Higgs Physics, Dark Forces and the LHC

Ian Lewis

Hooman Davoudiasl, Hye-Sung Lee, IL, Bill Marciano, PRD88 (2013) 015022

ATLAS Jamboree SLAC National Accelerator Laboratory November 12, 2014

Motivation

- Observations indicate that a significant portion of the matter density of the Universe is dark matter (DM).
- May expect DM to be part of a larger sector.
- Dark sector may contain possible portal to Standard Model.
- In particular, this portal may be light.
- Been proposed as an explanation of positron excess observed by PAMELA/FERMI/AMS-02
- Independent DM, light new physics has also been proposed to eplain the $(g-2)_{\mu}$ excess Pospelov, arXiv:0811.1030. Although, in some tension now...

Kinetic Mixing

Vector portal via kinetic mixing Holdom Phys.Lett. 166B:

$$\mathcal{L}_{kin} = -\frac{1}{4} \left(B^{\mu\nu} B_{\mu\nu} - \frac{2\epsilon}{\cos \theta_W} Z_d^{\mu\nu} B_{\mu\nu} + Z_d^{\mu\nu} Z_{d,\mu\nu} \right)$$

- \bullet \mathbb{Z}_d is U(1) gauge boson of dark sector, B is SM hypercharge.
- After diagonalization into canonical normalization, Z_d couples to SM E&M current:

$$\mathcal{L} \ni -e \, \varepsilon \frac{\mathbf{Z}_d^{\mu}}{J_{\mu}^{em}}$$

- Many searches for light gauge boson in low energy fixed target, beam dump, e⁺e⁻ experiments, and rare meson decays.
 - APEX, HPS, DarkLight at JLab
 - MAMI in Mainz.
 - Past experiments at CERN, KLOE, BaBar,...

Kinetic Mixing

Vector portal via kinetic mixing Holdom Phys.Lett. 166B:

$$\mathcal{L}_{kin} = -\frac{1}{4} \left(B^{\mu\nu} B_{\mu\nu} - \frac{2\epsilon}{\cos \theta_W} Z_d^{\mu\nu} B_{\mu\nu} + Z_d^{\mu\nu} Z_{d,\mu\nu} \right)$$

- \bullet \mathbb{Z}_d is U(1) gauge boson of dark sector, B is SM hypercharge.
- After diagonalization into canonical normalization, Z_d couples to SM E&M current:

$$\mathcal{L} \ni -e \, \varepsilon \frac{\mathbf{Z}_d^{\mu}}{J_{\mu}^{em}}$$

- Many searches for light gauge boson in low energy fixed target, beam dump, e⁺e⁻ experiments, and rare meson decays.
 - APEX, HPS, DarkLight at JLab
 - MAMI in Mainz.
 - Past experiments at CERN, KLOE, BaBar,...

Low Energy Searches

• Robust program looking for light vector bosons weakly coupled to SM:

$$e^{-}$$
 Z
 Z
 Z
 Z
 Z
 Z

Beam dump and fixed target experiments
 Bjorken, Essig, Schuster, Toro PRD80 075018; Andreas, Niebuhr, Ringwald PRD86 095019
 A1 Coll. PRL106 251802; APEX Coll. PRL107 191804

- Low energy e^+e^- eperiments. Reece, Wang JHEP 0907 051; Essig, Schuster, Toro PRD80 015003 Batell, Pospelov, Ritz PRD79 115008, PRD80 095024
 - Meson decays Fayet, hep-ph/0702176.

Current Constraints Low Energy Searches

Davoudisl, IML PRD90 (2014) 033004

Merkel et al., PRL 112 (2014) 221802

- PHENIX and MAMI results exclude much of $(g-2)_{\mu}$ anomaly explanation.
- For LHC searches will focus on M_{Zd} ≥ 5 GeV, complementary to previous low energy searches.

Couplings to Higgs

Imagine kinetic mixing term originates from integrating out heavy fermions.

