrained combinations of Wilson coefficients are separated.
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5 Higgs Basis

In this section we propose another parametrization of the effective dimension-6 La-
grangian in the linear realization of electroweak symmetry. The formalism is similar to
Ref. [1], however the parametrization we propose here is slightly different. The goal is
to choose a particular basis of operators that can be more directly connected (at least
at tree-level) to observable quantities in Higgs physics. The basis, which we call the
Higgs basis, is spanned by particular combinations of dimension-6 operators. Each of
these combinations maps to a simple interaction term of the SM mass-eigenstate fields
that can be probed by experiment. In fact, we will define the Higgs basis by a subset of
the couplings in the effective Lagrangian Eq. (3.1). We will refer to this subset as the
independent couplings.

We stress that the Higgs basis should be regarded as one of many possible bases of
the dimension-6 Lagrangian beyond the SM. In particular, the independent couplings
can be related by a linear transformation to parameters defining any other such basis in
the literature; the linear transformation to the Warsaw basis [5] can be extracted from
Section 4, and the transformation to the SILH [6] basis will be given in Appendix A.1.
At the same time, the independent couplings can be easily connected to Higgs pseudo-
observables at the amplitude level, as defined e.g. in Ref. [7].

The number of couplings in the effective Lagrangian of Eq. (3.1) is larger than the
number of Wilson coefficients in a dimension-6 EFT basis. Therefore, some of the
couplings can be expressed by the independent couplings; we call them the dependent
couplings. The relations between dependent and independent couplings can be inferred
from the matching between the effective Lagrangian and the Warsaw basis in Section 4.
These relations hold at the level of the dimension-6 Lagrangian, and they are in general
not respected in the presence of dimension-8 and higher operators. Of course, the choice
which couplings are independent and which are dependent is a subjective choice dictated
by convenience. In our case, the choice of the independent couplings was motivated by
their direct connection to observables constrained by electroweak precision tests and
Higgs searches. However, other choices can be envisaged and may be more convenient
for other applications.

5.1 Independent Couplings

We select a subset of coupling in the effective Lagrangian of Eq. (3.1) that has a 1-to-1
mapping to the Wilson coefficients in the Warsaw basis (or any other dimension-6 basis).
This subset of independent couplings defines the Higgs basis. It can be used on par with
any other basis to describe the effect of dimension-6 operators on physical observables.

The first group of independent couplings are the ones affecting W boson mass and
the Z and W boson couplings to fermions:

om, Sg7¢, dghe, dg)’t, Sgf", Sgh", 697, Sgh, dgp
dGu7 de7 dAea dAu7 dAd) dZe7 dZ’IM dZd7 dGu7 de7 dAe; dAu; dAd7 dZe7 dZu7 dZd'
(5.1)

Here the mass correction dm is defined in Eq. (3.3), the vertex corrections dg’s are
defined in Eq. (3.4), and the dipole moments d; are defined in Eq. (3.5). While they are
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free parameters from the EFT point of view, precision measurements constrain them to
be small. In particular, most of the parameters in the first line are constrained to be
<1072 — 107 [12]. The remaining parameters are constrained by measurements of the
magnetic and electric dipole moments. Therefore, even if combinations of dimension-6
operators defined the independent couplings in Eq. (5.1) affect the Higgs observables, it
is a well-motivated assumption to neglect them in LHC Higgs analyses whose precision
is worse than the existing constraints.

The second group of independent couplings are the ones describing the interactions
of the Higgs boson with the SM gauge boson, fermions, and with itself:

Cygs 502:7 Cyyy Czyy Czzy Cz0, Cggy Cyyy Czyy Cizy

MWu, OYd, OYe, SIN @, SIN Py, Sin Py, dA3. (5.2)

They are defined by Eq. (3.8), except for the last one which is defined in Eq. (3.12). As
opposed to the ones in Eq. (5.1), the combinations of Wilson coefficients corresponding
to the independent couplings in Eq. (5.2) are weakly constrained by SM precision tests.
In fact, the strongest limits on these couplings typically come from Higgs searches. An
important task of the LHC collaborations is to provide model-independent limits on the
parameters in Eq. (5.2).

The third group of independent couplings are related gauge bosons self-couplings:

AZ? >\Z7 3G, 63G° (53)

They are defined in Eq. (3.6). These couplings do not affect Higgs searches, and they
are only weakly constrained by SM precision tests.

