Double Higgs Production at the LHC

Matthew Dolan

SLAC National Accelerator Laboratory with Christoph Englert & Michael Spannowsky, 1206.5001, 1210.8166, 1309.6318 (w/ Alan Barr), 1310.1084 (w/ Nico Greiner), in progress SM Dihiggs

•000000000000

- Can we measure double Higgs production at the LHC?
- Can we measure the Higgs self-coupling at the LHC?
- Can we learn about New Physics?

Why Think About Self Couplings?

•

0000000000000

$$\mathcal{L} \supset \frac{1}{2} m_h^2 h^2 + \frac{m_h^2}{2v} h^3 + \frac{m_h^2}{2v^2} h^4$$

- Standard Model trilinear is $\lambda_{SM} = m_h^2/2v$
- Measuring the Higgs self couplings directly probes the structure of the Higgs potential

SM Dihiggs

000000000000

Effective Lagrangian

$$\mathcal{L}_{ ext{eff}} = rac{1}{4} rac{lpha_s}{3\pi} G^a_{\mu
u} G^{a\,\mu
u} \log(1+h/v)$$

$$\mathcal{L}\supset +rac{1}{4}rac{lpha_{s}}{3\pi
u}G_{\mu
u}^{a}G^{a\,\mu
u}h-rac{1}{4}rac{lpha_{s}}{6\pi
u^{2}}G_{\mu
u}^{a}G^{a\,\mu
u}h^{2}$$

Inclusive Cross-section

- LO: 16 fb (\sim 1500 times smaller than single Higgs production)
- NLO: 33 \pm 5 fb. NNLO: 40 \pm 3.5 fb.
- Diagram (b) resonantly enhanced when $s \simeq 4 m_t^2$

p_T distributions

- Naturally boosted $p_{T,h} \gtrsim 100 \text{ GeV}$
- Max sensitivity at $p_{T,h} \sim 100 \text{ GeV}$

Rare decay search strategy: $bb\gamma\gamma$

- $bb\gamma\gamma$: Constraints possible with a lot of luminosity^a
- Suffers from small $BR(h \rightarrow \gamma \gamma)$
- Claim 40 50% uncertainty on λ_{hhh} with $3ab^{-1}$

$bb\gamma\gamma$: ATLAS-PHYS-PUB-2014-019 (3 weeks ago)

For 3000fb^{-1} :

"After event selection, a signal yield of around 8 events is obtained for the Standard Model scenario, corresponding to a signal significance of 1.3σ "

^aBaur et al 2003, Yao 1308.6302, Barger et al. 1311.2931

Rare decay search strategy: $bb\gamma\gamma$

bb $\gamma\gamma$: ATLAS-PHYS-PUB-2014-019 (3 weeks ago)

"After event selection, a signal yield of around 8 events is obtained for the Standard Model scenario, corresponding to a signal significance of 1.3σ "

• Excludes 8.7 $\lesssim \lambda/\lambda_{\it SM} \lesssim -1.3$

Unboosted and Boosted searches

Strategy

SM Dihiggs

00000000000000

- Small cross-section: $\sigma^{NLO}(hh) = 28.4$ fb.
- So focus on largest branching ratios: bb (60%), WW (20%), $\tau\tau$ (6%).
- Unboosted bbbb, bbWW: Not possible due to 4b and $t\bar{t}$ backgrounds.

	$\lambda = 1$ (fb)	bbWW	ratio to $\lambda = 1$
1 isolated lepton	3.76	254897	$1.5 \cdot 10^{-5}$
MET + jet cuts	0.85	66595	$1.2 \cdot 10^{-5}$
had-W recon	0.33	38153	$0.9 \cdot 10^{-5}$
kinematic Higgs recon	0.017	205	$8.3 \cdot 10^{-5}$

- Can use the m_{T2} variable to supress $t\bar{t}$ backgrounds
- $\bullet \ m_{\text{T2}} = \min_{\mathbf{c}_{\text{T}} + \mathbf{c}_{\text{T}}' = \mathbf{p}_{\text{T}}^{\Sigma}} \left\{ \max \left(m_{\text{T}}, m_{\text{T}}' \right) \right\}$
- Take b's as visible particles, and $p_{T,W} + p_{T,W'}$ as 'invisible momentum'
- m_{T2} constructed from momenta of t decay products and $p_{\rm T}$ has maximum at m_t
- Signal does not

