

New SUSY and Jet Analyses at ATLAS Maximilian Swiatlowski

- SLAC has been involved in many SUSY and jet analyses in Run I
- Just a selection of the most recent, and ongoing, results today:
 - 1 Quark/gluon discrimination
 - 2 Measuring, and using, jet charge
 - **3** Measuring color flow in $t\bar{t}$
 - 4 Search for direct stop production in the 1-lepton channel
 - **5** Search for gluino production with hadronic RPV decays

Quark/Gluon Discrimination hep-ex:1405.6583

M. Swiatlowski, A. Schwartzman

History and Motivation

- Quark-initiated and gluon initiated jets have long been known to have different properties
 - Well measured at PETRA, SLAC, LEP, others
- Fantastic theoretical playground: many different variables and approaches are possible
 - ATLAS uses some of the simplest variables- *n*_{trk} and track width
- Many potential applications in searches for new physics and standard model measurements
 - Separate (resolved) hadronically decaying bosons from gluon dominated backgrounds (diboson searches, Higgs, etc.), improve discrimination in dijet searches, monojet characterization, many more

Data/MC (Dis)Agreement

Jets

1000 see Data 🛏 Data Herwig++ Dijets Herwig++ Dijets 10000 N Pythia Dijets 30000 N Pythia Dijets ATLAS ATLAS L dt = 4.7 fb⁻¹. √s = 7 TeV L dt = 4.7 fb⁻¹. √s = 7 TeV 8000 25000 anti-k, R=0.4, |n| < 0.8 anti-k, R=0.4, |n| < 0.8 20000 260 GeV<p_<310 GeV 6000 60 GeV<p_<80 GeV 15000 4000 10000 2000 5000 0 1.5 1.0 0.5 Data / MC 1.5 0.1 / MC 30 30 35 Λ 15 15 n n

- Significant disagreement between data and MC!
- Pythia performs very poorly, but Herwig++ is slightly better

SLAC

Data Driven Templates

-SLAC

- Need data-driven technique to extract quark and gluon shapes
- Significant disagreement in n_{trk} observed
- Track Width has better agreement, though not good at high p_T

• Define L = q/(q+g) separately in data and MC

Likelihood

• Shapes are similar, but performance is much worse in data

• Still enough to be useful: tagger defined at several operating points

- Results are consistent across *p_T*: purified samples measurement generally agree with data, but MC significantly overestimates performance
- Unexpected result: unfolded measurements will be critical for tuning

Jet Charge ATLAS-CONF-2013-086

B. Nachman, A. Schwartzman

- For a jet j with transverse momentum (p_T)_j, let Tr be the set of ghost associated tracks.
- Each track in Tr has momentum p_T^i and charge (determined from the curvature) q_i .

For a weighting factor $\kappa \in \mathbb{R}$, define the jet charge of *j*:

$$Q_j = \frac{1}{(\rho_{\mathcal{T}_j})^{\kappa}} \sum_{i \in \mathrm{Tr}} q_i \times (p_{\mathcal{T}}^i)^{\kappa}, \qquad (1)$$

• This is not the only way charge has been defined in the past - there are variants of the denominator & the track momentum.

Jet Charge Tag and Probe in $t\bar{t}$

- Test the charge tagging capabilities of jet charge in semi-leptonic $t\bar{t}$
 - Charge of the lepton determines the charge of the W o qq'
- Ongoing work to use jet charge for tagging the properties of V o qq'

M. Swiatlowski

Jet Charge vs Energy Scale

- The average jet charge increases because the valence up quark dominates the PDF at high momentum fraction
- Potential differences between data and MC are under investigation as we unfold the distribution
- One can further remove the impact of PDFs and extract the energy dependance of the average jet charge per flavour.
 - Compare to <u>NLO calculations</u> of this scale violation

