What we're looking for... - SM H → bb, in Higgs-strahlung - One of the most elusive Higgs decay channel at LHC - But the one the Higgs boson (supposedly) most frequently decays into - $H/X \rightarrow HH \rightarrow 4 \text{ b-jets}$ - In the future hope to access Higgs self-coupling - Now: look for BSM heavy X resonances to HH - (b)bH, H \rightarrow bb in (x)MSSM or 2HDM models - First analysis in ATLAS - Quite a few searches involving b-jets reconstruction, where we have >4 people very active also on the performance side (not covered in this talk). - SM H \rightarrow bb search now published, remaining ones still in ATLAS review. #### One motivation for H to bb At the LHC the Higgs Higgs couplings can't be measured directly $$\sigma_{YY \to H} \dot{BR}(H \to XX) \approx \Gamma_Y \frac{\Gamma_X}{\Gamma_H}$$ - A measurement of absolute couplings is possible if the total width is bound - Upper limit from fulfilling unitarity in WW scattering (valid for SM and a large class of BSM models) - Lower limit from sum of all "visible" decay modes $\Gamma_H \ge \Gamma_W + \Gamma_Z + \Gamma_a + \Gamma_\tau + \Gamma_b$ - At ~125 GeV Higgs boson width is expected to be dominated by H to bb (BR ~ 60%) - Precise determination of H to bb important for extracting absolute couplings! ## The VH analysis - Three leptonic signatures: - Missing ET - $ZH \rightarrow \nu \bar{\nu} b \bar{b}$ - I-lepton + Missing ET - $WH \to \ell \nu b\bar{b}$ - 2-leptons - $ZH \rightarrow \ell^+\ell^-b\bar{b}$ - Main analysis selection criteria: - Jets reconstructed with an AntiKt4 jet algorithm. - Leading two jets in pT used to form Higgs candidate. PT(ℓ)>25 GeV pT(b)>45 GeV pT(b)>20 GeV Missing ET >100 GeV The point of Categories with no or one additional jets. #### Ingredients: (1) mass - Std antiKt R=0.4 jets - Use Global Sequential Calibration as basis (already ~5% improvement w.r.t. EM jets) - Then add muon-in-jet - For 2-lepton channel, run full kinematic fit - Exploit closed kinematics of Ilbb system (maximize likelihood) ## Ingredients: (2) b-tagging | ε (B) | R(c) | R(light) | |--------------|-------|----------| | 80% | ~3 | ~29 | | 70% | ~5.3 | ~136 | | 60% | ~10.5 | ~450 | | 50% | ~26 | ~1400 | - R = I / efficiency - Optimized to reject c-jets - Simultaneous use of several working points. - Dedicated calibration with reduced uncertainties (~2-3%). # Analysis categories - Three channels: 0-lepton, 1-lepton and 2-lepton - **Two** pT(W/Z) regions - <120, >120 GeV - Four b-tag regions (1-tag, LL,MM,TT) - Two jet bins (2 and 3 jets) - Discriminating variables in fit - 1-tag: **MV1c** - 2-tag: **BDT** ## Main backgrounds - W/Z+jets (mainly +bb/cc/cl) - Top background (especially I- and 0-lepton) - Diboson (W/Z+Z to bb) - QCD (data-driven estimates) ## W+jet, Z+jet backgrounds - High statistics control regions are the 0- and 1-tag regions - Residual contamination from top bkg in 0- and 1-lepton • The MVIc distribution in the I-tag regions is used to obtain the fractions of W+ and Z+cl, cc/cb/bb from data. | Process | Scale factor | |------------------|-----------------| | \overline{Wbb} | 0.83 ± 0.15 | | Wcl | 1.14 ± 0.10 | | Zbb | 1.09 ± 0.05 | | Zcl | 0.88 ± 0.12 | #### Data driven corrections In both 0- and I-tag regions, a significant