To complete the definition of the Higgs basis, one has to include the independent
couplings corresponding to 4-fermion operators. We choose to parametrize them by the
same set of Wilson coefficients as in the Warsaw basis:

/ / / /
Cﬂa qu7 qu7 CZQJ CZq? Cquqd> Cquqd? Céeqiu Céeq'uﬁ Cfed(p

/ / /
Cte; Cu, Cedy, Cgey Cqu, Cqu7 Cqd, ch7 Ceey Cuus Cdd; Ceur Cedy Cud; Cyq- (54)

The parameters css have 4 flavor indices. The non-trivial question which subset of all
possible combinations of flavor indices constitute an independent set is worked out in
Ref. [10]. In the Higgs basis we take the same choice of independent 4-fermion couplings
as in that reference, with one exception. As explained in the next subsection, in the
Higgs basis the coupling [c]1201 is a dependent coupling that can be expressed by dm
and dg’s. Therefore [cy]1201 is not among the independent couplings defining the Higgs
basis.

5.2 Dependent Couplings

The remaining couplings in the effective Lagrangian are called the dependent couplings
because, at the level of a dimension-6 EFT Lagrangian, they can be expressed by the
independent couplings defining the Higgs basis. To obtain the relations between the
dependent and independent couplings one can use the matching between the Warsaw
basis and the effective Lagrangian worked out in Section 4. The procedure is to solve
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for the Warsaw basis Wilson coefficients in terms of the independent couplings and
eliminating the former from the expressions for the dependent couplings.

We start with the dependent couplings in Eq. (3.8) describing the single Higgs boson
interactions with matter. They can be expressed by the independent couplings as®

0c, = 0c, +4om,

Cow = Czz+ 2530%/ + sécw,
Cow = Caz + 285Coy + Syioys
1
Cwo = W [QQCzD + 9% - GQSSCW — (¢~ 9/2)53%} )
1
€yo = 2 —g? [29262‘3 +(9° +9%)ee — ey, — (6 — 9,2)02’7] : (5.5)

Next, all the couplings with two higgs bosons in Eq. (3.12) can be expressed by the
independent couplings:

~(2) o~
€99 = Ca9>

2 _
Cqg Cqg)

2 idis
Wi = 3[oyglie® — bc. by, (5.6)
The dependent vertex corrections are expressed by the independent ones as
097" = 897" +ogr", b9y " =dg7" — ogf". (5.7)

Note that we choose the W couplings to leptons (rather than the Z couplings to neutri-
nos) as our independent couplings, because in the flavor non-universal case the former are
more directly constrained by experiment (in particular, in leptonic W decays measured
at LEP).

Next, all but two triple gauge couplings in Eq. (3.6) are dependent couplings ex-
pressed by the independent couplings as

51, = m [ch€2? + can(9® — §°)g* — .o (6* + ¢ g — c.a(g® + 9°)g°]
2 o2 2 2
/%fy - _9_2 (6776—2 + EZWM - 6zz) 9
2 g2 +g/2 92 _|_g/2
Ok, = 0g1.— t§5/<¢7, R, = —tgl?av,
A= A, A = (5.8)

Note that d¢1., 0k,, and kK, are dependent couplings here, unlike in Ref. [1]. Our
motivation is that the Higgs basis should be parametrized such that the connection
with Higgs observables is the simplest. However, for the sake of studying WW and
WZ production a different set of independent couplings would be more convenient. For

example, one could choose the independent couplings as 6¢gi., 0k, A;, Ry, A, and
consider c,n, ¢,., and ¢,, as dependent couplings expressed by this set.

3The relation between Cyy, Cww and other parameters can also be viewed as a consequence of the
accidental custodial symmetry at the level of the dimension-6 operators [8].

17



4

s

1

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

436

437

438

439

440

441

442

443

444

Finally, we discuss how the Wilson coefficient [cg]1201 of the 2-electron-2-muon oper-
ator is expressed by the independent couplings. One feature of the effective Lagrangian
Eq. (3.1) is that the tree-level relations between the SM electroweak parameters and
input observables are not affected by new physics. On the other hand, one of the four-
fermion couplings in the Lagrangian,

LY D [codioor (01,07pl2,0) (Co,.7p01,1) (5.9)

does affect the relation between the parameter v and the muon decay width from which
Grp = 1/\/§v2 is determined:

I'(p — evv)

~1+2[6gWe 2[697 €9e — 46m — . 5.10
I'(p — evv)sm +2[0g1 Ta1 + 209z 2 m — [co]1221 (5.10)

Therefore, the muon decay width is unchanged with respect to the SM when [cg]1291 is
related to dm and dg as

[CM]1221 = 25[92/6]11 + 2[592/8]22 — 46m. (5.11)

In other words, due to the fact that we defined ém as an independent coupling in the
Higgs basis , [cy]1221 has to be a dependent coupling. Of course, one could equivalently
choose [cy]1221 to define the Higgs basis, and remove dm from the list of independent
couplings.