• If fermions have Higgs interactions, can induce the effective operators $(X = \gamma, Z, Z_d)$:

$$O_{B,X} = c_{B,x} H X_{\mu\nu} Z_d^{\mu\nu}, \quad \tilde{O}_{B,X} = \tilde{c}_{B,X} H \tilde{X}_{\mu\nu} Z_d^{\mu\nu}$$

Mass Mixing

• Can also have direct mass mixing between Z and Z_d Davoudiasl, Lee, Marciano PRD85 115019:

$$O_{A,X} = c_{A,X} H X_{\mu} Z_d^{\mu}$$

- Here $X = Z, Z_d$
- For example, consider a two Higgs doublet model with extra SM singlet:

	$SU(2)_L$	$U(1)_{Y}$	$U(1)_d$
H_1	2	1/2	0
H_2	2	1/2	1
S_d	1	0	1

• The vev of H_2 induces a mass mixing between Z and Z_d :

$$\mathcal{L}_{Mass} = \frac{1}{2} M_{Z^0}^2 Z^0 Z^0 - \Delta^2 Z^0 Z_d^0 + \frac{1}{2} M_{Z_d^0}^2 Z_d^0 Z_d^0$$

$$\Delta^2 = \frac{1}{2} g_d g_Z v_2^2$$

• $\langle H_{1,2} \rangle = v_{1,2}$

Mass Mixing

• This mass mixing induces off-diagonal Higgs couplings:

$$\mathcal{L}_{scalar} = \frac{1}{2}g_Z^2 v H\left(\frac{1}{2}ZZ + \Theta Z Z_d + \frac{1}{2}\Theta^2 Z_d Z_d\right)$$

• Assuming $|\Delta^2| \ll M_Z M_{Z_d}$ have:

$$\Theta \simeq \frac{\Delta^2}{M_Z^2} \approx \varepsilon_Z \equiv \frac{M_{Z_d}}{M_Z} \delta$$

• $\delta = \sin \beta \sin \beta_d \quad \tan \beta = v_2/v_1 \quad \tan \beta_d = v_2/v_d$

Mass Mixing

• This mass mixing induces off-diagonal Higgs couplings:

$$\mathcal{L}_{scalar} = \frac{1}{2}g_Z^2 v H\left(\frac{1}{2}ZZ + \Theta Z Z_d + \frac{1}{2}\Theta^2 Z_d Z_d\right)$$

• Assuming $|\Delta^2| \ll M_Z M_{Z_d}$ have:

$$\Theta \simeq \frac{\Delta^2}{M_Z^2} \approx \varepsilon_Z \equiv \frac{M_{Z_d}}{M_Z} \delta$$

- $\delta = \sin \beta \sin \beta_d \quad \tan \beta = v_2/v_1 \quad \tan \beta_d = v_2/v_d$
- From this mixing the Z_d inherits a component of the SM Goldstone boson.
- For $M_{Z_d} \ll E_{Z_d}$, then Z_d in Higgs decays is longitudinally enhanced:

$$Z_d^{\mu} \rightarrow \partial^{\mu} \phi / M_{Z_d} + O(M_{Z_d} / E_{Z_d})$$

- Hence $\Theta Z_J^{\mu} \to \partial^{\mu} \phi / M_Z \delta$:
 - $H \to ZZ_d$ no longer suppressed by M_{Z_d} .

Higgs Branching Ratios

 Assuming the kinetic mixing comes from heavy fermions with m_F ∼ few × 100 GeV, operator coefficients are

$$|c_{B,X}| \sim |\tilde{c}_{B,X}| \sim \frac{g_w g_d y_F}{16\pi^2 M_Z}$$

- g_w generic weak coupling.
- *y_F* fermion Yukawa coupling.
- For $y_F \sim 1$ and $g_d \approx e$

$$0.1 \mathrm{Br}(H \to \gamma \gamma) \approx \mathrm{Br}(H \to \gamma Z_d) \approx 2 \mathrm{Br}(H \to Z_d Z_d) \approx 10 \mathrm{Br}(H \to Z Z_d)$$