discrepancy between data and MC is seen in both the DeltaPhi(j,j) and pT(V) distributions. - A data/MC correction is derived using 0-tag events based on DeltaPhi, and applied to MC. The low and high pT(V) bins are separately corrected. - The correction works well also in I-tag events, which means W+cl needs the same correction. But hard to conclude on W+cc/bb: no correction applied there. - Half of the correction as systematic uncertainty. The full W+light/cl correction as systematics on W+bb/cc. #### [ATLAS-CONF-2014-035] #### SM measurement - Despite the different cuts, the same effect is seen in the unfolded W+jet measurement, for N(jets)≥2. - NLO for W+2 jets (BlackHat +Sherpa) gets closest to data. - For Run-II, hopefully we can establish a good modelling for W+jets first, before the fun with heavy flavor starts! - First indications based on Sherpa 2.1.x are not so promising. - Some NLO codes give slightly improved modelling, is the matching to the parton shower the problem? ## W+bb/Z+bb processes • For heavy flavor processes additional systematic uncertainties are considered. - W+bb is hard to control with data (top/single-top backgrounds). Different generators / models are considered: - I. Powheg+Pythia/Herwig - 2. aMC@NLO - 3. Sherpa - Variations of O(20%) on m(bb), Δ R(bb)! (gluon splitting? NLO corrections?) - Really hoping in theory improvements in this area... - Sherpa 2? Powheg MiNLO Wbb? (needs W+bbj @ NLO)? aMC@NLO (needs extension of FxFx to b-jets)? - Z+bb can be controlled a bit easier from m(bb) sidebands, but signal region lacks statistics - Systematic variation on m(bb) derived in 0- and I-tag region, and cross-checked in 2-tag region. ## BDT | | 0-Lepton | 1-Lepton | 2-Lepton | |----------------------------|----------------------|----------|----------| | $\overline{p_{ m T}^V}$ | | × | × | | $E_{ m T}^{ m miss}$ | × | × | × | | $p_{ m T}^{b_1}$ | × | × | × | | $p_{ m T}^{b_2}$ | × | × | × | | m_{bb} | × | × | × / | | $\Delta R(b_1,b_2)$ | × | × | × | | $ \Delta\eta(b_1,b_2) $ | × | | × | | $\Delta\phi(V,bb)$ | × | × | × | | $ \Delta\eta(V,bb) $ | | | × | | $H_{ m T}$ | × | | | | $\min[\Delta\phi(\ell,b)]$ | | × | | | $m_{ m T}^W$ | | × | | | $m_{\ell\ell}$ | | | × | | $MV1c(b_1)$ | × | × | × | | $MV1c(b_2)$ | × | × | × | | | Only in 3-jet events | | | | $p_{ m T}^{ m jet_3}$ | × | × | × | | m_{11} . | | ¥ | ~ | - Good description of input variables & correlations. - Main improvements from EPS 2013: - MVA based on BDT (+15%) - "Continuous" b-tagging (+15%) - GSC for jets / kinematic fit in 2-lepton - Re-optimization of cuts 13 - >50% improvement in sensitivity - SLAC goal was to improve H to bb by >20%. Exceeded!! ## Fit model 1-lepton TT 2 jets 0-lepton MM+TT 2 jets #### 2-lepton MM+TT 2 jets - Simultaneous profile likelihood fit to: - 2-tag: 27 signal regions - 1-tag: 11 control regions - constraining backgrounds & extracting μ - ~170 NPs to account for systematic effects ## Systematic uncertainties - Leading uncertainties: - W+b/c theory (shapes + flavor composition) - signal theory (parton shower) - jet energy resolution - Important message for Run-II - Need to urgently improve our MC modeling (gluon splitting, heavy flavor fractions,...) #### Events / 0.5 **ATLAS** Data 2012 10⁷ $VH(bb) (\mu=1.0)$ $\sqrt{s} = 8 \text{ TeV } \int Ldt = 20.3 \text{ fb}^{-1}$ Diboson 10⁶ Single top Multijet 10⁵ W+cl 10^{4} 10³ 10^{2} 10 Pull (stat.) $\log_{10}(S/B)$ ### Main result - Uncertainty on µ decreased from ~0.65 to ~0.4! - Expected sensitivity 2.6σ, observ. 