5.3 Final comments

In summary, the Higgs basis is parametrized by the independent couplings in Eqs. (5.1),
5.2), (5.3), (5.4). In total, the Higgs basis, much as any complete basis at the dimension-6
level, is parametrized by 2499 independent real couplings [10]. One should not, however,
be intimidated by this number. The point is that a much smaller subset in Eq. (5.2) is
adequate for EF'T analyses of Higgs data at the leading order in new physics parameters.
For example, to describe single Higgs production and decay processes in full generality
one needs 10 bosonic and 2 x 3 x 3 x 3 = 54 fermionic couplings. Furthermore, 31 of
these couplings are CP-odd, therefore they affect the Higgs signal strength measurement
only at the quadratic level, while flavor off-diagonal Yukawa couplings only affect exotic
Higgs decays. In the limit where fermionic couplings are flavor blind, 9 parameters are
enough to describe leading order EF'T corrections to the existing Higgs signal strength
measurements at the LHC.
We conclude with a number of comments.

e The relations between independent and dependent couplings in Egs. (5.5), (5.6),
(5.7), (5.8), Eq. (5.11) are consequences of the linear realization of electroweak
symmetry breaking at the level of dimension-6 EFT operators. They are an es-
sential part of the definition of the Higgs basis. If the independent and dependent
couplings were unrelated, then Liigespasis would not be a dimension-6 basis but
would belong to a more general class of theories. Such theories are outside of the
scope of this note.
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e The independent couplings in Eq. (5.1) are probed by precision measurements of Z

and W production and decays at LEP. In particular, assuming vertex corrections
are flavor blind, all the independent couplings in Eq. (5.1) are constrained to be
smaller than O(1072) (for the leptonic vertex corrections and dm = dmy /my),
or O(107%) (for the quark vertex corrections) [2, 4, 11]. Dropping the assumption
of flavor blindness, all the leptonic, bottom and charm quark vertex corrections
are still constrained, in a model-independent way, at the level of O(1072) or better
[12]. These constraints imply these couplings are too small to have any measurable
effects at the LHC, therefore we recommend to impose the electroweak bounds on
such constraints before analyzing LHC data. The 1st generation quark vertex cor-
rections are less constrained in a model-independent way, though one combination
of them is tightly constrained by measurements of the hadronic Z decays at LEP.
Furthermore, the top quark vertex corrections are poorly constrained (at the O(1)
level) by experiment, especially the right-handed top couplings to Z. If feasible,
the light quark and top couplings should be considered as free parameters in ex-
perimental analyses at the LHC, as this may provide new valuable information to
constrain these couplings.

The Higgs basis is convenient for extracting constraints on dimension-6 operators
from Higgs and electroweak precision data. However, it may not be the opti-
mal basis for some other applications. In particular, computing renormalization
group running of the couplings or matching to concrete BSM model may be more
straightforward in the language of SU(3) x SU(2) x U(1) invariant operators.

Customarily, the SM electroweak parameters are extracted from a(0), my and G.
One could also use my instead of G, as suggested in Ref. [2]. This formalism
leads to the same relations between the independent and dependent couplings as
written down here, except that dm = 0 by definition, and that [cy]1201 becomes an
independent couplings. The downside of this formalism is that the SM predictions
for all observables would have to be recalculated, as all existing high-precision
calculations use Gy as an input.

The number of independent couplings in Eq. (5.2) relevant for Higgs observables
is still large. At the early stages of the LHC run-2 it may be reasonable to em-
ploy simplified analyses with a smaller number of parameters. There are several
motivated assumptions about the underlying UV theory that reduce the number
of parameters:

— Flavor universality, in which case the matrices m¢dy; and sin ¢y reduce to a
single number for each f = u,d,e.

— Minimal flavor violation, in which case the dominant entries in dyy are [0y,]s3
and [dy4]33, while other diagonal entries are suppressed by the respective mass
square ratio.

— CP conservation, in which case all CP-odd couplings vanish: ¢; = 0 = sin ¢y.

— Custodial symmetry, in which case ém = 0.*

4Custodial symmetry implies several relations between Higgs couplings to gauge bosons: dc,, = dc.,
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We stress that independent couplings should not be arbitrarily set to zero with-
out an underlying symmetry assumption. Furthermore, the relations between the
dependent and independent couplings should be consistently imposed, so as to
preserve the weak SU(2) local symmetry.

e The independent couplings are formally of order v?/A%, where A is the scale of
new physics. For completeness, it is important to define the range of independent
couplings such that the EFT description is valid. The rule of thumb is that this is
the case when the independent couplings are < 1; more sophisticated criteria will
be worked out in the future when specific Higgs processes are discussed.

A Dictionary

In this section we give a translation between the Higgs basis parameters and several
other bases of dimension-6 operators proposed in the literature. On request, translation
to other bases may be added in the future.

A.1 SILH basis

Another D = 6 basis choice commonly used in the literature is the SILH basis [6, 8].°
In this section we present the translation between the couplings in the Higgs basis and
Wilson coefficients of dimension-6 operator in the SILH basis.