Higgs Branching Ratios

 Assuming the kinetic mixing comes from heavy fermions with m_F ∼ few × 100 GeV, operator coefficients are

$$|c_{B,X}| \sim |\tilde{c}_{B,X}| \sim \frac{g_w g_d y_F}{16\pi^2 M_Z}$$

- g_w generic weak coupling.
- y_F fermion Yukawa coupling.
- For $y_F \sim 1$ and $g_d \approx e$

$$0.1 \mathrm{Br}(H \to \gamma \gamma) \approx \mathrm{Br}(H \to \gamma Z_d) \approx 2 \mathrm{Br}(H \to Z_d Z_d) \approx 10 \mathrm{Br}(H \to Z Z_d)$$

Mass mixing:

$$Br(H \to ZZ_d) \approx 16\delta^2$$
 $Br(H \to Z_dZ_d) \approx 80\delta^4$

- $H \to Z_d Z_d$ is doubly suppressed by δ^4
- Rare B and K decays suggest $\delta^2\lesssim 10^{-5}$ for $M_{Z_d}\ll 5~{\rm GeV}$ Davoudiasl, Lee, Marciano PRD85 115019
- Low energy parity violation $\delta^2 < \text{few} \times 10^{-4}$ for all M_{Z_d} by Davoudiasl, Lee, Marciano PRD85 115019.
- So Br $(H \to ZZ_d)$ can be comparable to Br $(H \to \gamma \gamma) \simeq 2.3 \times 10^{-3}$

Higgs Decays

• Kinetic mixing motivated operators $(X_{\mu\nu}Z_d^{\mu\nu}, \tilde{X}_{\mu\nu}Z_d^{\mu\nu})$

$$H \rightarrow ZZ_d$$
, γZ_d , Z_dZ_d

• Mass mixing motivated operators $(X_{\mu}Z_{d}^{\mu})$ do not have γ decays due to gauge invariance:

$$H \rightarrow ZZ_d$$
, Z_dZ_d

- $H \rightarrow Z_d Z_d$ doubly suppressed by mixing angle.
- Will focus on $H \to ZZ_d$ signals.

Dark Z decays

- If kinetic mixing is dominant:
 - *Z*_d couples to SM E&M current.
 - Br($Z_d \to 2\ell$) > Br($Z \to 2\ell$), since no neutrino coupling.
 - For $M_{Z_d} = 5 10$ GeV, can expect $Br(Z_d \rightarrow 2\ell) \simeq 0.3$
- If mass mixing dominates:
 - \bullet Z_d also couples to SM neutral current.
 - Br($Z_d \rightarrow 2\ell$) smaller than kinetic mixing case.
- Focus on $H \to ZZ_d \to 4\ell$

Parameterization

Mass mixing parameterization:

$$O_{A,Z} = c_{A,Z} H Z_{\mu} Z_d^{\mu}$$

- Motivated by two Higgs doublet example: $c_{A,Z} = \frac{g}{\cos \theta_{W}} \varepsilon_Z M_Z$
- $\varepsilon_Z = M_{Z_d}/M_Z \, \delta$, with δ a free parameter.
- Kinetic mixing motivated:

$$O_{B,Z} = c_{B,Z} H Z_{\mu\nu} Z_d^{\mu\nu}, \quad \tilde{O}_{B,Z} = \tilde{c}_{B,X} H \tilde{Z}_{\mu\nu} Z_d^{\mu\nu}$$

- $c_{B,Z} = -\frac{g}{2\cos\theta_W} \frac{\kappa_Z}{M_Z}$ $\tilde{c}_{B,Z} = \frac{g}{2\cos\theta_W} \frac{\tilde{\kappa}_Z}{M_Z}$.

