

How Charming is the Truth?

The Search for Top Flavor Changing Neutral Currents t → Z c at CDF Run II

Charles Plager, UCLA
On behalf of the CDF Collaboration
CERN Seminar
July 2nd, 2008

Outline

The Tevatron and the CDF Experiment

Top Quark Physics

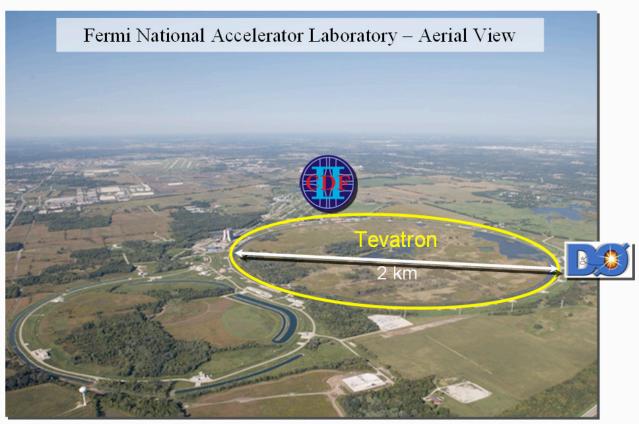
The Search for Top FCNC Decay

Summary

Outline

The Tevatron and the CDF Experiment

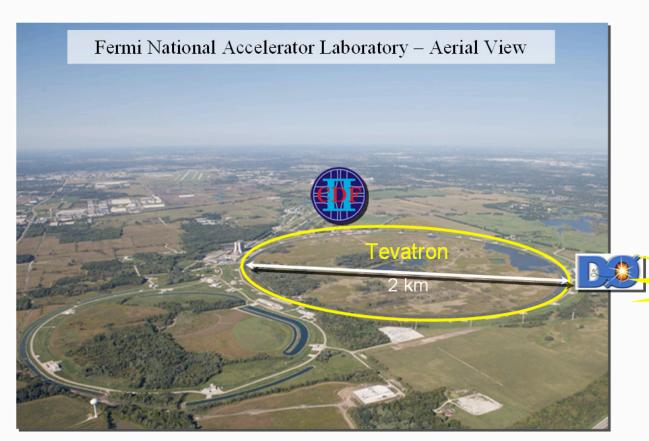
Top Quark Physics


The Search for Top FCNC Decay

Summary

Tevatron Run II: 2001–2009 (2010?)

- Proton-antiproton collider: $\sqrt{s} = 1.96 \text{ TeV}.$
- 36×36 bunches, collisions every 396 ns.
- Record instantaneous peak luminosity:

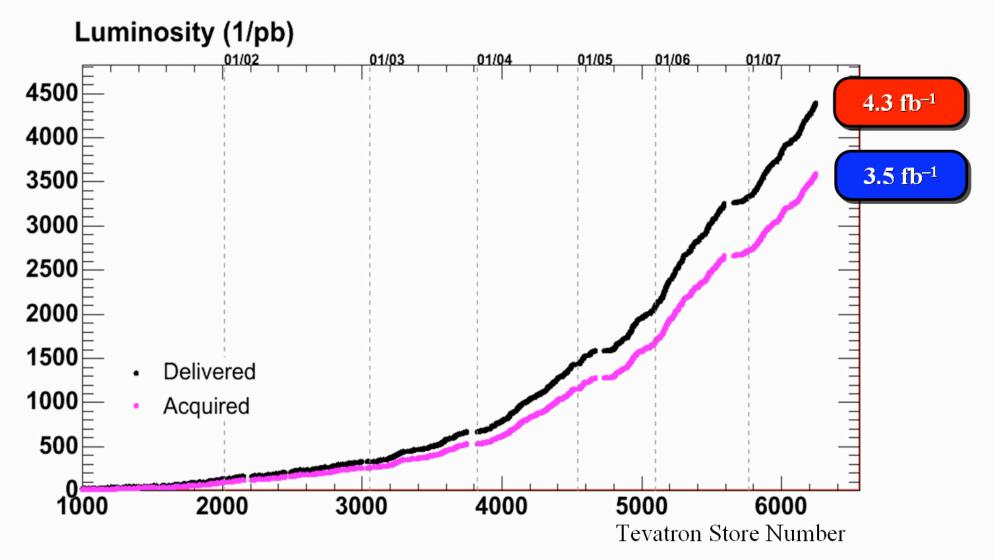

 $290 \cdot 10^{30} \text{ cm}^{-2} \text{ s}^{-1}$.

- Luminosity goal:
 5.5 6.5 fb⁻¹ of integrated luminosity by 2009, running in 2010 currently under discussion.
- Two multi-purpose detectors: CDF and DØ.

Tevatron Run II: 2001–2009 (2010?)

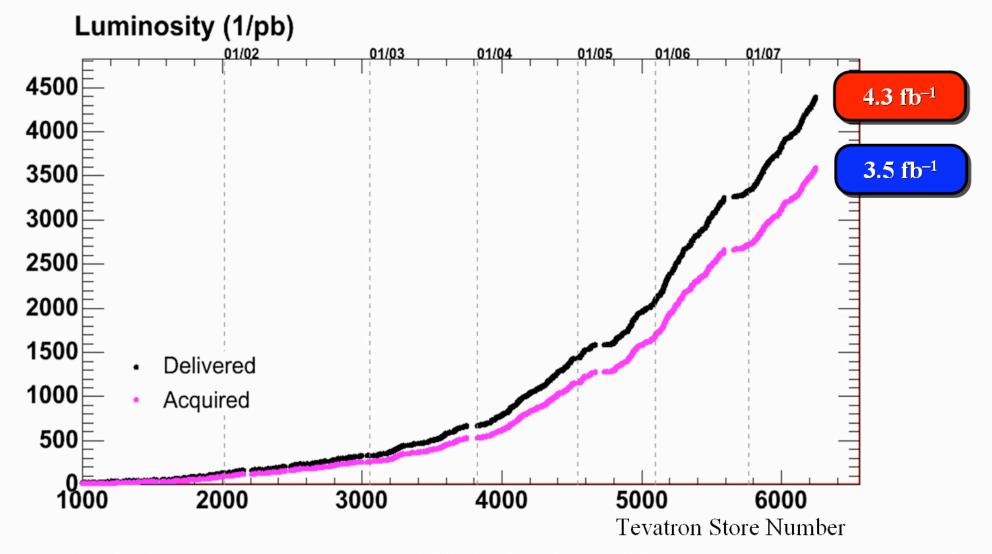
- Proton-antiproton collider: $\sqrt{s} = 1.96 \text{ TeV}.$
- 36×36 bunches, collisions every 396 ns.
- Record instantaneous peak luminosity:

 $315 \cdot 10^{30} \text{ cm}^{-2} \text{ s}^{-1}!$


- Luminosity goal:
 5.5 6.5 fb⁻¹ of integrated luminosity by 2009, running in 2010 currently under discussion.
- Two multi-purpose detectors: CDF and DØ.

Tevatron Performance

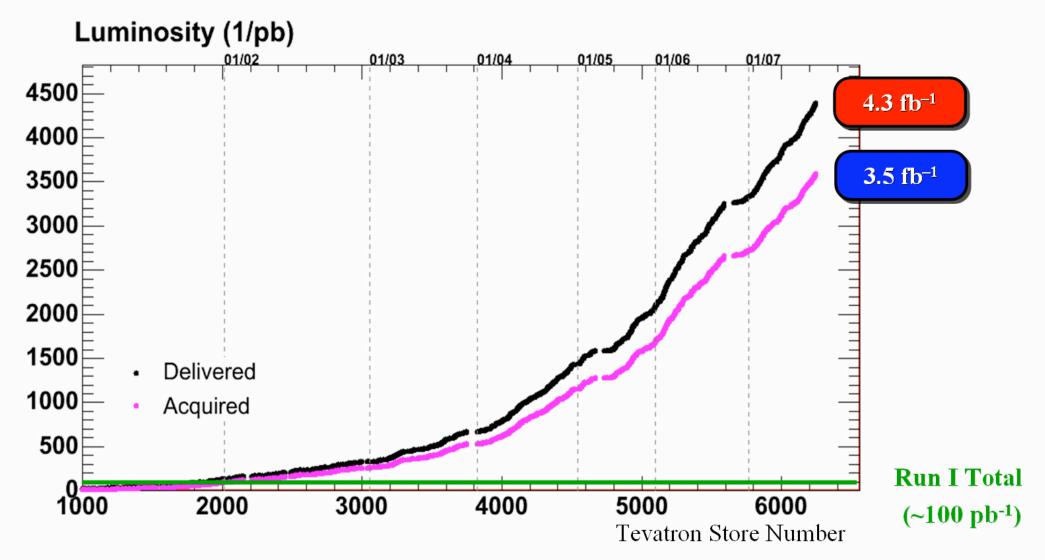
- Tevatron continues to perform **very** well:
 - More than 4.3 fb⁻¹ delivered.
 - More than 3.5 fb⁻¹ recorded by CDF.