The SILH Lagrangian is written as

1
£SILH = £SM + ; Z SZOZ (Al)

Compared to the Warsaw basis defined in Section 4, the SILH basis of dimension-6
operators introduces the following nine new operators:

Ow = %(HTaiﬁuH> DWW

o
Op = %(H*ﬁuff) 0,B

Nz

Onw = ig(D.H'0'D,H)W},,

Ops = i¢ (D,H'D,H) B,,,

Ogw = ig(DH'¢'D,H)W!,,

Os = i¢ (D,H'D,H)B,,,

Osw = D,W,,D,W!,.

O = aﬂBllV&PBPV’

Oy = D,G%,D,GS,. (A.2)

Cwno = CngD + sgc,yg, Coww = Czz + 253027 + sgc,y, and Cyuyw = Cup + 285@7 + sgév. The last three are
satisfied automatically at the level of dimension-6 Lagrangian, while the first one is true for jm = 0,
see Eq. (5.5).

5In this note, the SILH basis is understood simply as a particular choice of a non-redundant set of
D=6 operators whose Wilson coefficients are arbitrary. We do not assume any hierarchy of the Wilson
coefficients motivated by particular strongly coupled UV completions that was discussed in Refs. [6, 8].
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Consequently, in order to have a non-redundant set of operators, 9 operators present
in the Warsaw basis must be absent in the SILH basis. The absent ones are 4 bosonic
operators Oww, O Ows, Ogpp, 2 vertex operators [Opglir, [Of]11, and 3 four-
fermion operators [Ogli2:01, [Owli1:22, (Ol )33:33- The remaining operators are the same
as in the Warsaw basis, and we use the normalizations in Table 1, which are often
different than in Refs. [6, 8].

One way to derive the translation is to first transform the operators in Eq. (A.2) to
the Warsaw basis using integration by parts, Fierz transformations, and the equations
of motion:

ig’ _ _
8I/B/u/ = 7HTS;H+9/ZYffL7MfL+g/ Z YffRqufR7

f=q,t f=u,d,e
DVW/U/ = EHTU EH—F 5 Z fLU ’yqua
f=q,t
DGy, = 9s@T vuar + 95 Y GrT Vudn. (A.3)
feu,d

6The original references do not discuss the flavor structure explicitly, and the flavor indices of the
absent operators are not specified. Here, for concreteness, we made a particular though somewhat
arbitrary choice of these indices.
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Using these, one can obtain:

1
Owp = Op— ZOWB — Ogs,
1
Onw = Ow — ZOWB — Oww,
1
Oy = —10ws — Opp:
1
Omv = —19%s ~ 9w
1 1
Op = g/2 _ZOT—F 5 Z Yf Z[OHJC]”] ,
f€q,u,dle 7
1 1 ,
f€q.l i
Op = [——OT + Y Yy [Oufdi+ D YpY, Z[Oflfg]ii;jj] :
f€q,u,dl.e 7 fifeequ,dle

1 /

feql 1

1 1
+ D <§[Ozé]z’j;ﬂ = 7 Ouliizis + 5 [qu]” i 4[quhz‘;jj)] :

ij

/ ]' 1 / /
O = g2 { [Oglisisi + 71Oadlisisi = §Oudliiii + 2(Oguliiii + 2[Ogaliiiss
Z‘?j
/ ]' / 1 ! 1 ! ]' /
+ 2[0y4liigi + 5 [Ouu]’L] i T 6[0 Jiigi + 5 [Odd]l] gi E[Odd]ii;jj (A4)

The operator Oyp = |H|?*|D,H|* appearing above is present neither in the Warsaw nor
in the SILH basis. One can remove it from the Lagrangian by rescaling the Higgs field
and the Yukawa couplings as H — H (1 + €|H|*/v?), y; — y;(1 — €/2). To lowest order
in €, this rescaling generates the following terms in the Lagrangian

AL =e¢ <20HD + 0y =4O + Y Z[yf]ii[of]ii> : (A.5)

feude i

Thus, to get rid of the Ogp operator generated by the transformation from the SILH
to the Warsaw basis we need to choose € = —g*(sy + sgw + saw)/2. Effectively, this
amount to replacing in Eq. (A.4):

1 1
Oyp — —§OH + 2206 — 5 Z Z[yf]ii[of]ii- (A-6)

feu,de i

We are ready to give the translation between the Wilson coefficient in the SILH and
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Warsaw basis:

2
cy = SH—T(SW—FSH‘/V—FSWV),
12
cr = ST_Z(SB+5HB+S2B)7
cer = Som + 2Ag° (sw + sgw + saw ),
1
cwB = 1 (sap+ Suw)
CBB = SBB — SHB,
cww = —SHW,
. 1, _
Cwp = 1 (Sup + Suw),
CBB = SBB — SHB;
cww = —SHw, (A7)
/QY
lcurlij = [suylij + g 5 / (s + sup + 2s2p) 0ij,
7
(sl = [Shpli+ T (sw + suw + 2s2w) 6ij, (A.8)
Sw + SHW —+ Sow
[erlis = [s£)ij — 0i59° [wyli 5 : (A.9)
1 12 2
lcoeliizii = [Seeissii + 1 (9"%s28 + g°saw) ,
1 : )
lealiigg = [seddiayi + 5 (97528 — g%s2w), i<,
[cedlijiii = [Sedlijsji + 9 saw, 1<, (A.10)

where it is implicit that [sgei1 = [y = [See)12:21 = [See)11.20 = 0. For the 4-lepton
operators one should take into account that [Og;iij = [Oulijiji and [Ouljjiii = [Oeeliiiy-
The translation of other 4-fermion Wilson coefficients apart from the one in Eq. (A.10)
can be easily derived from Eq. (A.4), but it will not be needed in the following. For the
Wilson coefficients not listed above the translation is trivial: ¢; = s;.

Given these relations between the Warsaw and SILH basis Wilson coefficients and
using the results of Section 4, we can derive the translation between the Higgs basis
couplings and the SILH basis Wilson coefficients:

92912 4 2
om = —W (SW+SB+52W+SQB_ ?87‘"’?[5’}]@]22) , (A.ll)
A 1
f(T%.Q) = 1 [ saw + 950 + 4s1 — 2[sTyla] T°
12
+ W [—(2¢° — g"*)s25 — 9% (sow + sw + sp) + 4s7 — 2[sy 2] Q,

(A.12)
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538

539

540

1 1 A
091" = 58— smet f
1
5 Ze _  _
gL 28 2

(1/2,0),

1 .
e — 5sme+ f(=1/2,-1),

1 R
Sga¢ = —5SHe + f(0,-1),

1 1 A
59511 — ES}{q — §SHq + f(1/2, 2/3),

1 1 ;

St = g o+ S(1/2-1/3)
1 A

Sgat = —5SHu +/(0,2/3),
1 A

6gg/£ = S}M =+ Ji(l/Qv 0) - f<j1/27 _1)7
Sgp * = Sy, + F(1/2,2/3) = f(—1/2,-1/3),

1
5gg/q = T5SHud; (A.13)
V=gV (A.14)
2 12 4 3g% + g'* ,
5Cw = —Sg— W Sw + Sp + Sow + Sop — ﬁST + W[SHE]QQ )
3
dc, = —syg— 5[53%]227
Cgg = SGG,
ny'y = SBB;,
1 2 2 2.2
Cyy — —W [g SHw + 9 °SHB — g SGSBB} )
1
C;o = 2—92 [gQ(SW + sgw + sow) + 9% (sp + sup + Sap) — 457 + 2[8916]22] )
SHB — SHW 2
Coy = T — S¢SBB;
SHW — SHB 1 2 /2 4
Cyo = 5 + PR [g (SW + 821/[/) +g (SB + 523) —dsr + 2[3H€]22] )
cwu) - _SHW7
s 1
Cyn = o 2 2 [QQ(SW + sow) + g (sp + s28) — 4s7 + 2[3}16]22} , (A.15)
2 2(¢*—9g?
f vReleyli 3¢ L
[0yylij cos dy; = — 0y |sg + —— (sw + sgw + saw) + = [Shlz|
A /meimfj 4 2
1 ii
[0y i sin <b£ - m(sslis (A.16)

\ meimfj .
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1
0Nz = —A (3SH + 5[%%]22) — S6H (A.17)

2 12
_|_
0g1. = —ﬁ [(92 - glz)us + 92(sw + sow) + 9'2(33 + sop) — 4sp + Q[S}M]zﬂ 5
2
Oky = gz [suw + suB),
1 9 +9% 1, 2 ;
0Kk, = ~1 (9%saw — 9*sup) — 2= g7 [ (sw + saw) + ¢ (s + s28) — 4sT + 2[shl]
3
>\z = 59433W7 )‘7 = /\z7
2
(SfiV = gZ[SHW—FSHB]
9/2
0k, = T [Saw + 5uB]
- 3 N -
A = —ég%gw, A= AL (A.18)

A.2 SILH’ basis
to be completed

A.3 HISZ basis

To describe the di-boson production, Ref. [13] proposes to use the following 5 operators:

Oww = Tr [WMVWVPWPM]’
Ow D, H'W,,D,H,
Op = D,H'B,,D,H,
O = Tr[WuWo, Wy |
Ow = D,H'W,D,H. (A.1)
This is a subset of operators considered by Hagiwara et al. (HISZ) in Ref. [9]. The
dimension-6 Lagrangian contains
L5 (dWWOWW +dwOw + dpOp + dww One: + dw Oy ) (A.2)

These 5 operators contribute to the TGCs and Higgs couplings, but they do not con-
tribute to oblique or vertex corrections. Thus, they are not strongly constrained by
electroweak precision tests, and therefore represent a perfectly fine parameterization of
EFT new physics in di-boson production.