Color Flow and Jet Pull ATLAS-CONF-2014-048

B. Nachman, M. Swiatlowski, A. Schwartzman

Overview

- Jet pull is sensitive to the **superstructure** of the event: the color connection *between jets*
 - Combines substructure information of one jet, with the full topology of the event
- Can we measure the orientation of the energy in one jet relative to another?
 - D0 had a measurement in 2011, but ATLAS (and CMS) have many more events, and potentially more sensitive detectors
- Not just an interesting measurement of the Standard Model:
 - Can be used for searches $(H
 ightarrow b ar{b})$
 - Can measure color charge of any new hadronic measurement

W-jets vs. b-jets

SLAC

- Large difference between the two topologies, and **very large** shift from truth to reconstructed
- A large caveat: kinematics and topology are very important

Data/MC Agreement

- Very good data/MC agreement observed in both calorimeter and track measurement
 - Powheg+Pythia (shown here) and MC@NLO+Jimmy both model the color flow very well

Unfolding

- Working now on unfolding the pull distribution
 - Example unfolding matrix shown here: substantial off-diagonal terms mean that understanding **pull resolution** is critical for the measurement
- Will compare nominal color flow to "flipped" scenario (where W acts as an octet)
 - Aim to **conclusively** demonstrate that data is consistent with SM color flow

L dt = 20.3 fb⁻¹ \sqrt{s} = 8 TeV Powheg+Pythia 0.6 -0.5 0.6 0.4 0.5 0.263 0 546 0.4 0.3 0.3 0.2 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 reco $\theta(j_1^W, j_2^W) / \pi$ (all) |v_| > 0.004

ATLAS Work in Progress

-SLAC

Direct Stop in the 1-lepton Channel hep-ex:1407.0583

T. Eifert, P. Grenier, B. Nachman, Q. Zeng

Motivation and Overview

- Motivation for stops is very clear: scalar top partners regulate the leading contribution to the quantum corrections to the Higgs mass
- 1-lepton channel provides best balance between clean signal and branching fraction
- Clever variable choices and experimental optimization are key to sensitivity
- See also the very complete recent seminar <u>from Ben</u>!

Variable Development

- Main background is dileptonic top with a missed lepton
- Several different versions of m_{T2} variable are constructed to target these backgrounds: lost leptons and hadronic τ decays

SLAC

High mass stops–

Boosted Top Identification

- $m_{\tilde{t}} \gtrsim 700 \text{ GeV}- \text{ start to merge}$ and form 'top jets'
 - Can reconstruct this using anti-k_t R=1.0 trimmed jets
- Most backgrounds are di-leptonic top: should not contain any hadronic tops
- Significant discrimination is possible for high mass stops!

M. Swiatlowski

Limits

- Dozens of interpretations are available
 – showing only one here!
- Significant regions of phase space have been ruled out
 - *m*_{T2} and **top tagging** help at high *m*_t
 - *E_T^{miss}* triggers and shape fit help at low *m_t*
- A very complete result, but room for stops remain
 - Compressed scenarios along the diagonal are not completely excluded
 - "Natural" SUSY may have heavier stops

All-Hadronic RPV Gluino Work in Progress

M. Swiatlowski, A. Schwartzman

High Multiplicity RPV Signatures

• We are considering \tilde{g} pair production, decaying with $\tilde{g} \to \tilde{q}q$, $\tilde{q} \to \tilde{\chi}_0 q$, $\tilde{\chi}_0 \to 3q$

- A natural, UDD RPV model: final state characterized by many partons
 - Between 10 (light quarks) and 22 (tops) partons in final state
 - In the all-hadronic channel, no E_T^{miss} : need other discrimination handles

• Extremely difficult background estimation:

high-mass extremes of QCD are difficult to model

• In the absence of light gluinos, can RPV be hiding SUSY?

Analysis Strategy: Accidental Substructure Cohen, Izaguirre, Lisanti, Lou arXiv:1212.1456

Signal: = 1 TeV, = 100 GeV

- Even without boost, **high multiplicity** events can still display substructure inside of large-*R* jets
 - \rightarrow Large-R jets from signal will have **mass**, even though we do not reconstruct \tilde{g} or $\tilde{\chi}_0$
- Use total jet mass (M_J^{Σ}) and $\Delta\eta$ between leading jets

- Broad range of signal points is very sensitive to M^Σ₁ variable
 - Shows significantly better discrimination than H_T or others
- Herwig++ used here as a stand-in: actual backgrounds need to be estimated from data

high multiplicity Very good agreement seen!