1.4σ - $\mu = 0.5 \pm 0.4$ - No evidence for H to bb yet, but no incompatibility either..... ### H to hh to 4b Measurement of Higgs self-coupling crucial for full characterization of EW sector $$V(H^{\dagger}H) = \mu^{2}H^{\dagger}H + \eta(H^{\dagger}H)^{2}$$ $$\supset \frac{1}{2}m_{h}^{2}h^{2} + \sqrt{\frac{\eta}{2}}m_{h}h^{3} + \frac{\eta}{4}h^{4}$$ Very challenging at the LHC! (even with L=3000 inv. fb.) $$2\eta = g^2 m_h^2 / m_W^2$$? - Di-Higgs production does not only involve triple Higgs vertex. - Variation of coupling result in variation of differential pT(H) cross section. - Important to finalize sensitivity studies now, since we already need to finalize the main detector design choices for Phase-II!! ### X to hh to 4b Well before, we can start to investigate di-Higgs production in several BSM scenarios: Spin-2 KK graviton in the Randall-Sundrum model with warped extra-dimensions Search for masses up to ~2 TeV - SUSY H to hh - ... and many other models Challenging for reconstruction algorithms! ## Reconstruction strategy - Trigger based on multi-jet and multi-jet + b-jets signatures. - Reconstruct two Anti-Kt R=1.0 calorimeter jets and trim them - Leading pT>350 GeV, sub-leading pT>250 GeV - Then match these two jets to four Anti-Kt R=0.3 track-jets. - Allows to resolve jets into sub-structure. - Results in better alignment of "subjets" along true b-hadron direction (crucial for b-tagging!). ## B-tagging the 4 b-jets... - A proof of the concept is described in the ATLAS pub note ATL-PHYS-PUB-2014-13 and shown at Boost 2014. - The new technique has the potential to significantly improve the sensitivity to a high mass resonance w.r.t. previous analyses. - Track-jets are now being calibrated with data. - X to 4b analysis progressing well Plan is to publish full Run-I result on a few months timescale. ## bH to bbb analysis - Together with H → TT, main search channel for heavy A/H Higgs boson in MSSM scenarios with large tan(β). - Very challenging analysis because of pure hadronic environment and relatively soft b-jet from associated production - Look for di b-jet peak over large bbb continuum background. - Determine background shape from simultaneous likelihood fit to m(bb) in control region (bb + anti-tag). - Assumption that m(bb) is nearly independent on flavor of third jet crucial. Need theory and simulations to back this up! ## Background simulation - Background mainly from multi-jet production of ≥ 3 b-jets difficult process to simulate - → help from Stephan to produce realistic Sherpa sample (thanks!!) - Replaces more simplistic model based on Pythia (2-to-2 scattering ME only) - Of general interest for studying multi-b production in ATLAS - After quite some validation, got the MC request finally approved. - Plan to finalize analysis soon, and have public results to show! | subprocesscross section (pb) $jj \rightarrow b\bar{b}jj$ 58531 $jj \rightarrow b\bar{b}j$ 33411 $bj \rightarrow bjj + \bar{b}j \rightarrow \bar{b}jj$ 