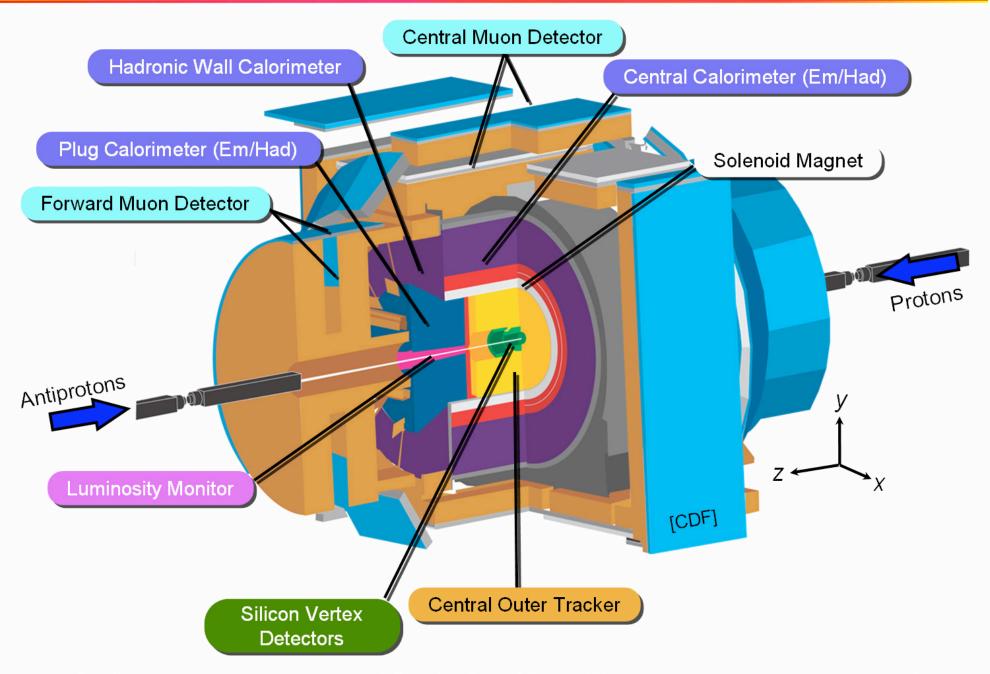
Tevatron Performance

- Tevatron continues to perform **very** well:
 - More than 4.3 fb^{-1} delivered.
 - More than 3.5 fb⁻¹ recorded by CDF.

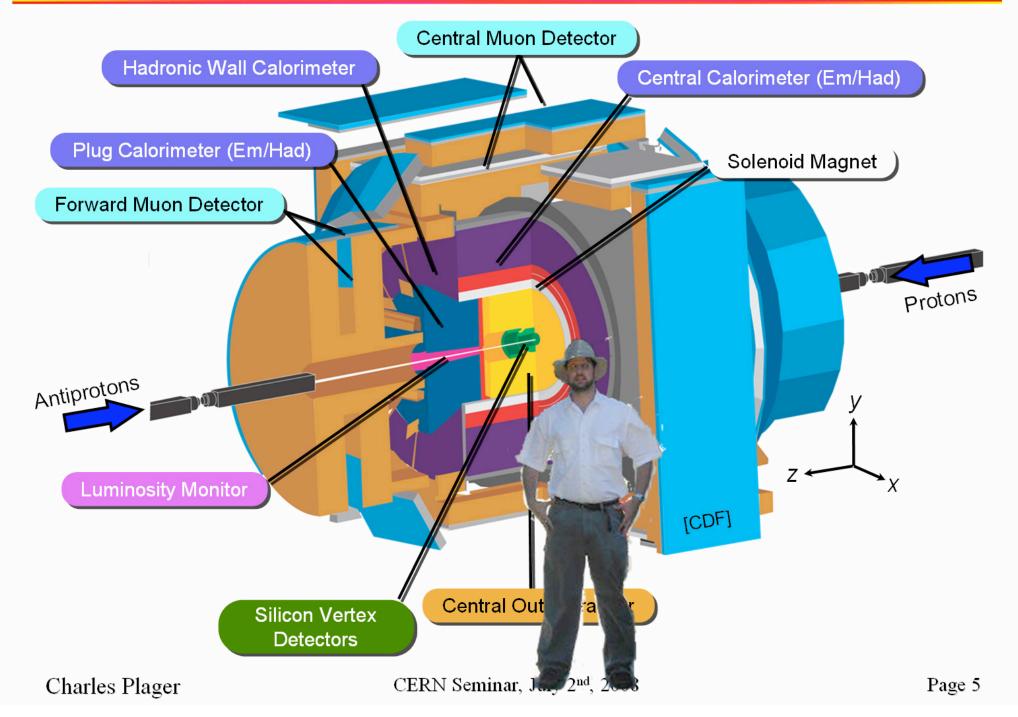
The Tevatron just delivered 56 pb⁻¹ in *single week!*

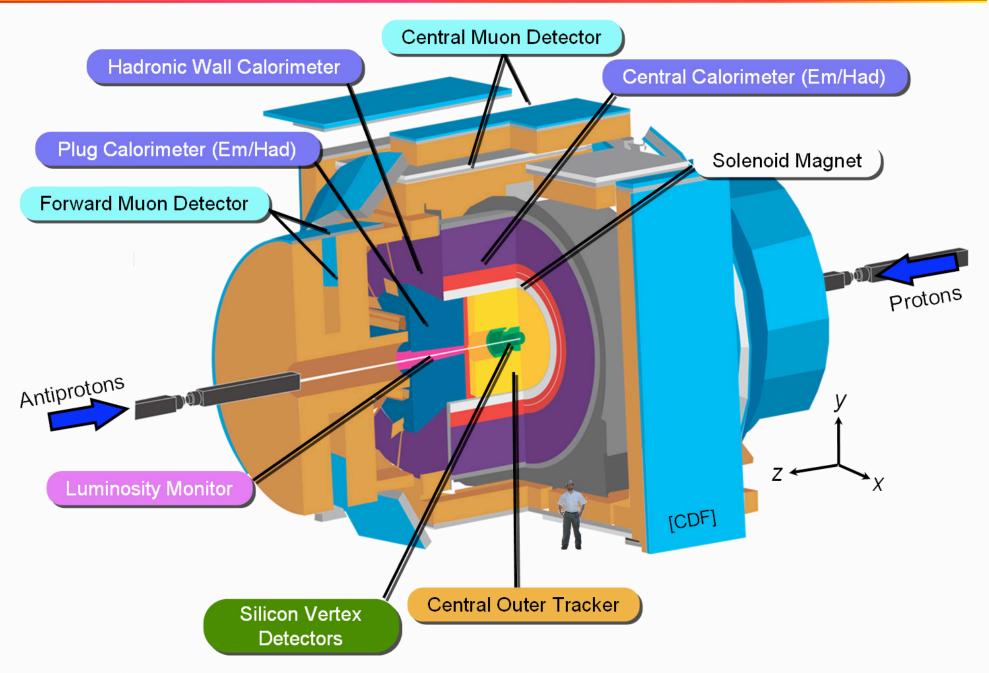


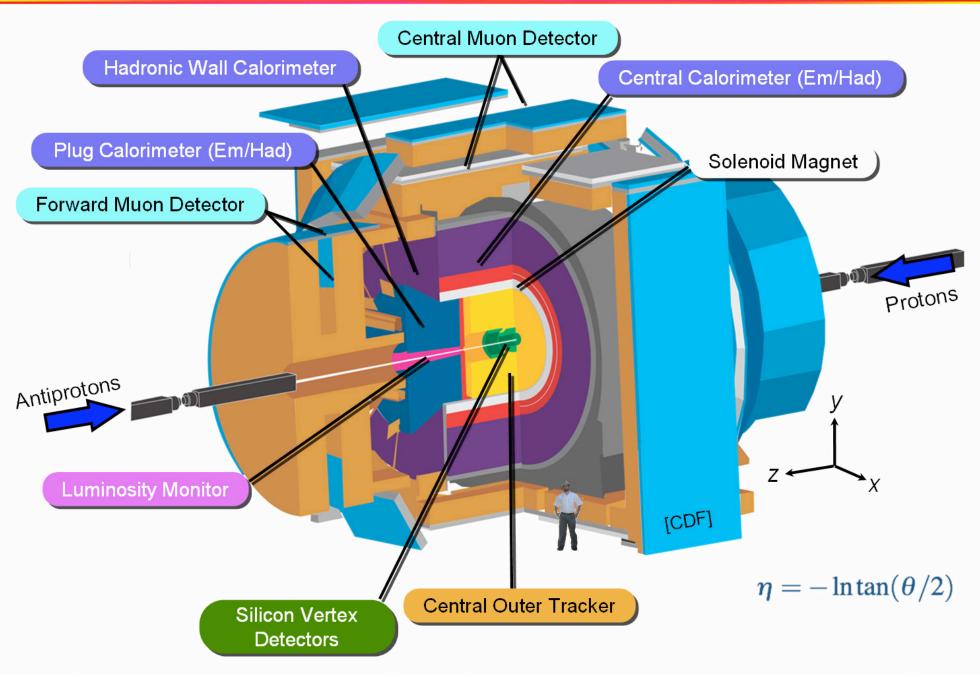
Tevatron Performance


- Tevatron continues to perform **very** well:
 - More than 4.3 fb^{-1} delivered.
 - More than 3.5 fb⁻¹ recorded by CDF.

The Tevatron just delivered 56 pb⁻¹ in *single week!*







Outline

The Tevatron and the CDF Experiment

Top Quark Physics

The Search for Top FCNC Decay

Summary

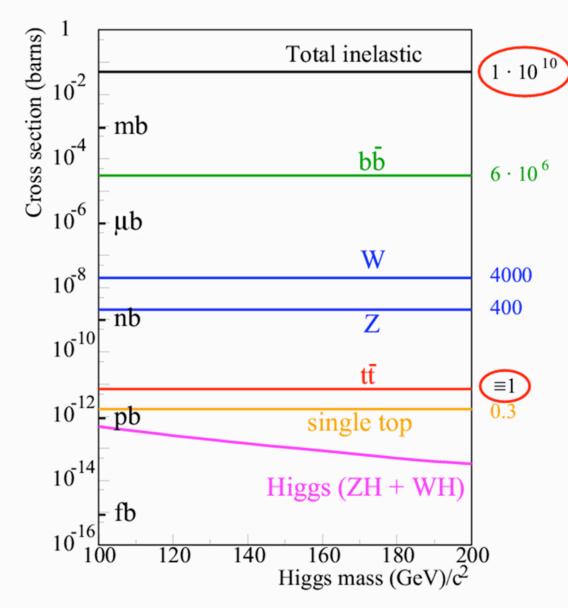
Top Quark History

- CDF and DØ Run I announced the top quark discovery March, 1995.
- This discovery did not "just happen":
 - Other experiments had been looking for the previous 20 years with no (real) top quark discovery.
 - PETRA (DESY): e⁺e⁻
 - SppS (CERN): pp
 - LEP I (CERN): e⁺e⁻
 - Run I was in its fourth year (after three years of Run 0 and many years of designing, building, and commissioning the detectors).