Parameterization

• Mass mixing parameterization:

$$O_{A,Z} = c_{A,Z} H Z_{\mu} Z_d^{\mu}$$

- Motivated by two Higgs doublet example: $c_{A,Z} = \frac{g}{\cos \theta_W} \epsilon_Z M_Z$
- $\varepsilon_Z = M_{Z_d}/M_Z \delta$, with δ a free parameter.
- Kinetic mixing motivated:

$$O_{B,Z} = c_{B,Z} H Z_{\mu\nu} Z_d^{\mu\nu}, \quad \tilde{O}_{B,Z} = \tilde{c}_{B,X} H \tilde{Z}_{\mu\nu} Z_d^{\mu\nu}$$

- $\bullet c_{B,Z} = -\frac{g}{2\cos\theta_W} \frac{\kappa_Z}{M_Z}$
- $\tilde{c}_{B,Z} = \frac{g}{2\cos\theta_W} \frac{\tilde{\kappa}_Z}{M_Z}.$
- For purposes of the collider search, will focus on mass mixing case.
- Will give results in terms of $\delta^2 \operatorname{Br}(Z_d \to 2\ell)$
 - δ^2 is free parameter for Br $(H \to ZZ_d)$

LHC Search

• Work at $\sqrt{S} = 14$ TeV LHC and with the signal of two same flavor, opposite charge lepton pairs:

$$pp \rightarrow H \rightarrow ZZ_d \rightarrow \ell_1^+ \ell_1^- \ell_2^+ \ell_2^-$$

- Interested in mass range $M_{Z_d} \sim 5 10$ GeV.
- Complementary to previous low energy searches.
- May expect to appear in $H \to ZZ^*$ searches already.
 - ATLAS and CMS place lower bound $M_{Z^*} \ge 12$ GeV in published results.

Benchmark Point and Event Reconstruction

Benchmark point (no kinetic mixing):

$$M_{Z_d} = 5 \text{ GeV}$$
 $M_H = 125 \text{ GeV}$
 $\delta^2 \text{Br}(Z_d \to 2\ell) = 10^{-5}$ $\kappa_z = \tilde{\kappa}_Z = 0$

- Want full reconstruction of signal to isolate from background.
 - Calculate invariant mass of all possible same flavor, opposite sign lepton pairs.
 - The lepton pair with mass closest to M_Z identified as originating from the Z
 - Identify other lepton pair with Z_d .

Transverse Momentum Distributions

(No smearing or cuts)

- The momentum of Z and Z_d in Higgs rest frame: $|\mathbf{p}| \approx 30$ GeV.
- Energy of Z dominated by M_Z
 - p_T of Z decay products peak near $M_Z/2$
- Energy of Z_d dominated by $|\mathbf{p}|$
 - p_T of Z_d decay products peaked lower $\lesssim |\mathbf{p}|/2$
 - Not as sharp as Z_d since is not from a resonance.

Signal Isolation

Require leptons with central rapidity:

$$p_T^{\ell} > 4 \text{ GeV} \qquad |\eta^{\ell}| < 2.5$$

- Further triggers, following ATLAS ATLAS-CONF-2013-012:
 - One leton with $p_T^{\ell} > 24$ GeV, OR
 - Two leptons with $p_T^{\ell} > 13$ GeV each
- To trigger on four leptons, require isolation cut:

$$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} > 0.3$$

- $\Delta \eta$ and $\Delta \phi$ difference in lepton rapidity and azimuthal angel, respectively.
- Originating from a Higgs resonance:

$$|M_{4\ell} - M_H| < 2 \text{ GeV}$$

- $M_{4\ell}$ reconstructed four lepton invariant mass.
- Require the a Z is reconstructed:

$$|M_{7}^{\rm rec} - M_{7}| < 15 \,\,{\rm GeV}$$

Z_d resonance peak

- After all previous cuts and energy smearing.
- Sharp drop-off in background below 4 5 GeV.
 - Invariant mass of two massless particles: $m_{12}^2 = 2E_1E_2(1-\cos\theta_{12})$
 - Isolation cuts and p_T cuts effectively put lower bounds on invariant mass.
- Use peak to measure M_{Z_d} and place cut:

$$|M_{Z_d}^{\text{rec}} - M_{Z_d}| < 0.1 M_{Z_d}$$

Observability at Leading Order

 300 fb^{-1} :