SM Dihiggs

00000000000000

Also use p_{T,bb}

AugMT2ed DiHiggs: some results

Analysis results

SM Dihiggs

00000000000000

cross section [fb]	hh	S/B		
Before cuts	13.89	1.06×10^{-3}		
After trigger	1.09	0.463×10^{-3}		
After event selection	0.248	0.578×10^{-3}		
After $m(\tau^+\tau^-)$ cut	0.164	1.46×10^{-3}		
After $m(b\bar{b})$ cut	0.118	3.98×10^{-3}		
After $p_{\mathrm{T},b\bar{b}} > 175~\mathrm{GeV}$ cut	0.055	0.105		
After $m_{\rm T2}>$ 125 GeV cut	0.047	0.250		

Comments

- Corresponds to $\sim 60\%$ sensitivity to λ_{SM} with 3000fb⁻¹ LHC
- Can gain further sensitivity using *hh* + 1j final state

Exploiting boosted kinematics

SM Dihiggs

00000000000000

- Signal has $b\bar{b}$ and $\tau\bar{\tau}$ systems approximately back-to-back
- $t\bar{t}$ background more likely to have collimated $b\tau$
- Promising place to use jet substructure techniques

SM Dihiggs

000000000000000

Higgs reconstruction

- Two hadronic taus reconstructing m_h
- One fatjet with BDRS cuts reconstructing m_h

	$\lambda = 1$	$b\bar{b} au au$ (BG)	ratio to $\lambda = 1$
x-section pre-cuts	28.34	873076	3.2 · 10 ⁻⁵
Higgs from τ s	1.94	1512	$1.3 \cdot 10^{-3}$
fatjet cuts	1.09	225	$4.8 \cdot 10^{-3}$
Higgs rec & tags	0.095	0.15	0.49

- Expect 95 signal events with 1000fb⁻¹ in SM.
- Expect 148 events for $\lambda = 0$; 53 events for $\lambda = 2$.

Boosted regime: $bb\tau\tau$

SM Dihiggs

00000000000000

Higgs reconstruction

- Two hadronic taus reconstructing m_h
- One fatjet with BDRS cuts reconstructing m_h

	$\lambda = 1$	$b\bar{b} au au$ (BG)	ratio to $\lambda = 1$
x-section pre-cuts	28.34	873076	3.2 ⋅ 10 ⁻⁵
Higgs from τ s	1.94	1512	$1.3 \cdot 10^{-3}$
fatjet cuts	1.09	225	$4.8 \cdot 10^{-3}$
Higgs rec & tags	0.095	0.15	0.49

$b\bar{b}W^+W^-$ also studied

- BDRS cuts on $b\bar{b}$, 1 leptonic W, 1 hadronic.
- 4.6 signal, 2.6 background events in 600 fb⁻¹

Multi-*b* final states

SM Dihiggs

00000000000000

$pp ightarrow hh ightarrow bar{b}bar{b}$

- Two BDRS fatjets & shower deconstruction^a
- Constrains $\lambda \lesssim 1.2 \times \lambda_{SM}$ at 95% C.L

^ade Lima, Papaefstathiou, Spannowsky 1404.7139

$pp ightarrow t \overline{t} h h ightarrow t \overline{t} b \overline{b} b \overline{b}$

- 5-6 b-tags ^a
- Constrains $\lambda \lesssim 2.51 \times \lambda_{SM}$ at 95% C.L
- ^aEnglert et al. 1409.8074; Liu & Zhang 1410.1855;

Dihiggs + hard jet production

- Want to decorrelate $p_{T,h}$ with suppression of triangle diagram
- Motivates studying $pp \rightarrow hh + j$

$\sigma(pp \rightarrow hh + 1j)$

- Left: $p_{T,i} > 100$ GeV. Right: $p_{T,i} > 20$ GeV
- Large dependence on λ : $\Delta \sigma / \sigma_{SM} \simeq 100\%$ for $\lambda \in [0, 2\lambda_{SM}]$
- Compare $\Delta \sigma / \sigma_{SM} \simeq 45\%$ for $pp \to hh$.
- Cost in cross-section: $\sigma(pp \to hh + j) \simeq \text{few fb}^{-1}$

Results for $b\bar{b}\tau\tau i$

- S/B improves relative to $bb\tau\tau$ w/out hard jet
- But cross-section very small.

fb	$\xi = 1$	$b\bar{b} au^+ au^-j$ (BG)	ratio to $\xi = 1$
x-sec precuts	3.24	174	1.9 · 10 ⁻²
2~ aus	0.22	45	$4.8 \cdot 10^{-3}$
$m_{ au au}pprox m_h$ + fatjet	0.16	3.1	$5.1 \cdot 10^{-2}$
kin. Higgs rec. + 2b	0.04	0.153	0.26
<i>hh</i> inv.		'	'
mass + $p_{T,j}$ cuts	0.006	0.0037	1.54

Why study hh + 2j? When will this ever end?