Top Quark History

- CDF and DØ Run I announced the top quark discovery March, 1995.
- This discovery did not "just happen":
 - Other experiments had been looking for the previous 20 years with no (real) top quark discovery.
 - PETRA (DESY): e⁺e⁻
 - SppS (CERN): pp
 - LEP I (CERN): e⁺e⁻
 - Run I was in its fourth year (after three years of Run 0 and many years of designing, building, and commissioning the detectors).

A Quick Note About Scale

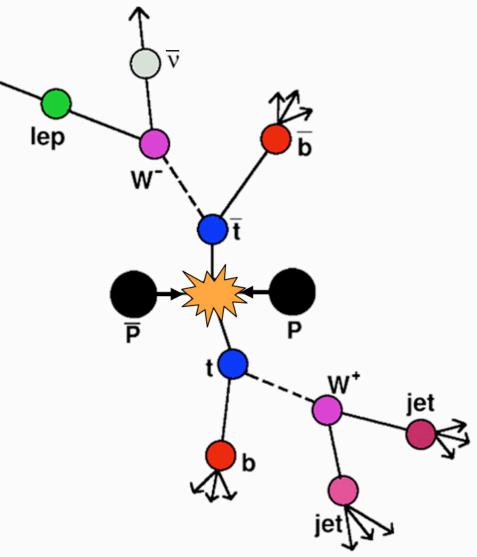


For those not intimately familiar with Tevatron high p_T Physics:

Top:
1 in 10 Billion

Reducing and understanding backgrounds is the key.

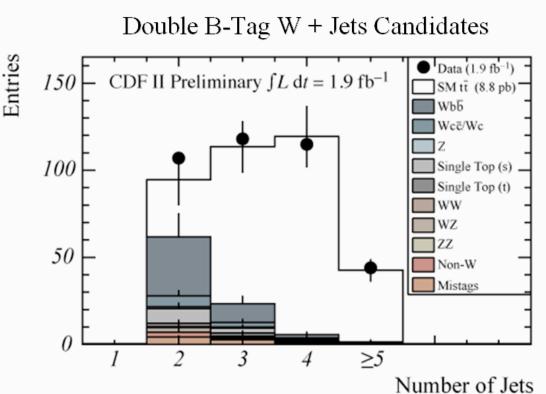
Cross Sections at $\sqrt{s} = 1.96 \text{ TeV}$



Top Quark Review

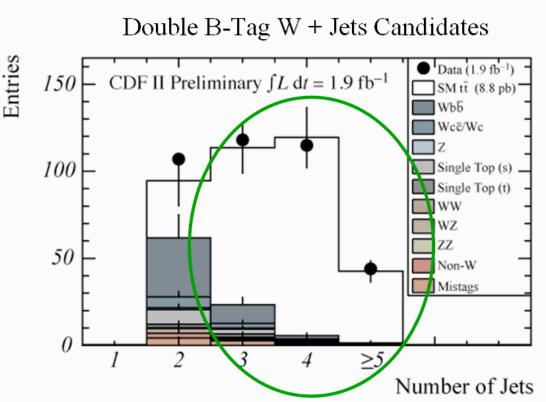
- Top: the Golden quark (~ 175 GeV/c²)
 - Only fermion with mass near EW scale.
 - 40 times heavier than the bottom quark.
- Very wide (1.5 GeV/c^2)
 - The top quarks decay before they can hadronize.
 - We can study the decay of the bare quark.
- Usually observed in pairs.
- Fundamental question:
 Is it the truth, the Standard Model (SM) truth, and nothing but the truth?
 - Did we really find the top quark?
 - Is it the SM top quark?
 - Is it only the SM top quark?
- The top quark is an ideal place to look for Beyond the Standard Model Physics!

tt Pair Lepton + Jets Decay



New Era of Top Precision Physics!

- CDF and DØ now have more than thirty (30 !!!) times as much integrated luminosity as we did when they discovered the top quark in Run I!
- With the data we have recorded, we are now able to have large, *very pure* top samples.
- Of the almost 50 results that CDF sent to the winter conferences, more than half were in top physics!



New Era of Top Precision Physics!

- CDF and DØ now have more than thirty (30!!!) times as much integrated luminosity as we did when they discovered the top quark in Run I!
- With the data we have recorded, we are now able to have large, *very pure* top samples.
- Of the almost 50 results that CDF sent to the winter conferences, *more than half* were in top physics!

What Can We Study About Top Quarks?

Branching ratios
Rare decays
Non-SM decays
Decay kinematics
W helicity
|V_{tb}|

lep Top charge Top spin Top lifetime Top mass

Production cross section Resonance production Production kinematics Spin polarization

jet

What Can We Study About Top Quarks?

Branching ratios Rare decays Non-SM decays Decay kinematics W helicity $|V_{tb}|$

Top spin

lep Top charge Top lifetime Top mass jet

Production cross section Resonance production Production kinematics Spin polarization

What Can We Study About Top Quarks?

Branching ratios
Rare decays
Non-SM decays
Decay kinematics
W helicity
|V_{tb}|

lep W- Te

Top physics is very rich.

jet

Production cross section Resonance production Production kinematics Spin polarization

Top charge
Top spin
Top lifetime
Top mass

Top Pair Decay Modes

- According to the SM, top quarks almost (?) always decay to Wb.
- When classifying the decay modes, we use the W decay modes:
 - Leptonic
 - Light leptons (e or μ)
 - Tauonic (τ)
 - Hadrons

	_cs	lepton + jets	tau + jets	all hadronic			
w ⁻	ūd						
	τ-	τε/τμ	ττ	tau + jets			
	μ	dilepton	π 1/91	lepton +	jets		
	e ⁻	e ⁺ μ ⁺	τ+	ud	cs cs		
F	inal	θ' μ'		10/	US		

tt decay modes

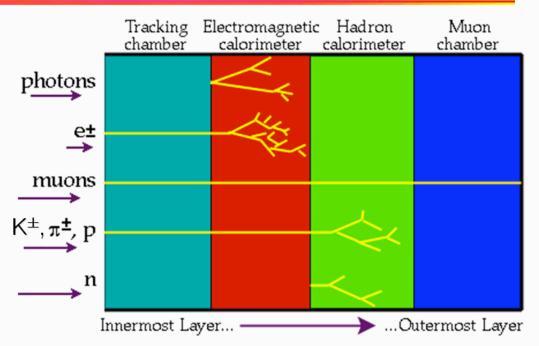
	Branching	Relative	Final
Decay Mode	Fraction	Background	State
Dilepton - no $ au$ s	\sim 5%	Low	$\ell\ell$ $\nu\nu$ bb
Lepton + Jets - no τ s	$\sim 30\%$	Medium	ℓ ν bb jj
All Hadronic	$\sim~45\%$	High	bb jjjj
Tauonic	$\sim~20\%$	High	

Top Pair Decay Modes

- According to the SM, top quarks almost (?) always decay to Wb.
- When classifying the decay modes, we use the W decay modes:
 - Leptonic
 - Light leptons (e or μ)
 - Tauonic (τ)
 - Hadrons

cs W ūd	lepton + jets	tan + jets	all hadronic
τ_	τε/τμ	ττ	tau + jets
μ ⁻ - e ⁻	dilepton	π 1/91	lepton + jets
Final State	e ⁺ μ ⁺	τ+	ud cs

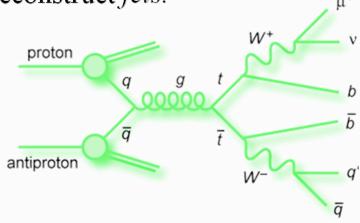
tī decay modes

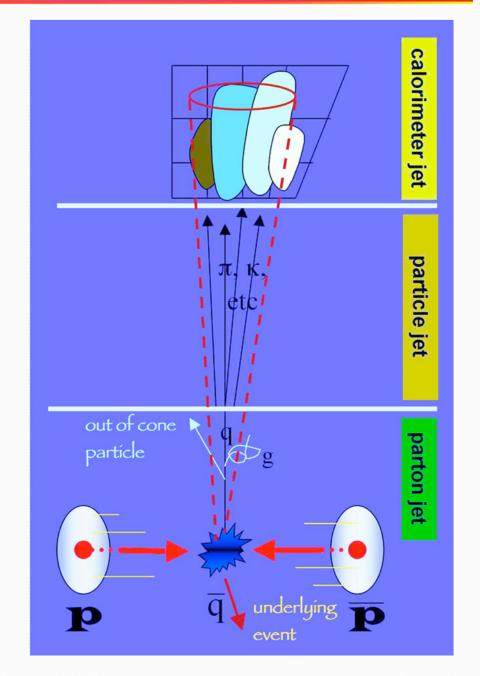

	Branching	Relative	Final
Decay Mode	Fraction	Background	State
Dilepton - no τs	\sim 5%	Low	$\ell\ell$ $\nu\nu$ bb
Lepton + Jets - no τ s	$\sim 30\%$	Medium	ℓv bb jj
All Hadronic	$\sim~45\%$	High	bb jjjj
Tauonic	$\sim~20\%$	High	

Important Tool: Lepton ID

- For many analyses, we need a very pure set of high p_T electrons and muons.
- Electrons (as we reconstruct them):
 - Have charged particle track.
 - Leave almost all of their energy in the electromagnetic calorimeter.
 - Ask for no other nearby tracks.
 - We do not want leptons from (heavy flavor) jets.