One should remember that the covariant derivatives in Refs. [9, 13] are defined with
the opposite sign than here. This amounts to rescaling the gauge fields as W,, — =W,
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564

565

566

B, — —B, in the translation. Then the electroweak field strength tensors defined in
Ref. [13] are related to the ones used here by

B, — —%g'BW, W — —%gaiwjy. (A.3)
This allows us to relate
. 1 A 1 A 1
Oww = —=0Osw, Ow =—=Opw, Op=—=0Opgs,
4 2 2
. 1 A 1
ww = —1%w 9w =—50m (A4)

where O; on the right-hand side are operators in the SILH basis in the normalization of
Section ??7. Thus, the map between the HISZ and SILH coefficients is the following:

1 de 1 U2d 1 vzd
Ssw = 4 2w SHW = 5 A2 SHB = o A2B
1 0% - 102 -~
Saw = —-—— Suw = —=—~—dw. A.
S3w 1 A2 dww, Suw 9 A2 dw (A.5)

The anomalous TGCs and the HISZ basis Wilson coefficients are related by:

2 12,2
g +g-v

0g1. = g Pdw
2 ,,2 2,2
g- v . g v~

Oy = gz ldwHds),  0Ry =gigdw
3g* v? ~ 3gt v? -

A = %Fdww, )\Z:%Pdww. (A.6)

Inverting these formulas, the relation between the Wilson coefficients in the HISZ basis
and the Higgs basis parameters reads

J B 8A?

ww  — 3g4U2 29

4\? 2 /2 2 2 2/ 2 2
dW - _W [g C0o +g Coz — 306 077 - 8‘9(9 -9 )CZV} !
4A\? 2 2 2 2 2( .2 2

Ay = (o s (000 + e = e, = (6 = )],

. 8A%
d = T4 5 \z

ww 3941}2

- 8A?

B Goldstone bosons and gauge fixing

In the main body of this note we worked in the unitary gauge where the Goldstone boson
degrees of freedom in the Higgs doublet are set to zero. This is enough for the sake of
tree-level EFT calculations. However, if the necessity arises to extend the calculations
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to a loop level, retrieving the Goldstone degrees of freedom is convenient, as this allows
one to perform the standard gauge fixing procedure. This is done in this appendix.
We parametrize the Higgs doublet as

H = ( S o iGs) ) (B.1)

where GG+ and (G5 are three Goldstone fields, that will be eaten by the W and Z bosons.
In the Higgs basis, derivation of the Goldstone boson couplings follows exactly the same
algorithm as the one applied before to derive the Lagrangian for physical fields: we
first derive these couplings in the Warsaw basis, and then perform the field and coupling
redefinitions that take us to the Higgs basis. Of course, all the Goldstone boson couplings
are dependent ones, that is they can be expressed by the independent couplings defining
the Higgs basis. As an illustration, below we display a subset of these couplings that
are relevant for the 1-loop calculation of h — V'V*. These are

1. Goldstone kinetic terms and their mixing with the electroweak gauge fields.
2. Cubic interactions with one Higgs boson and one or two Goldstone fields.

3. Cubic interactions with one or two Goldstone fields and one electroweak gauge

field.

4. Quartic interactions with one or two Goldstone fields and two electroweak gauge
fields.

The relevant part of the Lagrangian is parametrized as
Lo=LE8+ L5+ L5V + L8 + LY+ L3V + £V (B.2)

where

. 1 v B / 2 + /2U
LE" = 0,G0,G- + 5(0uGa)? = Bav T (9,6 W,y +her) = Y—T20,GoZ,, (B3)

3 m2 m2
L = _ThﬁhcchGJrG* — 2—Uhﬁh33hG3Gg (B.4)

) B / 2+ /2
E%V = thwgauh (G+Wu +h'c')+6h3z%aﬂhG3Z“

) 7 2 + 12
+ zﬁgcwgaueg, (G W, —he) — 53,12%8#(;3}12#
g2 _ g/2
+ e (3MG+G, — hC) Aﬂ + iﬁcczm (a‘uG+G, — hC) Zﬂ
= B (DG W, +he) h—iBaw (0,64W; —he)Gs, (BS)
2 , equ _ . cog v _
L8 = ZBCWA% (GiWr —he) Ay — iBavs 22 (G W —hc) Z,, (B.6)

27



589

590

591

592

593

594

595

596

597

598

599

600

601

/

LYV “7cWA (G+W _ h.c.) A ZnCWA% (G+W —h.c. ) Zyw + (CP —odd).