Exclude $\delta^2 \gtrsim 4 \times 10^{-6}$

Observe $\delta^2 \ge 7 \times 10^{-6}$

Discover $\delta^2 \gtrsim 1.5 \times 10^{-5}$

- Parity violation excluded $\delta^2 \gtrsim \text{few} \times 10^{-4}$
- For equal $Br(H \to ZZ_d)$ in kinetic and mass mixing case:

$$\kappa_Z^2 = \tilde{\kappa}_Z^2 = \delta^2/2$$

Observability

	$M_{Z_d} = 5 \text{ GeV}$						
	2σ (Excl.)	3σ (Obs.)	5σ (Disc.)				
No K-factors	$78 \; { m fb}^{-1}$	$180 \; { m fb}^{-1}$	$490 \; \mathrm{fb^{-1}}$				
+K-factors	33 fb^{-1}	$75 \; { m fb}^{-1}$	$210 \; { m fb^{-1}}$				
	$M_{Z_d} = 10 \text{ GeV}$						
	2σ (Excl.)	3σ (Obs.)	5σ (Disc.)				
No K-factors	2σ (Excl.) 100 fb^{-1}	3σ (Obs.) 230 fb ⁻¹	5σ (Disc.) 640 fb ⁻¹				

• For equal $Br(H \to ZZ_d)$ in kinetic and mass mixing case:

$$\kappa_Z^2 = \tilde{\kappa}_Z^2 = \delta^2/2$$

- $M_{Z_d} = 10 \text{ GeV}$:
 - For our parameterization, signal rate the same as 5 GeV.
 - $|M_{Z_d}^{\text{rec}} M_{Z_d}| < 0.1 M_{Z_d}$ cut looser.
 - Background invariant mass distribution flat.
 - Accept more background and same amount of signal.

- Once discover such a signal, how can we determine what operator coupling is generated from?
- Kinetic mixing operators:

$$O_{B,Z} = c_{B,Z}HZ_{\mu\nu}Z_d^{\mu\nu}, \quad \tilde{O}_{B,Z} = \tilde{c}_{B,Z}H\tilde{Z}_{\mu\nu}Z_d^{\mu\nu}$$

- Z_d is typically transversely polarized.
- Mass mixing operators:

$$O_{A,Z} = c_{A,Z} H Z_{\mu} Z_d^{\mu}$$

• As discussed earlier, for $M_{Z_d} \ll M_H$, Z_d typically longitudinally polarized.

- \hat{z} is Z_d moving direction.
 - Since Z_d highly boosted, \hat{z} can be in CM or Lab frame.
- Lepton angular distribution with respect to \hat{z} :

$$\frac{d\Gamma(Z_d \to \ell^+ \ell^-)}{d\cos \theta} \sim (1 \pm \cos^2 \theta)$$

- Upper sign for transverse polarizations.
- Lower sign for Longitudinal

- After cuts cannot distinguish.
- \bullet Z_d is highly boosted and its decay products collimated.
 - For $\cos \theta_{\ell} = \pm 1$, one lepton moving in $-\hat{z}$ -direction.
 - Boost into lab fame against direction of motion in Z_d -frame.
 - This configure results in softest leptons.
 - p_T^{ℓ} cuts kill $\cos \theta_{\ell} = \pm 1$.

- Consider Higgs rest frame:
 - By conservation of momentum, Z and Z_d back-to-back.
 - By conservation of angular momentum, spins of Z and Z_d opposite directions.
 - If Z_d is helicity state, Z is in same helicity state.
 - p_T of leptons from Z peaked in 30-50 GeV range, cut not as drastic.