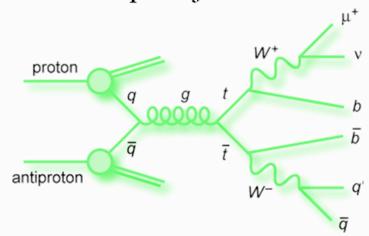
Muons:


- Have charged particle track.
- ~ Minimum ionizing (leave little energy in either the electromagnetic or hadronic calorimeter)
- Find a "stub" of a track in dedicated muon detector systems on outside of CDF.
- Ask for no other nearby tracks.

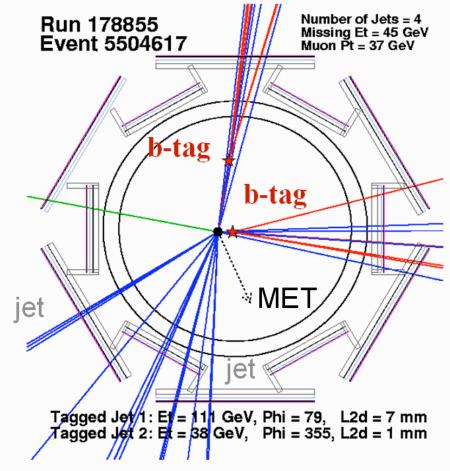

Important Tool: Jet Reconstruction

We think of partons, but we reconstruct jets.

- We need to convert "raw" jets to "corrected" jets Jet Energy Scale (JES) correction.
 - Takes into account detector effects, neutral particles in jets, particles outside of the jet cone, underlying events, multiple interactions, ...



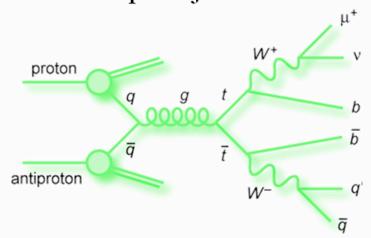
Important Tool: B Jet Tagging


- Since we (often) expect t → W b,
 b jet tagging is a very important tool.
 - Most backgrounds do not have bottom quark jets.

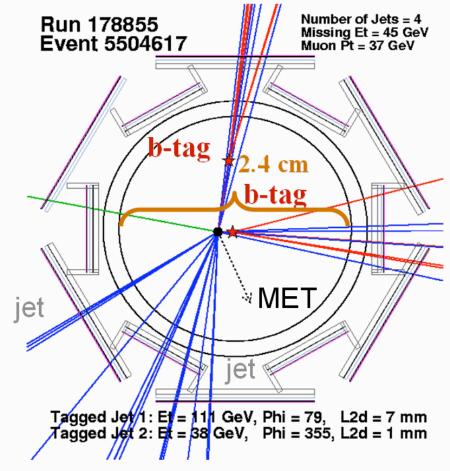
- We rely on the long b quark lifetime.
 - B hadrons can travel several millimeters before decaying.
 - Use displaced vertices or many displaced tracks (impact parameter).

CDF Event:

Close-up View of Layer 00 Silicon Detector



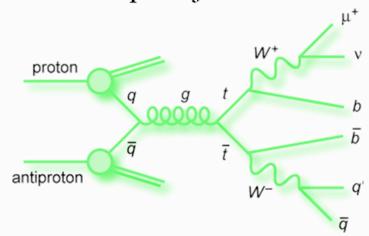
Important Tool: B Jet Tagging


- Since we (often) expect t → W b,
 b jet tagging is a very important tool.
 - Most backgrounds do not have bottom quark jets.

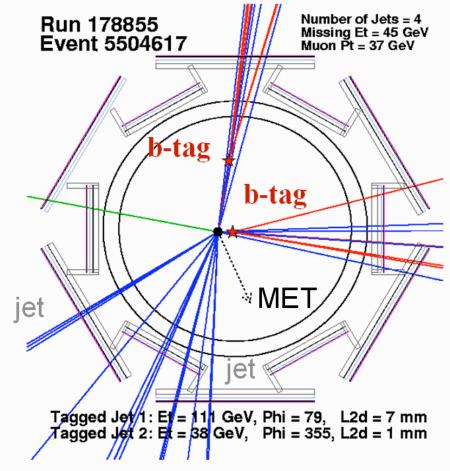
- We rely on the long b quark lifetime.
 - B hadrons can travel several millimeters before decaying.
 - Use displaced vertices or many displaced tracks (impact parameter).

CDF Event:

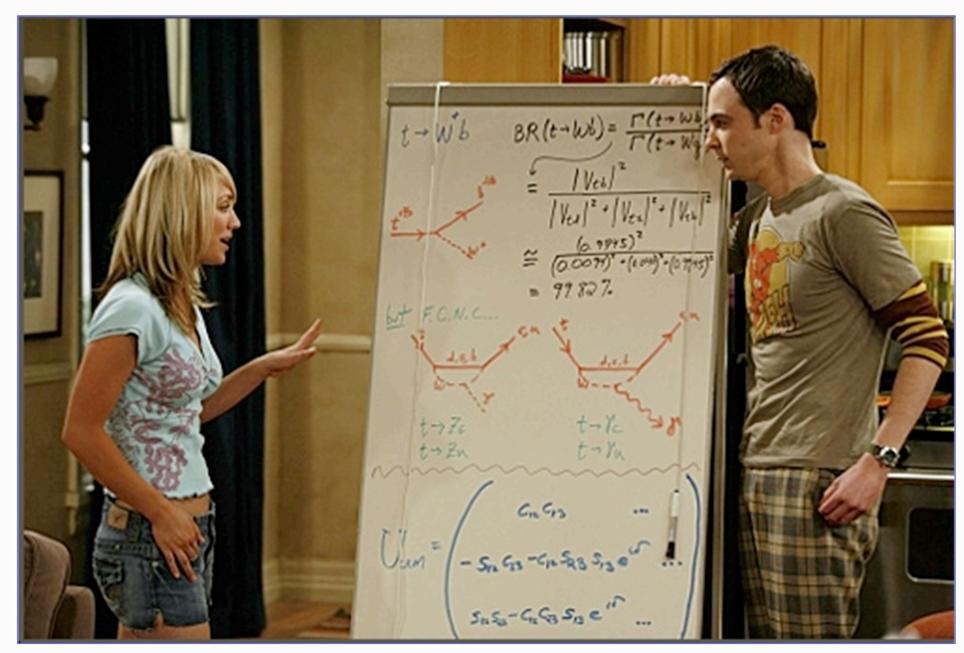
Close-up View of Layer 00 Silicon Detector



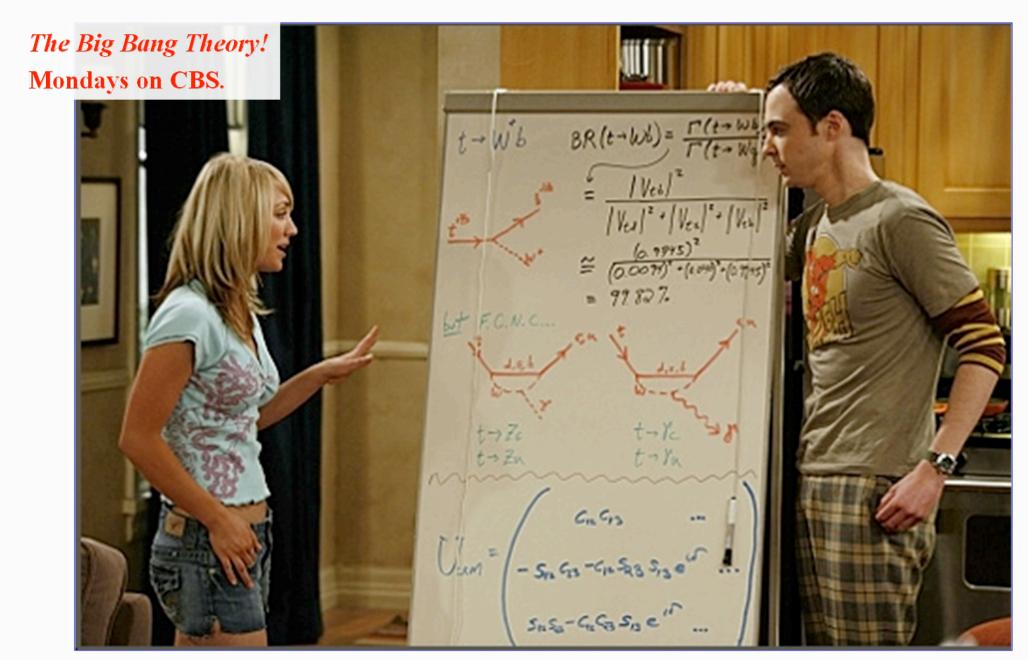
Important Tool: B Jet Tagging

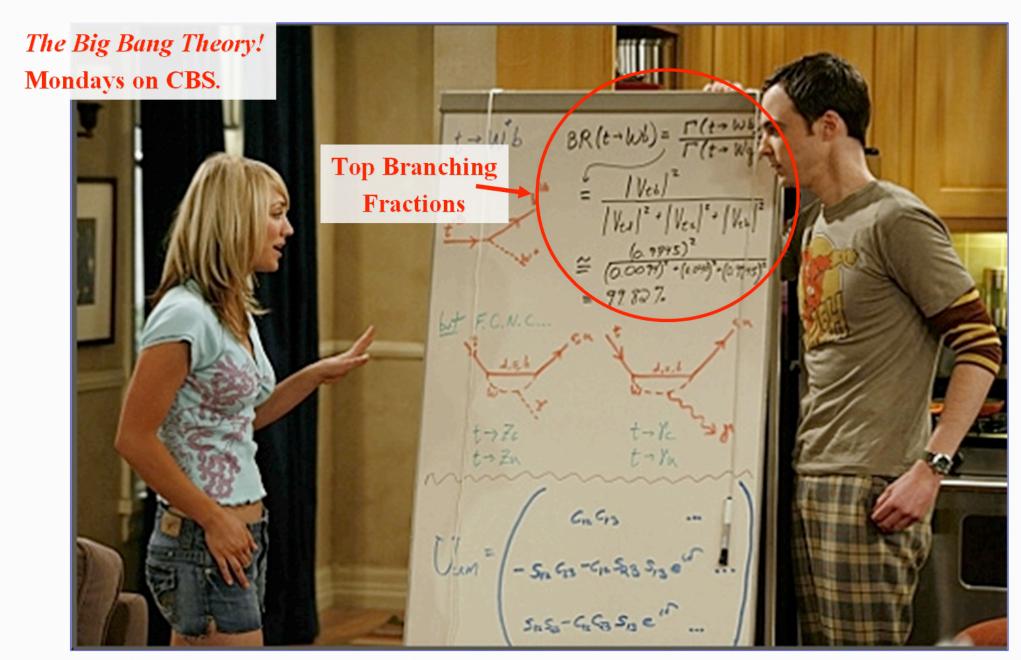

- Since we (often) expect t → W b,
 b jet tagging is a very important tool.
 - Most backgrounds do not have bottom quark jets.