(B.7)
eve > e(g> —9"?) (9° —9")? g9’
Le; = G4G- (6 ApA,+ @szAuZu + ﬁcczzwzuzu + 5chW§

_l’_
+ G3G3 (533WW W+W + ﬂggzzg S g Z,7 )
eg e
- ZﬁchWA? (G4W, —hc.) hA, = Baway J (G’+W* +he)GsA,
- ZﬁchWZ (G+W — h.c. ) hZ + 5C3WZ (G+W + h.c. ) G3ZM

+ nécWWgL (G+G+Wu W, + h'C') )

S2dv2
Le

+  G3Gs (M3344€° Ay Ay + 0334299 A Zy + 03322(9° + 92) Zyw Zys + M3zww g

B

W+W_)

(B.8)

= G+G7 (nccAQezA,uuA,ul/ + 77ccAZgg/14,u1/Z,ul/ + Neez? (92 + 912)ZWZ;W + ﬁch292W,Z,W,L)
2 _
WLWW)

+ Neawaey (G+Wl;, +h.c.) Gs A + neswzed (G+W; +h.c.) G3Z,, + (CP — odd).

Above, “CP-odd” stands for analogous terms with V,,, — VW, and n — 7. Note the
Goldstone kinetic terms in Eq. (B.3) are assumed to be canonically normalized. To
achieve this, one needs to rescale the neutral Goldstone field as

Gg — G3 <]_ +cr + 2CT%) . (B]_O)

Moreover, the Lagrangian in Eq. (B.2) does not contain 2-derivative cubic scalar self-
interactions. To ensure this feature, the Higgs boson field redefinition in Eq. (4.5) has
to be generalized to

- ( h h? ) |, 264G+ GGy e

1—cH—cH——cH—2 — 2cr
) 3v v )

(B.11)

The above field redefinitions are in addition to the steps described in Section 4. These
include the gauge coupling rescaling and the use of the equations of motion (that are
modified to include the Goldstone fields). The final step is to transform the couplings
from the Warsaw to the Higgs basis using the dictionary provided in Section 4. At the
end of the day, the coefficients in the Goldstone Lagrangian of Eq. (B.2) take the form

Bew = 1+ 0dm, (B.12)

thc - 1 + gQCwD + 5Cz + 2(5m7
Brss = 1+ g°co+ e, (B.13)
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/BCCAZ

/BCCZZ

ﬁchW
ﬁ33ZZ
BSSWW

BchWA

/BC3WA

BchWZ
/8C3WZ

/
Neeww

Brew = 14 g°cun + 0c, + 30m,
BhBZ = 1+ QQCZD + 5cza

3
ﬁBcW = 1- 292Cw\j + §g26zu — 35771,
Bsnz = 1+ dc,,

2, 12
g °+g
Beecz = 1+ W (—9202\] + 4(5m) )
Benw = 14 dc, + 30m,
2
Baw = 1= Tcatom, (B.14)
ﬁcWA = 1+ 6m7
2 2, 12 2 12
+ 2% +
Pewz = 1+ % (c2o — cwn) — gng(;m, (B.15)
2 2
Newa = TNewz = Czz — ﬁcm T (B.16)
2 2
g +g 2
1+ 3= g7 (—g%c.o +46m)
(P +d22 [ - g?) , 5g* + 662 + g4
1+ (2 — g2\ g2+g° €0+ 397 Cun + 20¢; + 2 (g% + ¢2)? om |,

1 +2¢%c.o + 20c, + 20m,
1 +2¢%c.o + 20c.,
14 ¢*(con + c2n) + 26c. + 40m,

1+ dc, + 36m,

g2
1— ECZD + (5m,

3g2(g2 +gl2 292 +g/2
1+ 57 (CZD - Cwl:l) + 502 - 375777,,

4 2( .2 12 2 12

g g*(9° +9"7) 29° +g
T W I
92
5 (cun — c:0) +0m, (B.17)
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- g% — g (92 —9'2)2

cc = Czz ——5Cy + 5 C )
feead F+g* 7 Mg +g?)
1
3344 = gcwa
I g2 _g/2c B g4 _6gzg/2+g/4c B 62(92 _g/2)c
72 + g2 2(g2 + ¢2)? Y (g% + g'2)? Y
_ &
N334z = 1
S (92 —g’2)2 o €2<g2 _gxz)c . oA )
- U +97)2 " (@P+g2)> 7 (¢ +g2)
CZZ
N33zz = ?7
1 2 53
Neeww = §sz + S9Czy + Ec’y’y?
1 s S
N3sww = ZCZZ + gcz'y + Zc’y’ya
1 g% — g” o2
c = —=C;; + Coy + Coyys
Ne3w A 2 2(g% + ¢?) gl 2(g% + ¢'?) ¥y
1 2 2 o2
Neswz = g — 9 (B.18)

2% T AP gD T AP gD T

As soon as the Goldstone bosons are retrieved, gauge fixing can be implemented as in
any gauge theory. Below we work with the linear R¢ gauge. For the electroweak sector,
we introduce the following gauge fixing Lagrangian