- Consider Higgs rest frame:
 - By conservation of momentum, Z and Z_d back-to-back.
 - By conservation of angular momentum, spins of Z and Z_d opposite directions.
 - If Z_d is helicity state, Z is in same helicity state.
 - p_T of leptons from Z peaked in 30-50 GeV range, cut not as drastic.
- Use angular distributions of decay products of Z to probe coupling.
- Boost order:
 - Lab frame → Higgs rest frame
 - Higgs rest frame \rightarrow *Z* rest frame.
 - Unlike Z_d case, necessary to boost to Higgs frame first.

Angular distribution stable against cuts.

Conclusions

- LHC study of $H \rightarrow ZZ_d$
 - Two classes of operators:
 - "Kinetic" mixing: $HZ_{\mu\nu}Z_d^{\mu\nu}$, $H\tilde{Z}_{\mu\nu}Z_d^{\mu\nu}$
 - "Mass" mixing: $HZ_{\mu}Z_{d}^{\mu}$
 - Focused on $H Z Z_d$ couplings from mass mixing.
 - Can probe mixing parameters down to $\delta^2 \gtrsim 4 \times 10^{-6}$ with 300 fb⁻¹ and $M_{Z_d} = 5$ GeV
 - With our benchmark points can exclude Z_d with mass 5 10 GeV with $\sim 30 40$ fb⁻¹
 - Discover Z_d with mass 5-10 GeV with $\sim 200-250$ fb⁻¹
 - Showed how to distinguish between two operators:
 - "Kinetic" mixing results in transversely polarized Z_d
 - "Mass" mixing in longitudinally polarized Z_d
 - Angular distribution of leptons from Z decay sensitive to this polarization, and stable against cuts.
- Could be interesting complementary search to low energy searches.
- May be able to distinguish mixing mechanisms with angular distributions.

FOR EXAMPLE, SCIENTISTS
THINK SPACE IS FULL OF
MYSTERIOUS, INVISIBLE MASS,
SO WHAT DO THEY CALL IT?
"AARK MATTER?" DUHH!
I TELL YOU, THERE'S A
FORTUME TO BE MADE
HERE!

Explain Newton's First
 Law of Motion in your
 own words

Yakka Food Mog. GRUG Pubba Wup ZiNK WattooM Gazork. CHUMBLE SPUZZ.

BACKUP SLIDES

Event Simulation

- Model implemented in MadGraph 5 using FeynRules.
- CTEQ6L pdfs used throughout.
- MadGraph 5 used to simulate both signal and background.
- Apply Gaussian smearing to all events:

$$\frac{\mathsf{\sigma}(E)}{E} = \frac{a}{\sqrt{E}} \oplus b$$

• Following ATLAS a=10% (50%) and b=0.7% (3%) for leptons (jets) Voss, Breskin The CERN Large Hadron Collider, accelerator and experiments

Signal and Background Rates

Channel	$e^+e^-\mu^+\mu^-$		$2\mu^+2\mu^-$		$2e^+2e^-$	
σ (fb)	Sig.	Bkgrnd	Sig.	Bkgrnd	Sig.	Bkgrnd
No cuts and no energy smearing	0.10		0.051		0.051	
Basic cuts + Trigger + Isol.	0.049	67	0.024	26	0.024	26
$+M_{4\ell}+M_Z^{rec}+M_{Z_d}^{rec}$	0.043	0.030	0.022	0.017	0.022	0.014
S/B	1.5		1.3		1.5	

Fraction of total background after basic cuts, trigger, and isolation:

$$2\mu^{+}\mu^{-}$$
 and $2e^{+}e^{-}$: $t\bar{t} \sim 32\%$ $Z \sim 38\%$ $ZZ \sim 26\%$ $e^{+}e^{-}\mu^{+}\mu^{-}$: $t\bar{t} \sim 50\%$ $Z \sim 28\%$ $ZZ \sim 12\%$

• After $M_{4\ell}$ and M_Z^{rec} cuts dominate backgrounds are $Z\gamma^*$ and $H \to ZZ^*$

ATLAS arXiv:1409.0746

Search for
$$H \rightarrow \gamma_d \gamma_d + X$$