 Expect to set limits at $m_{\tilde{g}} \gtrsim 1000 \text{ GeV}$

 Extrapolate to several control and validation regions with

- Measure jet mass in low-multiplicity QCD control region
- Use jet substructure templates to estimate backgrounds Wacker et al., 1402.0516
- **Background Estimation**

Conclusions

- SLAC has a broad involvement in SUSY searches and Standard Model measurements which use state-of-the-art jet substructure techniques:
 - 1 Published the first quark/gluon tagger at a hadron collider
 - 2 Performing the first unfolded measurement of jet charge
 - **8** Measuring Standard Model **color flow with jet pull**
 - **4** Set strong limits on stop production with m_{T2} and boosted jets
 - 6 Analyzing all-hadronic, no MET, SUSY signals and setting new, strong limits
- Many places to go with this experience at 13 TeV: where to?

Thank You For Your Attention!

Backup

Defining Quark/Gluon Initiated Jets

- Need to use a consistent definition across generators for defining a quark/gluon initiated jet
- We use: "a jet is defined by the flavor of the highest energy parton inside the jet"
 - This labelling is studied in Madgraph to determine how often it matches the Matrix Element: 95 99% of the time

Extracting Templates

- Goal: to better understand quark/gluon shapes in data, extrapolate **data** to 100% purity with fractions from MC
- Ideally, solve for q/g on bin-per-bin basis from:
 - $h^{\gamma+j} = P_Q^{\gamma+j}q + P_G^{\gamma+j}g$ $h^{dijet} = P_Q^{dijet}q + P_G^{dijet}g$ $P_Q = \text{percentage quark}$ h = histogram value q/g = templates (-+i+i+)/(-i+i+1) = -i+i+1

 $(\gamma + jet)/(dijet) = different sample$

- But, need to account for *b* and *c* fractions (for now, taken from MC): $\begin{aligned} h^{\gamma+jet} &= P_Q^{\gamma+jet} q + P_G^{\gamma+jet} g + P_B^{\gamma+jet} b + P_C^{\gamma+jet} c & From Data \\ h^{dijet} &= P_Q^{dijet} q + P_G^{dijet} g + P_B^{dijet} b + P_C^{dijet} c & Solving for This \end{aligned}$
- Then, compare pure data shapes to pure MC shapes (used for training tagger)

Template Methods

• Significant data/MC disagreement for the input variables required the use of a data-driven template technique

- Take percentages from MC, measure $\gamma+{\rm jet}$ and dijet in data: solve for quark and gluon distributions in data

M. Swiatlowski

Templates with MC

- Extraction technique shows very good closure in MC!
- Differences will later be taken as a systematic

- Are the data templates correct? How can we test these derived shapes?
- Define **topological/kinematic regions** where jets are more likely to be quark-initiated or gluon-initiated
 - Trijet sample, with $\zeta = |\eta_3| |\eta_1| |\eta_2| < 0$ is gluon-like
 - γ +2jet sample, with $\xi = \eta_{jet1} imes \eta_{\gamma} + \Delta R(jet2, \gamma) < 1$ is quark-like
 - See arXiv:1104.1175 for more details
- These regions have purity of \sim 90%– good regions for validation of templates!
 - Not enough statistics to derive 2D templates, but enough to be useful for validation

Pure Shapes: Track Width

- Shapes from topologically purified samples generally agree with extracted templates to 1 σ
- Independent sample confirms difference between data and MC

Pure Shapes: *n*_{trk}

- Shapes from topologically purified samples generally agree with extracted templates to 1 σ
 - Shapes also agree for Track Width
- Independent sample confirms difference between data and MC