Ly = 2—15 [F3+ F;+2FF_], (B.19)
where
Fr = 0,A,,
Fy, = 0,7, — g—vg22+g%(;3 (1 —2cr + €*cwn) ,
Fr = 9, — g%@i. (B.20)

Above, the electroweak parameters g, ¢, v and the Goldstone fields G4, G5 are the ones
before the rescaling in Eq. (4.8) and Eq. (B.10). After the rescaling and going to the
Higgs basis the gauge fixing Lagrangian becomes

2
1 2 /2
Lot = — |(0,A4,)% + (auzu - 5—V~‘7+9”G3> +2

+_ c9v 2
@LWM — 57 (1 + 5m) G+

T2 2

(B.21)
This way, the kinetic mixing between the Goldstone bosons and massive vector bosons
cancels after introducing the gauge fixing term. At the same time, the Goldstone bosons
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acquire the gauge dependent masses;

/2 2
me, = \/E% (14 0m) = /Emw, MG, = JE% =/¢my. (B.22)

Finally, the ghost Lagrangian is given by

C_

[ 6F, _ ®F. _ 9F, _ 00F,
£ghost = Z |:C+ aOén 80&,1 Cz aan +Ca (?an Cn, (B23)

n

where 0 F' is the variation of the gauge fixing term under the infinitesimal SU(2) x U(1)
gauge symmetry transformations parametrized by a,,. Since the F’s in Eq. (B.20) contain
the original (unrescaled) gauge and Goldstone fields, their gauge transformations are the
same as in the SM. After the field and coupling rescaling and going to the Higgs basis,
Eq. (B.23) leads to the gauge dependent mass terms for the ghost fields:

2 /2
e, = \/E% (1+0m) = /Emw,  m, = \/g—vggg“ = /Emy,  (B.24)

as well as the Higgs and electroweak gauge boson interactions with 2 ghost fields. This
last step completes the list of ingredients necessary to compute the h — V'V amplitudes
in EFT at the 1-loop level.
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H*D? and HS f?H3 V3D3

[V

On | [0,(HIH)]® O, | —(H'H—%)eH¢ Oz | gifoteGe,Gb Ge,
Or (mﬁuﬂ)2 O, | —(H'H-%)aflq O | ¢8f™G2,Gh G5,
Oen | (HTH)? Oq | —(H'H — 2)dH'q Osw | gPe* Wi, Wi, Wk,
Ogﬁ/ g3eijkW;VngW§u
V2H? f?H?D f2VHD
Oce | SHIHGY,GY  Op | ilyHIDH Oaw | gloea' HWI,
Oge | SHUHG, GO, Lo | iloi tH o' Dy H  Op | g'loueH B,y
Oww | CHHW.W, Oy, | ieyeH D H Ouc | 9540 TouH G4,
O | SHIHWI, Wi, Ou, | iqruqH' D H Ouw | 90uc’ HWY,
Ogg %HTH BB O’Hq icjai*quHTo*iF;H OuB g’(jow,uﬁ B
O | CHHBWB, — Opu | iyl D H Ouc | 95G0, TdH G2,
Ows | g H'o'HW} B, Oy idy,dH TE;H Oaw | 9Goudo'HW),
Owg | 9¢HIG'HW!, B,y Opya | iun,dHTD,H Oap | 9'GouwdH By,
(LL)(LL) and (LR)(LR) (RR)(RR) (LL)(RR)
Ou () (Eyl) Oce (evue)(@vue) Ote () (Evue)
Oqq (7719 (@V9) Oun | (Wryu)(@y,uw) Ow | (Lyul)(aryuu)
Ohy | (@vo'a)(@ruo'q) Odad | (dvud)(dy,d) Ow | (Pyuf)(dyd)
Orq (£3:0) (G7u9) Ocu | (Byue)(@vuu) Oge | (qVu9)(ee)
Ol | (0vuo'0)(Gvuotq) Ocd | (evue)(dvud) Ogu | (@7u9)(@yu)
Oquqd (@ u)ejr(q"d) Oua | (@yuu)(dyud) O | (@ Tq)(wry, Tu)
Otuga | (@ T u)en(d°Td) Oly | (@y,Tu)(dvy,T"d) Oqd | (qvuq)(dvyd)
Otequ (Fe)eji(du) Oua | (@vuTq)( 1, T°d)
Ofequ | Wouwe)ejn(@ o u)
Otedq (Fe)(dg’)

Table 1: A complete, non-redundant set of baryon-and-lepton-number-conserving
dimension-6 operators built from SM fields [5]. In this table, e, u,d are always right-
handed fermions, while ¢ and ¢ are left-handed. A flavor index is implicit for each fermion
field. For complex operators the complex conjugate operator is implicit. Including the
flavor structure and complex conjugates, this table contains 2499 distinct operators [10].
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