22147 $bj \rightarrow bjj + \bar{b}j \rightarrow \bar{b}jj$ 16282 $bj \rightarrow bj + \bar{b}j \rightarrow \bar{b}j$ 12135 $jj \rightarrow b\bar{b}$ 1672 $cj \rightarrow cb\bar{b}j + \bar{c}j \rightarrow \bar{c}b\bar{b}j$ 1602 $bj \rightarrow bb\bar{b}j + b\bar{b}j \rightarrow \bar{b}b\bar{b}j$ 997 $jj \rightarrow bb\bar{c}\bar{c}$ 776 $cj \rightarrow cb\bar{b} + \bar{c}j \rightarrow \bar{c}b\bar{b}$ 681 $bj \rightarrow bb\bar{b} + \bar{b}j \rightarrow \bar{b}b\bar{b}$ 387 $jj \rightarrow bb\bar{b}b$ 387 $b\bar{c} \rightarrow b\bar{c}j + \bar{b}c \rightarrow \bar{b}cj$ 206 $bc \rightarrow bcj + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}j$ 194 $b\bar{c} \rightarrow b\bar{c}jj + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}jj$ 136 $bc \rightarrow bcj + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}j$ 136 $bc \rightarrow bc + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}$ 122 $b\bar{b} \rightarrow b\bar{b}j$ 62 $bb \rightarrow bbj + \bar{b}\bar{b} \rightarrow \bar{b}\bar{b}j$ 53 $b\bar{b} \rightarrow b\bar{b}j$ 39 $b\bar{b} \rightarrow b\bar{b}$ 37 $bb \rightarrow bb + \bar{b}\bar{b} \rightarrow \bar{b}\bar{b} \rightarrow \bar{b}\bar{b}$ 37 | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------| | $jj \rightarrow b\bar{b}j$ $bj \rightarrow bjj + \bar{b}j \rightarrow \bar{b}jj$ $bj \rightarrow bjjj + \bar{b}j \rightarrow \bar{b}jj$ $bj \rightarrow bjjj + \bar{b}j \rightarrow \bar{b}jj$ $bj \rightarrow bj + \bar{b}j \rightarrow \bar{b}j$ $jj \rightarrow b\bar{b}$ $cj \rightarrow cb\bar{b}j + \bar{c}j \rightarrow \bar{c}b\bar{b}j$ $bj \rightarrow bb\bar{b}j + \bar{b}j \rightarrow \bar{b}b\bar{b}j$ $jj \rightarrow b\bar{b}c\bar{c}$ $cj \rightarrow cb\bar{b} + \bar{c}j \rightarrow \bar{c}b\bar{b}$ $bj \rightarrow bb\bar{b} + \bar{b}j \rightarrow \bar{b}b\bar{b}$ $jj \rightarrow b\bar{b}b\bar{b}$ $b\bar{c} \rightarrow b\bar{c}j + \bar{b}c \rightarrow \bar{b}cj$ $b\bar{c} \rightarrow b\bar{c}j + \bar{b}c \rightarrow \bar{b}cj$ $b\bar{c} \rightarrow b\bar{c}j + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}j$ $bc \rightarrow bcj + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}j$ $bc \rightarrow bc + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}j$ $bc \rightarrow bc + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}$ $b\bar{b} \rightarrow b\bar{b}j$ $bb \rightarrow bbj + \bar{b}\bar{b} \rightarrow \bar{b}\bar{b}j$ $b\bar{b} \rightarrow b\bar{b}j$ 33411 22147 22147 22147 22147 6282 621 621 621 621 621 622 623 623 624 624 625 625 626 626 627 627 627 627 627 628 628 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 629 | subprocess | cross section (pb) | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $jj \rightarrow b\bar{b}jj$ | 58531 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $jj \to b\bar{b}j$ | 33411 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $bj \rightarrow bjj + \bar{b}j \rightarrow \bar{b}jj$ | 22147 | | $\begin{array}{c} jj \rightarrow b\bar{b} \\ cj \rightarrow cb\bar{b}j + \bar{c}j \rightarrow \bar{c}b\bar{b}j \\ bj \rightarrow bb\bar{b}j + \bar{b}j \rightarrow \bar{b}b\bar{b}j \\ jj \rightarrow b\bar{b}c\bar{c} \\ cj \rightarrow cb\bar{b} + \bar{c}j \rightarrow \bar{c}b\bar{b} \\ bj \rightarrow bb\bar{b} + \bar{b}j \rightarrow \bar{b}b\bar{b} \\ bj \rightarrow bb\bar{b} + \bar{b}j \rightarrow \bar{b}b\bar{b} \\ bj \rightarrow bb\bar{b} + \bar{b}j \rightarrow \bar{b}b\bar{b} \\ b\bar{c} \rightarrow b\bar{c}j + \bar{b}c \rightarrow \bar{b}cj \\ bc \rightarrow bcj + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}j \\ bc \rightarrow bcjj + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}j \\ bc \rightarrow bcj + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}j \\ bc \rightarrow bc + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}j \\ bc \rightarrow bc + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}j \\ bc \rightarrow bc + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c} \\ b\bar{b} \rightarrow b\bar{b}j \\ bb \rightarrow bbj + \bar{b}\bar{b} \rightarrow \bar{b}\bar{b}j \\ b\bar{b} \rightarrow b\bar{b}j \\ bb \rightarrow bbjj + \bar{b}\bar{b} \rightarrow \bar{b}\bar{b}jj \\ b\bar{b} \rightarrow b\bar{b}j \\ 39 \\ b\bar{b} \rightarrow b\bar{b} \end{array}$ | $bj \rightarrow bjjj + \bar{b}j \rightarrow \bar{b}jjj$ | 16282 | | $cj \rightarrow cb\bar{b}j + \bar{c}j \rightarrow \bar{c}b\bar{b}j$ $bj \rightarrow bb\bar{b}j + \bar{b}j \rightarrow \bar{b}b\bar{b}j$ $jj \rightarrow b\bar{b}c\bar{c}$ $cj \rightarrow cb\bar{b} + \bar{c}j \rightarrow \bar{c}b\bar{b}$ $bj \rightarrow bb\bar{b} + \bar{b}j \rightarrow \bar{b}b\bar{b}$ 387 $jj \rightarrow b\bar{b}b\bar{b}$ $b\bar{c} \rightarrow b\bar{c}j + \bar{b}c \rightarrow \bar{b}cj$ $bc \rightarrow bcj + \bar{b}\bar{c} \rightarrow \bar{b}cj$ $bc \rightarrow bc + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}j$ $bc \rightarrow bc + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}$ $b\bar{b} \rightarrow b\bar{b}j$ $bb \rightarrow bbj + \bar{b}\bar{b} \rightarrow \bar{b}\bar{b}j$ 39 | $bj \rightarrow bj + \bar{b}j \rightarrow \bar{b}j$ | 12135 | | $\begin{array}{c} bj \rightarrow bb\bar{b}j + \bar{b}j \rightarrow \bar{b}b\bar{b}j \\ jj \rightarrow b\bar{b}c\bar{c} \\ cj \rightarrow cb\bar{b} + \bar{c}j \rightarrow \bar{c}b\bar{b} \\ bj \rightarrow bb\bar{b} + \bar{b}j \rightarrow \bar{b}b\bar{b} \\ jj \rightarrow b\bar{b}b\bar{b} \\ b\bar{c} \rightarrow b\bar{c}j + \bar{b}c \rightarrow \bar{b}cj \\ bc \rightarrow bcj + \bar{b}c \rightarrow \bar{b}cj \\ bc \rightarrow bcjj + \bar{b}c \rightarrow \bar{b}cjj \\ bc \rightarrow bcj + \bar{b}c \rightarrow \bar{b}cjj \\ bc \rightarrow bcj + \bar{b}c \rightarrow \bar{b}cjj \\ bc \rightarrow bcj + \bar{b}c \rightarrow \bar{b}cjj \\ bc \rightarrow bc + \bar{b}c \rightarrow \bar{b}c \\ b\bar{c} \rightarrow b\bar{c} + \bar{b}c \rightarrow \bar{b}c \\ b\bar{b} \rightarrow b\bar{b}j \\ bb \rightarrow bbj + \bar{b}b \rightarrow \bar{b}bj \\ b\bar{b} \rightarrow b\bar{b}j \\ b\bar{b} \rightarrow b\bar{b}j \\ \end{array}$ | $jj \to b\bar{b}$ | 1672 | | $jj \rightarrow b\bar{b}c\bar{c}$ $cj \rightarrow cb\bar{b} + \bar{c}j \rightarrow \bar{c}b\bar{b}$ $bj \rightarrow bb\bar{b} + \bar{b}j \rightarrow \bar{b}b\bar{b}$ $jj \rightarrow b\bar{b}b\bar{b}$ $b\bar{c} \rightarrow b\bar{c}j + \bar{b}c \rightarrow \bar{b}cj$ $bc \rightarrow bcj + \bar{b}c \rightarrow \bar{b}cj$ $bc \rightarrow bcjj + \bar{b}c \rightarrow \bar{b}cjj$ $bc \rightarrow bcjj + \bar{b}c \rightarrow \bar{b}cjj$ $bc \rightarrow bcjj + \bar{b}c \rightarrow \bar{b}cjj$ $bc \rightarrow bc + \bar{b}c \rightarrow \bar{b}c$ $b\bar{c} \rightarrow b\bar{c} + \bar{b}c \rightarrow \bar{b}c$ $b\bar{c} \rightarrow b\bar{c} + \bar{b}c \rightarrow \bar{b}c$ $b\bar{b} \rightarrow b\bar{b}j$ $bb \rightarrow bbj + \bar{b}b \rightarrow \bar{b}bj$ $bb \rightarrow bbjj + \bar{b}b \rightarrow \bar{b}bjj$ $bb \rightarrow bbjj + \bar{b}b \rightarrow \bar{b}bjj$ 39 | $cj \to cb\bar{b}j + \bar{c}j \to \bar{c}b\bar{b}j$ | 1602 | | $cj \rightarrow cb\bar{b} + \bar{c}j \rightarrow \bar{c}b\bar{b}$ $bj \rightarrow bb\bar{b} + \bar{b}j \rightarrow \bar{b}b\bar{b}$ $jj \rightarrow b\bar{b}b\bar{b}$ $b\bar{c} \rightarrow b\bar{c}j + \bar{b}c \rightarrow \bar{b}cj$ $bc \rightarrow bcj + \bar{b}\bar{c} \rightarrow \bar{b}cj$ $b\bar{c} \rightarrow b\bar{c}jj + \bar{b}c \rightarrow \bar{b}cjj$ $bc \rightarrow bcjj + \bar{b}\bar{c} \rightarrow \bar{b}cjj$ $bc \rightarrow bcjj + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}jj$ $bc \rightarrow bc + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}$ $b\bar{c} \rightarrow b\bar{c} + \bar{b}c \rightarrow \bar{b}c$ $b\bar{b} \rightarrow b\bar{b}j$ $bb \rightarrow bbj + \bar{b}\bar{b} \rightarrow \bar{b}\bar{b}j$ $bb \rightarrow bbj + \bar{b}\bar{b} \rightarrow \bar{b}\bar{b}jj$ $bb \rightarrow bbj + \bar{b}\bar{b} \rightarrow \bar{b}\bar{b}jj$ 39 | $bj \to bb\bar{b}j + \bar{b}j \to \bar{b}b\bar{b}j$ | 997 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $jj \to b\bar{b}c\bar{c}$ | 776 | | $jj \rightarrow b\bar{b}b\bar{b}$ $b\bar{c} \rightarrow b\bar{c}j + \bar{b}c \rightarrow \bar{b}cj$ $bc \rightarrow bcj + \bar{b}\bar{c} \rightarrow b\bar{c}j$ $b\bar{c} \rightarrow b\bar{c}jj + \bar{b}c \rightarrow \bar{b}cjj$ $bc \rightarrow bcjj + \bar{b}\bar{c} \rightarrow \bar{b}cjj$ $bc \rightarrow bcjj + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}jj$ $bc \rightarrow bc + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}$ $b\bar{c} \rightarrow b\bar{c} + \bar{b}c \rightarrow \bar{b}c$ $b\bar{b} \rightarrow b\bar{b}j$ $bb \rightarrow bbj + \bar{b}\bar{b} \rightarrow \bar{b}\bar{b}j$ $bb \rightarrow bbjj + \bar{b}\bar{b} \rightarrow \bar{b}\bar{b}jj$ $bb \rightarrow bbjj + \bar{b}\bar{b} \rightarrow \bar{b}\bar{b}jj$ 39 $b\bar{b} \rightarrow b\bar{b}$ | $cj \to cb\bar{b} + \bar{c}j \to \bar{c}b\bar{b}$ | 681 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $bj \to bb\bar{b} + \bar{b}j \to \bar{b}b\bar{b}$ | 387 | | $bc \rightarrow bcj + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}j$ $b\bar{c} \rightarrow b\bar{c}jj + \bar{b}c \rightarrow \bar{b}cjj$ $bc \rightarrow bcjj + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}jj$ $bc \rightarrow bcjj + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}jj$ $bc \rightarrow bc + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}$ $b\bar{c} \rightarrow b\bar{c} + \bar{b}c \rightarrow \bar{b}c$ $b\bar{b} \rightarrow b\bar{b}j$ $bb \rightarrow bbj + \bar{b}\bar{b} \rightarrow \bar{b}\bar{b}j$ $bb \rightarrow bbjj + \bar{b}\bar{b} \rightarrow \bar{b}\bar{b}jj$ $bb \rightarrow bbjj + \bar{b}\bar{b} \rightarrow \bar{b}\bar{b}jj$ $bb \rightarrow bbjj + \bar{b}\bar{b} \rightarrow \bar{b}\bar{b}jj$ 39 $b\bar{b} \rightarrow b\bar{b}$ | $jj \to b\bar{b}b\bar{b}$ | 376 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $b\bar{c} \to b\bar{c}j + \bar{b}c \to \bar{b}cj$ | 206 | | $bc \rightarrow bcjj + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}jj$ $bc \rightarrow bc + \bar{b}\bar{c} \rightarrow \bar{b}\bar{c}$ $b\bar{c} \rightarrow b\bar{c} + \bar{b}c \rightarrow \bar{b}c$ $b\bar{b} \rightarrow b\bar{b}j$ $bb \rightarrow bbj + \bar{b}b \rightarrow \bar{b}bj$ $bb \rightarrow bbjj$ b\bar{b}j$ $b\bar{b} \rightarrow b\bar{b}j$ | $bc \to bcj + \bar{b}\bar{c} \to \bar{b}\bar{c}j$ | 194 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $b\bar{c} \to b\bar{c}jj + \bar{b}c \to \bar{b}cjj$ | 143 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $bc \to bcjj + \bar{b}\bar{c} \to \bar{b}\bar{c}jj$ | 136 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $bc \to bc + \bar{b}\bar{c} \to \bar{b}\bar{c}$ | 122 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $b\bar{c} \to b\bar{c} + \bar{b}c \to \bar{b}c$ | 121 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $b\bar{b} \to b\bar{b}j$ | 62 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $bb \to bbj + \bar{b}\bar{b} \to \bar{b}\bar{b}j$ | 53 | | $b\bar{b} \to b\bar{b}$ 37 | $b\bar{b} \to b\bar{b}jj$ | 44 | | | $bb \to bbjj + \bar{b}\bar{b} \to \bar{b}\bar{b}jj$ | 39 | | $bb \to bb + \bar{b}\bar{b} \to \bar{b}\bar{b}$ 30 | $b\bar{b} \to b\bar{b}$ | 37 | | | $bb \to bb + \bar{b}\bar{b} \to \bar{b}\bar{b}$ | 30 | ### MSSM Models - Benchmark models defined within Higgs cross section working group (https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWGMSSMNeutral). - Most of these have very low BR(H/A →bb) < 50%. - We were wondering why and have asked Tom and JoAnne for advice. - From their findings (thanks!), most of the allowed A/H decays to SUSY are in charginos and neutralinos, but scenarios with $BR(H/A \rightarrow bb) < 50\%$ remain very unusual. - Time to add more representative SUSY scenarios? - An interesting question remains how much BR(bb)/BR(tt) varies from model to model. This determines the relative sensitivity of the TT and bb searches. ### Plans for the future - Observe a clear H → bb signal - But need to reduce uncertainties, including theory: - SM measurement of W+bb background, in particular challenging region with g → bb splitting? - Look in early data for resonances decaying into two or 4 b-jets - We are now able to access phase space regions with very close-by b-jets: this will extend our reach in many models! - In 13 TeV data, triggering on bH will be more challenging, but we plan continuing looking into this channel. # Backup ## Cross-check (1): VZ to Vbb - Train MVA to extract diboson signal - Clear signal found, all channels well compatible - $\sim 1.5\sigma$ low ## Comparison to CMS | ATLAS | | CMS | | |---------|---------|---------|---------| | σ [exp] | σ [obs] | σ [exp] | σ [obs] | | 2.6 | 1.4 | 2.1* | 2.1 | * neglects pT dependence of gg to ZH contribution, 10% increase in sensitivity? - New ATLAS analysis has slightly better sensitivity, but observed signal lower - Combining ATLAS and CMS won't get us to evidence: will need to wait for some good Run-II data - In the meantime, hope the coupling fits will profit from increased precision of H to bb signal strength