- Leading process sensitive to W+W-hh and ZZhh interactions through vector boson fusion
- Given by $g_{WWhh} = e^2/(2s_w^2)$ and $g_{ZZhh} = e^2/(2s_w^2c_w^2)$

But...

SM Dihiggs

 This process also gets contributions from gluon fusion at $\mathcal{O}(\alpha_s^4 \alpha^2)$ which must be calculated and kept under control

¹MJD,Englert,Greiner,Spannowsky 1310.1084 + in progress

Calculating the gluon fusion component

What about our old friend?

$$\mathcal{L}_{ ext{eff}} = rac{1}{4} rac{lpha_s}{3\pi} G_{\mu
u}^{ extsf{a}} G^{ extsf{a}\,\mu
u} \log(1+h/v)$$

Momentum transfers are again $p_{T,h} \sim m_t$ and so kinematic information is lost when $m_t \to \infty$

- Need to incorporate full loop contributions
- This is challenging, particularly for the gg → hhgg case with O(10³) Feynman diagrams: up to 1 minute per phase space point
- Not promising for traditional Monte Carlo approaches
- Instead opt for a reweighting procedure

Reweighted vs. EFT

SM Dihiggs

Comments

- Shows $p_{T,h_{max}}$ from $gg \rightarrow hhgg$
- Similar behaviour as in hh and hhj production
- At large momentum transfers massive quark loops are resolved and EFT overestimates

Results

Analysis cuts

- Require $p_{T,j} > 25$ GeV and $|\eta_j| < 4.5$
- Require two b jets, and two extra (non-τ jets)
- No $m_{\rm T2}$ -based cuts or MET-based cuts used ightarrow room for optimisation

	Signal with $\xi imes \lambda$		Background		S/B	
	$\xi = 0$	$\xi = 1$	$\xi=2$	t₹jj	Other BG	ratio to $\xi = 1$
tau selection cuts	0.212	0.091	0.100	3101.0	57.06	0.026×10^{-3}
Higgs rec. from taus	0.212	0.091	0.100	683.5	31.92	0.115×10^{-3}
Higgs rec. from b jets	0.041	0.016	0.017	7.444	0.303	1.82×10^{-3}
2 tag jets	0.024	0.010	0.012	5.284	0.236	1.65×10^{-3}
incl. GF after cuts/re-weighting	0.181	0.099	0.067	5.284	0.236	1/61.76

- Is this final state of interest for Beyond the Standard Model physics?
- How can BSM physics alter SM di-higgs phenomenology?

DiHiggs BSM Implications²

Resonant

- New (on-shell) resonances
- Two-Higgs doublet models (supersymmetry)
- Higgs-portal models
- Composite models with hh resonances

DiHiggs BSM Implications²

Resonant

SM Dihiggs

- New (on-shell) resonances
- Two-Higgs doublet models (supersymmetry)
- Higgs-portal models
- Composite models with hh resonances

Non-Resonant

- Models with heavy top-partners
- Composite Higgs models
- Pseudo-dilaton models

DiHiggs BSM Implications²

Resonant: SUSY

- $H \rightarrow hh$ can be dominant decay channel!
- Happens for low tan β
- Can separate SM and BSM contributions with m_{hh} cut
- Could allow to bound/reconstruct tan β

²MJD, Englert, Spannowsky 1210.8166

The Higgs Portal

SM Dihiggs

$H^{\dagger}H$ is a singlet

Higgs Portal Potential:

$$V = m_H^2 |H|^2 + \lambda_H |H|^4 + m_S^2 |S|^2 + \lambda_S |S|^4 + \eta_X |H|^2 |S|^2$$

- Φ_S a hidden sector Higgs field
- Visible and hidden sector Higgses mix:

$$h = \cos \chi H_s + \sin \chi H_h$$

$$H = -\sin \chi H_s + \cos \chi H_h,$$

Variety of trilinears to possibly study: hhh, Hhh, HHH, HHH

The Higgs Portal³

- LH: Constraints from current searches
- RH: Projections for Run II

³Chen, Dawson, Ian Lewis 1410.5488 (and also 1210.6663)

DiHiggs catching up with single Higgs

Studies of

- Variety of different production mechanisms: gluon fusion, tthh, vector boson fusion...
- Variety of different final states: $b\bar{b}\tau\tau$, $b\bar{b}\gamma\gamma$, $b\bar{b}WW$, 4bs...
- Current projections: 30-50% accuracy on trilinear from lifetime measurement?
- Field continues to evolve!

Beyond the Standard Model

- Rich BSM phenomenology
- Large resonant and non-resonant enhancements possible in a variety of models