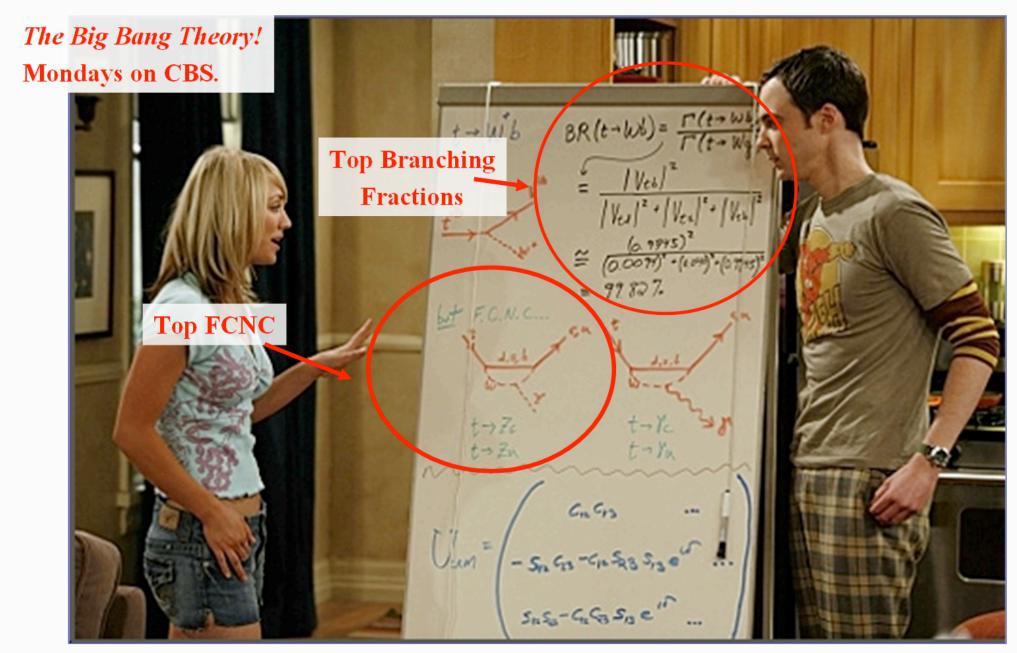
- We rely on the long b quark lifetime.
 - B hadrons can travel several millimeters before decaying.
 - Use displaced vertices or many displaced tracks (impact parameter).


CDF Event:

Close-up View of Layer 00 Silicon Detector







Outline

The Tevatron and the CDF Experiment

Top Quark Physics

The Search for Top FCNC Decay

Summary

Top FCNC Outline

The Search for Top FCNC Decay

Introduction

Search For Invisible Top Decays

Direct FCNC Search

Acceptances

Backgrounds

Unblinding

Fitting For Everything

Top FCNC Outline

The Search for Top FCNC Decay

Introduction

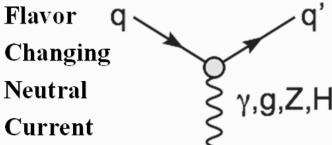
Search For Invisible Top Decays

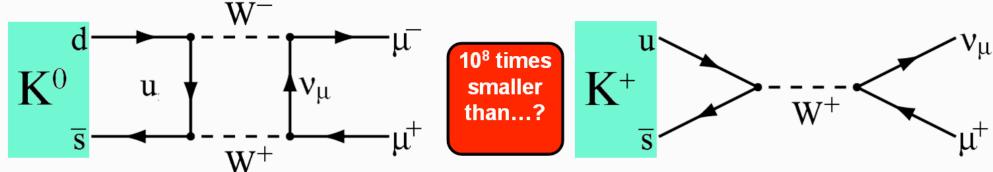
Direct FCNC Search

Acceptances

Backgrounds

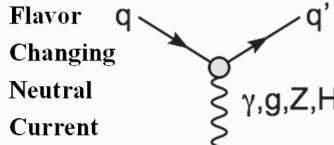
Unblinding


Fitting For Everything



Flavor Changing Neutral Currents

- Flavor changing neutral current (FCNC) interactions:
 - Transition from a quark of flavor A and charge Q to quark of flavor B with the same charge Q.
 - Examples: $b \rightarrow s\gamma$, $t \rightarrow Hc$, ...
- 1960s: only three light quarks (u,d,s) known, mystery in kaon system:

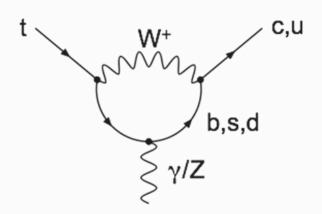

- Solution: "GIM Mechanism" (Glashow, Iliopoulos, Maiani, 1970)
 - Fourth quark needed for cancellation in box diagram: prediction of charm quark.
 - Cancellation would be exact if all quarks had the same mass: estimate of charm quark mass.

Flavor Changing Neutral Currents

- Flavor changing neutral current (FCNC) interactions:
 - Transition from a quark of flavor A and charge Q to quark of flavor B with the same charge Q.
 - Examples: $b \rightarrow s\gamma$, $t \rightarrow Hc$, ...
- 1960s: only three light quarks (u,d,s) known, mystery in kaon system:

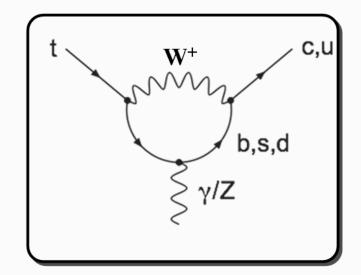
- Solution: "GIM Mechanism" (Glashow, Iliopoulos, Maiani, 1970)
 - Fourth quark needed for cancellation in box diagram: prediction of charm quark.
 - Cancellation would be exact if all quarks had the same mass: estimate of charm quark mass.

Top Flavor Changing Neutral Currents



- SM Higgs mechanism: weak neutral currents (NC) do not change the flavor of quarks/leptons ("flavordiagonal")
 - ⇒ no FCNC at "tree level."
- FCNC possible e.g. via penguin diagrams.
- Suppression of this mode:
 - GIM mechanism
 - Cabibbo suppression
- Expected SM branching fraction (Br) for $t \rightarrow Zc$ as small as 10^{-14} .
- Any signal at the Tevatron or LHC: New Physics.

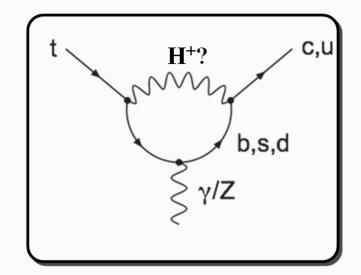
Penguin Diagram



Top FCNC & New Physics

- FCNC are enhanced in many models of physics beyond the SM.
- Enhancement mechanisms:
 - FCNC interactions at tree level.
 - Weaker GIM cancellation by new particles in loop corrections.
- Examples:
 - New quark singlets: Z couplings not flavor-diagonal → tree level FCNC.
 - Two Higgs doublet models: modified Higgs mechanism.
- Flavor changing Higgs couplings allowed at tree level.
- Virtual Higgs in loop corrections.
 - Supersymmetry: gluino/neutralino and squark in loop corrections.

Model	$\mathbf{BR}(t \to Zq)$
Standard Model	$\mathcal{O}(10^{-14})$
q = 2/3 Quark Singlet	$\mathcal{O}(10^{-4})$
Two Higgs Doublets	$\mathcal{O}(10^{-7})$
MSSM	$\mathcal{O}(10^{-6})$
R-Parity violating SUSY	$\mathcal{O}(10^{-5})$

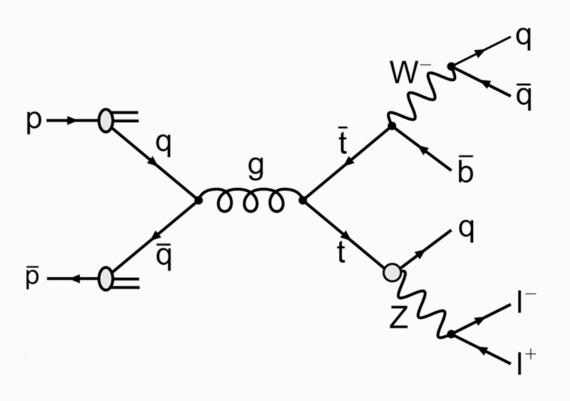

[after J.A. Aguilar-Saavedra, Acta Phys. Polor **B35** (2004) 2695]

Top FCNC & New Physics

- FCNC are enhanced in many models of physics beyond the SM.
- Enhancement mechanisms:
 - FCNC interactions at tree level.
 - Weaker GIM cancellation by new particles in loop corrections.
- Examples:
 - New quark singlets: Z couplings not flavor-diagonal → tree level FCNC.
 - Two Higgs doublet models: modified Higgs mechanism.
- Flavor changing Higgs couplings allowed at tree level.
- Virtual Higgs in loop corrections.
 - Supersymmetry: gluino/neutralino and squark in loop corrections.

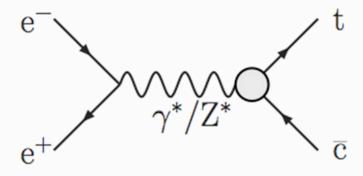
Model	BR $(t \rightarrow Zq)$
Standard Model	$\mathcal{O}(10^{-14})$
q = 2/3 Quark Singlet	$\mathcal{O}(10^{-4})$
Two Higgs Doublets	$\mathcal{O}(10^{-7})$
MSSM	$\mathcal{O}(10^{-6})$
R-Parity violating SUSY	$\mathcal{O}(10^{-5})$

[after J.A. Aguilar-Saavedra, Acta Phys. Polor **B35** (2004) 2695]



Previous Limits

• Run I Search:


- 110 pb⁻¹ of data
- $t\bar{t}$ → Zc Wb → Z+≥4j
- Limit: Br (t → Zc) < 33% at 95% C.L.

Limit from LEP II

search for single top production:

$$e^+ e^- \rightarrow t \ \overline{c}^-$$

- 634 pb⁻¹
- Limit: Br $(t \to Zc) < 13.7\%$ at 95% C.L.
 - \Rightarrow Best limit so far with **Z** bosons.

Top FCNC Outline

The Search for Top FCNC Decay

Introduction

Search For Invisible Top Decays

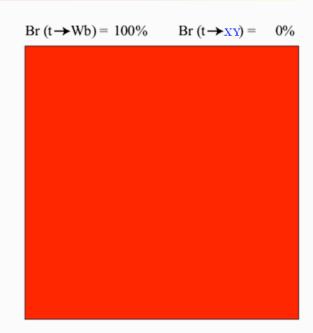
Direct FCNC Search

Acceptances

Backgrounds

Unblinding

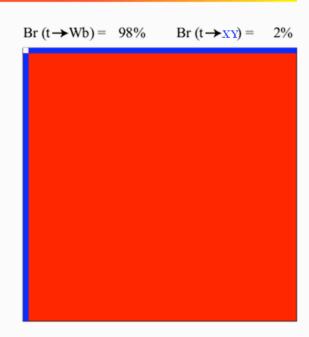
Fitting For Everything


Search for Invisible Top Decays

- What do we mean by "invisible?"
 - Not (well) reconstructed as double
 b-tag lepton + jets.
- What would happen if there were a large branching fraction to an *invisible* decay? For example,

Br
$$(t \rightarrow Invisible) = 10\%$$
?

- Br (t \to Wb) = 90%
- $P(tt \rightarrow Wb Wb) = 81\%$
- ⇒ For a purely invisible decay, we should have an 19% deficit when we look at the L + J event yield for a given theoretical cross section.

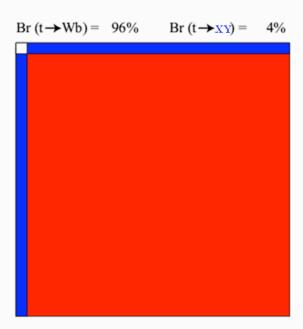

Search for Invisible Top Decays

- It is the *relative* reconstruction efficiency ⊗ acceptance that determines the relative yield.
 - Rwx/ww is the relative acceptance when one top decays to the Wb while the other decays to the new decay, XY.
 - $\mathcal{R}_{XX/WW}$ is the relative acceptance when both top quarks decays to the new decay, XY.

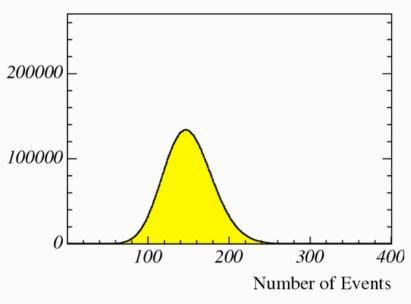
Yield
$$\propto \mathscr{P}(t\bar{t} \to Wb\ Wb) + \\ \mathscr{P}(t\bar{t} \to Wb\ XY) \cdot \mathscr{R}_{wx/ww} \\ \mathscr{P}(t\bar{t} \to XY\ XY) \cdot \mathscr{R}_{xx/ww}$$

- Compare expected yield to observed number of candidate events.
 - Create Feldman-Cousins acceptance bands using number of observed events.
 - t → Zc, t → gc, t → γc, t → Invisible.

Search for Invisible Top Decays


- It is the *relative* reconstruction efficiency ⊗ acceptance that determines the relative yield.
 - Rwx/ww is the relative acceptance when one top decays to the Wb while the other decays to the new decay, XY.
 - $\mathcal{R}_{XX/WW}$ is the relative acceptance when both top quarks decays to the new decay, XY.

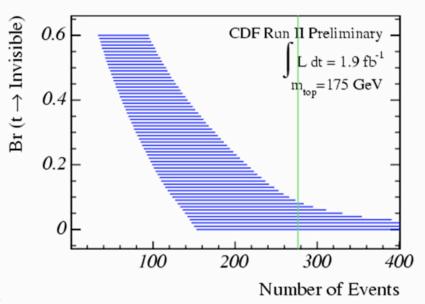
Yield
$$\propto \mathscr{P}(t\bar{t} \to Wb\ Wb) +$$

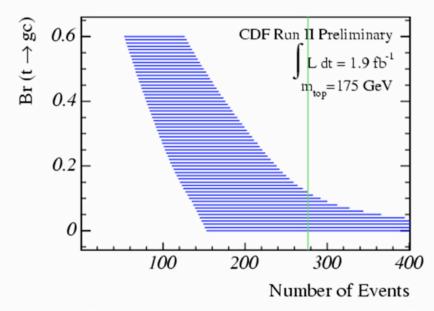

$$\mathscr{P}(t\bar{t} \to Wb\ XY) \cdot \mathscr{R}_{wx/ww}$$

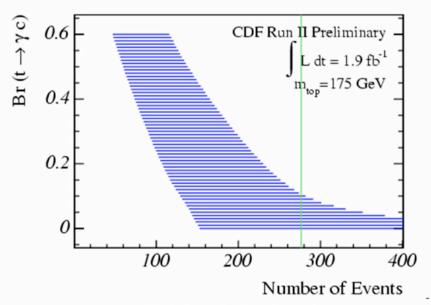
$$\mathscr{P}(t\bar{t} \to XY\ XY) \cdot \mathscr{R}_{xx/ww}$$

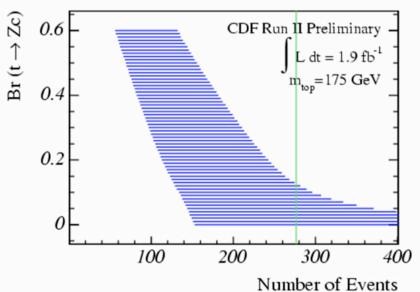
- Compare expected yield to observed number of candidate events.
 - Create Feldman-Cousins acceptance bands using number of observed events.
 - $t \rightarrow Zc$, $t \rightarrow gc$, $t \rightarrow \gamma c$, $t \rightarrow Invisible$.

 $t \rightarrow$ Invisible PEs for 20% Branching Fraction




Feldman-Cousins Acceptance Bands




FC Bands for $t \rightarrow gc$

FC Bands for $t \rightarrow \gamma c$

FC Bands for $t \rightarrow Zc$

- From Cacciari et al. (hep-ph: 0804.2800) assuming CTEQ PDFs.
- Expected Limits:

CDF Run II Preliminary 1.9 fb⁻¹

Decay	$\mathcal{R}_{\text{WX/WW}}$ (%)	175 GeV (%)
$t \to Zc$	32	28^{+14}_{-12}
$t \rightarrow gc$	27	26^{+14}_{-11}
$t o \gamma c$	18	24^{+12}_{-10}
$t \rightarrow \text{invisible}$	0	20^{+10}_{-8}

$$\int \mathcal{L}dt = 1.9 \text{ fb}^{-1}$$

Observed Limits:

CDF Run II Preliminary 1.9 fb⁻¹

Decay	$\mathcal{R}_{\mathbf{WX/WW}}$ (%)	Upper Limit (%) (175 GeV)	Upper Limit (%) (172.5 GeV)
$\mathscr{B}(t \to Zc)$	32	13	15
$\mathscr{B}(t \to gc)$	27	12	14
$\mathscr{B}(t o \gamma c)$	18	11	12
$\mathscr{B}(t \to \text{invisible})$	0	9	10

- From Cacciari et al. (hep-ph: 0804.2800) assuming CTEQ PDFs.
- Expected Limits:

CDF Run II Preliminary 1.9 fb⁻¹

Decay	ℛ _{wx/ww} (%)	175 GeV (%)
$t \to Zc$	32	28^{+14}_{-12}
$t \rightarrow gc$	27	26_{-11}^{+14}
$t o \gamma c$	18	24^{+12}_{-10}
$t \rightarrow \text{invisible}$	0	20^{+10}_{-8}

$$\int \mathcal{L}dt = 1.9 \text{ fb}^{-1}$$

Observed Limits:

CDF Run II Preliminary 1.9 fb⁻¹

CDI Rull II I I			
Decay	$\mathscr{R}_{\mathbf{wx/ww}}$ (%)	Upper Limit (%) (175 GeV)	Upper Limit (%) (172.5 GeV)
$\mathscr{B}(t \to Zc)$	32	13	15
$\mathscr{B}(t \to gc)$	27	12	14
$\mathscr{B}(t o \gamma c)$	18	11	12
$\mathscr{B}(t \to \text{invisible})$	0	9	10

- From Cacciari et al. (hep-ph: 0804.2800) assuming CTEQ PDFs.
- Expected Limits:

CDF Run II Preliminary 1.9 fb⁻¹

Decay	$\mathcal{R}_{\text{wx/ww}}$ (%)	175 GeV (%)
$t \to Zc$	32	28^{+14}_{-12}
$t \rightarrow gc$	27	26^{+14}_{-11}
$t o \gamma c$	18	24^{+12}_{-10}
$t \rightarrow \text{invisible}$	0	20^{+10}_{-8}

$$\int \mathcal{L}dt = 1.9 \text{ fb}^{-1}$$

Observed Limits:

CDF Run II Preliminary 1.9 fb⁻¹

Decay	$\mathcal{R}_{\mathbf{WX/WW}}$ (%)	Upper Limit (%) (175 GeV)	Upper Limit (%) (172.5 GeV)
$\mathscr{B}(t \to Zc)$	32	13	15
$\mathscr{B}(t \to gc)$	27	12	14
$\mathscr{B}(t o \gamma c)$	18	11	12
$\mathscr{B}(t \to \text{invisible})$	0	9	10

- From Cacciari et al. (hep-ph: 0804.2800) assuming CTEQ PDFs.
- Expected Limits:

CDF Run II Preliminary 1.9 fb⁻¹

Decay	ℛ _{wx/ww} (%)	175 GeV (%)
$t \to Zc$	32	28^{+14}_{-12}
$t \rightarrow gc$	27	26^{+14}_{-11}
$t o \gamma c$	18	24^{+12}_{-10}
$t \rightarrow \text{invisible}$	0	20^{+10}_{-8}

$$\int \mathcal{L}dt = 1.9 \text{ fb}^{-1}$$

Observed Limits:

CDF Run II Preliminary 1.9 fb⁻¹

Decay	$\mathcal{R}_{\mathbf{wx/ww}}$ (%)	Upper Limit (%) (175 GeV)	Upper Limit (%) (172.5 GeV)	
$\mathscr{B}(t \to Zc)$	32	13	15	
$\mathscr{B}(t \to gc)$	27	12	14	World's First
$\mathscr{B}(t o \gamma c)$	18	11	12	Mossurement!
$\mathscr{B}(t \to \text{invisible})$	0	9	10	Wicasurement:

Top FCNC Outline

The Search for Top FCNC Decay

Introduction

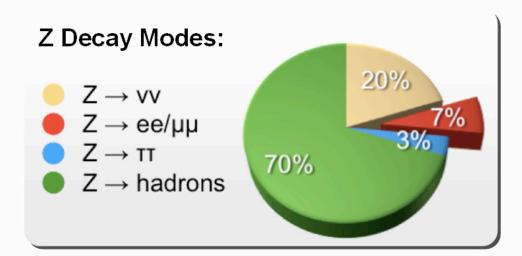
Search For Invisible Top Decays

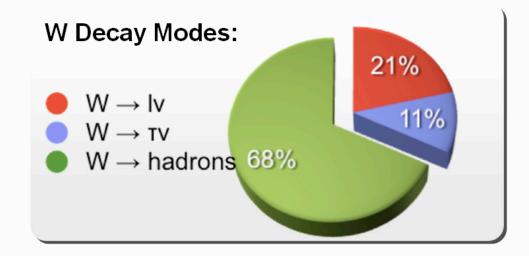
Direct FCNC Search

Acceptances

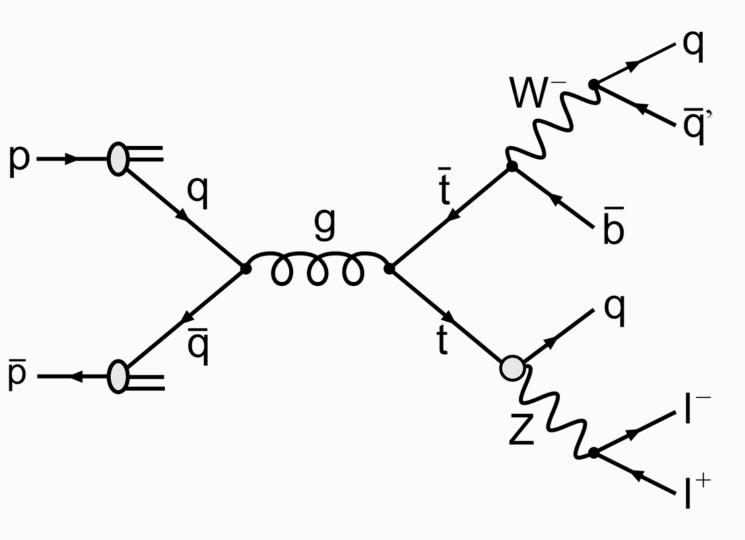
Backgrounds

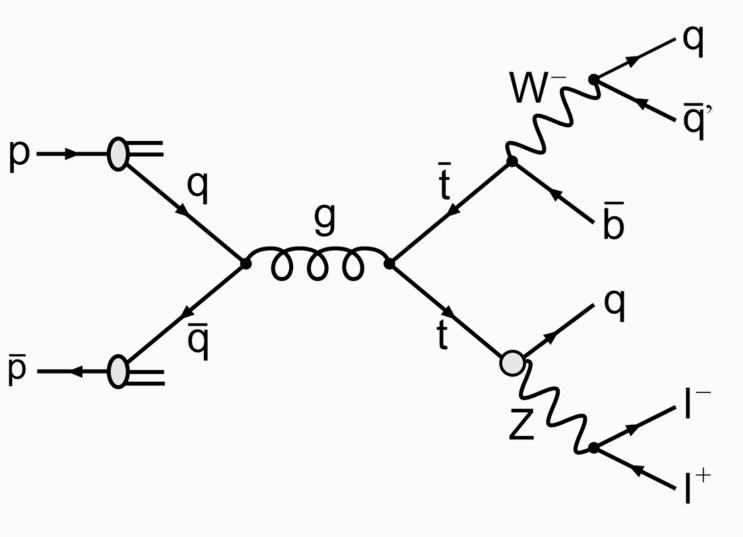
Unblinding

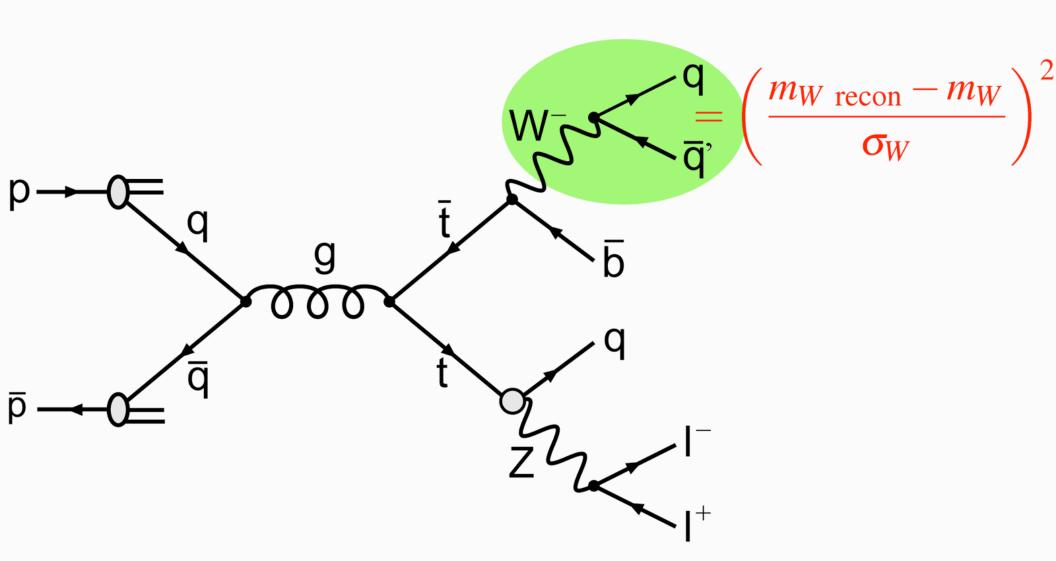

Fitting For Everything

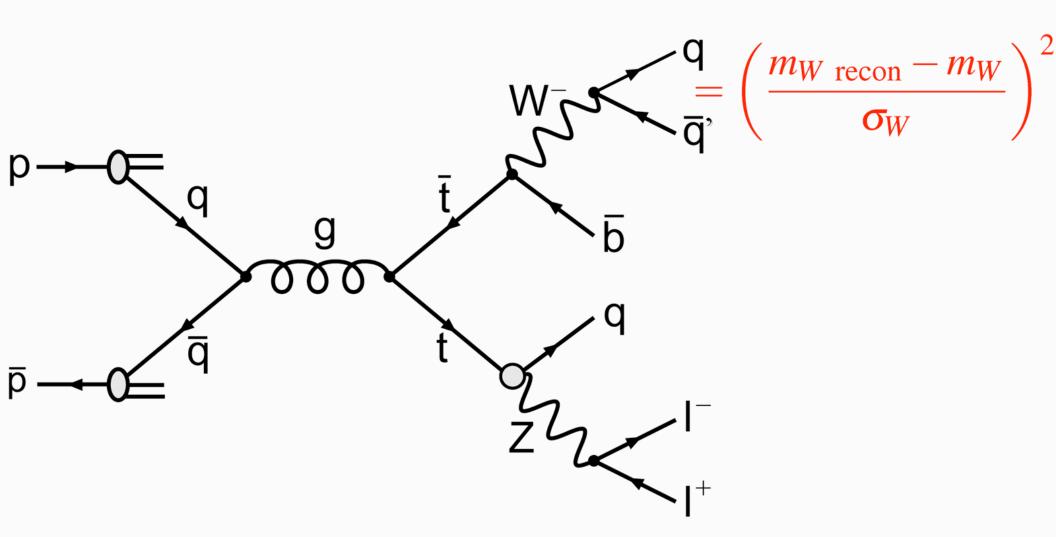


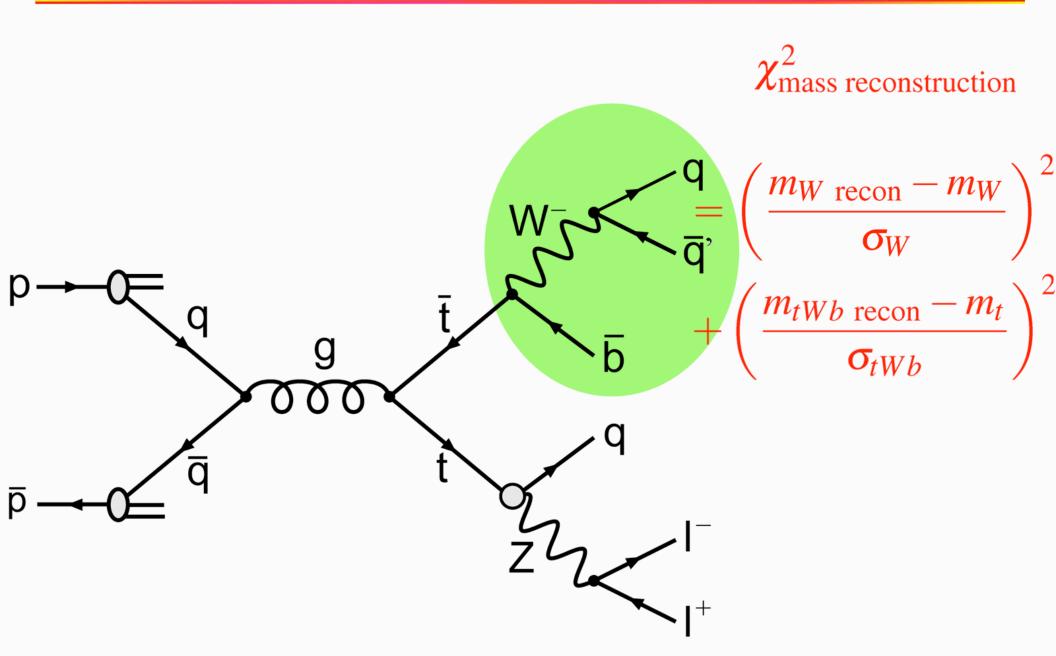
Top FCNC Direct Search: Roadmap

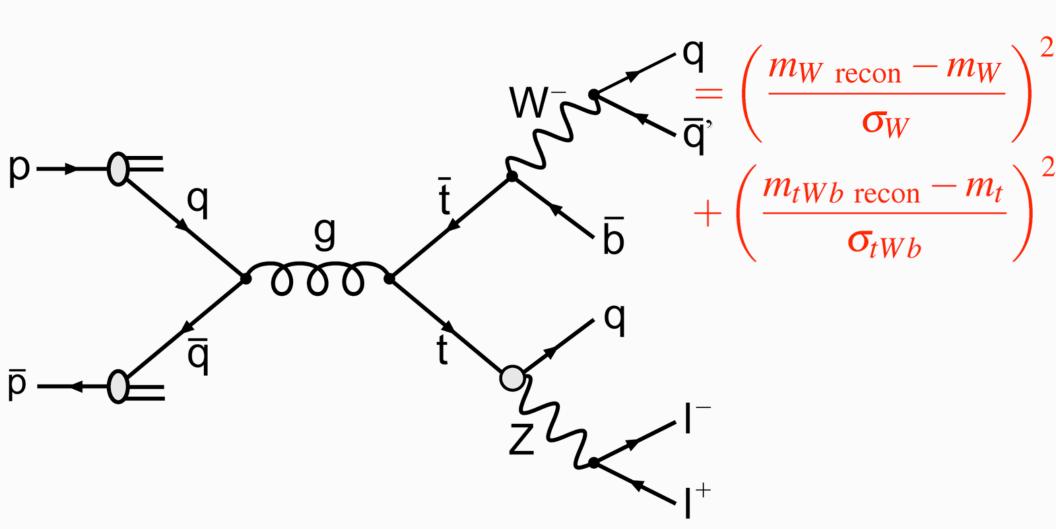

- Basic question: how often do top quarks decay into Zc?
 - Measure (or set limit) on branching fraction, Br (t → Zc).
 - Normalize to lepton + jets top pair decays.
- Selection of decay channels for tt → Zc Wb:
 - Z → charged leptons: very clean signature, lepton trigger.
 - W → hadrons: large branching fractions, no neutrinos.
 ⇒ Event can be fully reconstructed
 - Final signature: $Z + \ge 4$ jets.

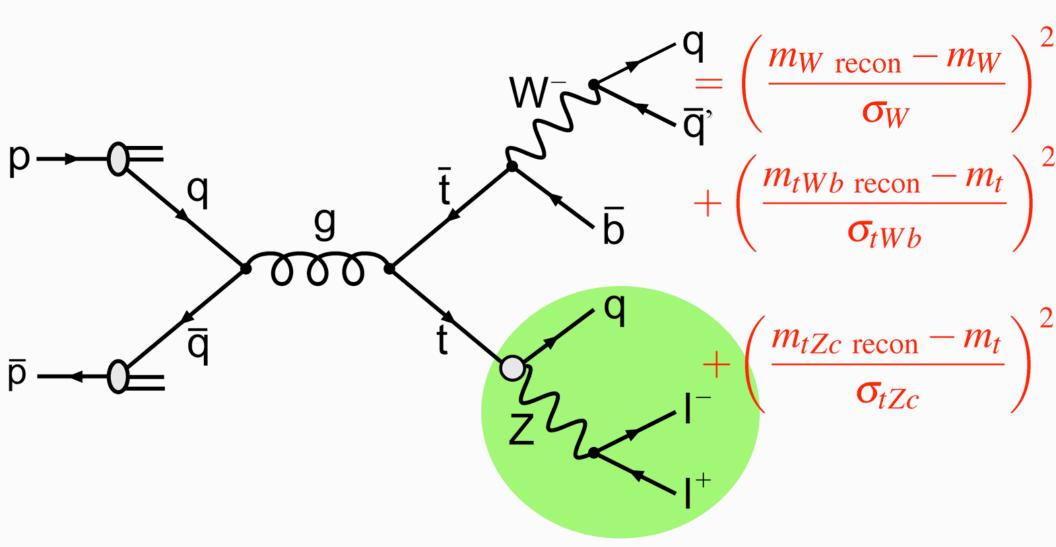


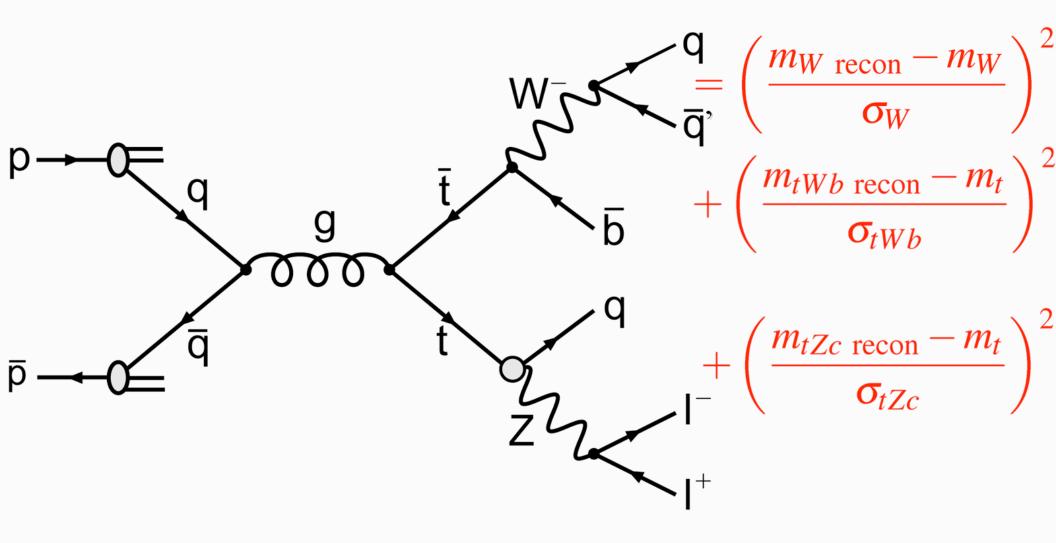




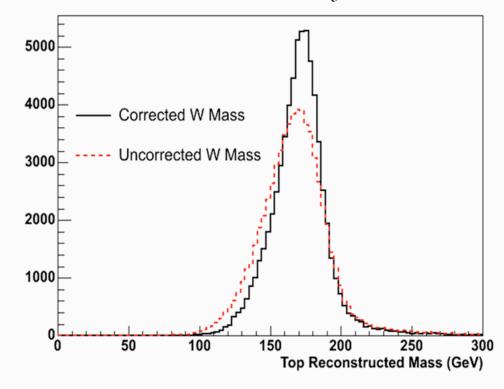








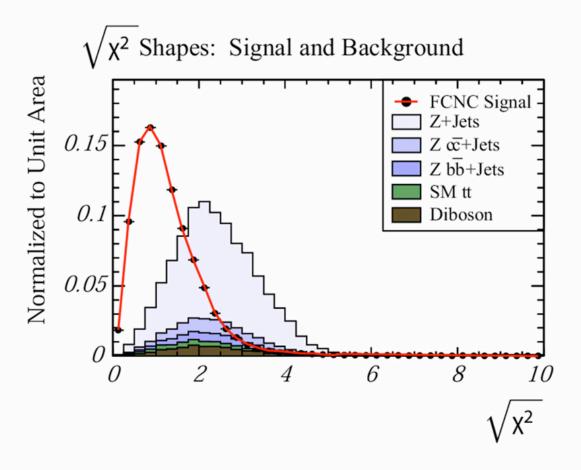
Top Mass Reconstruction

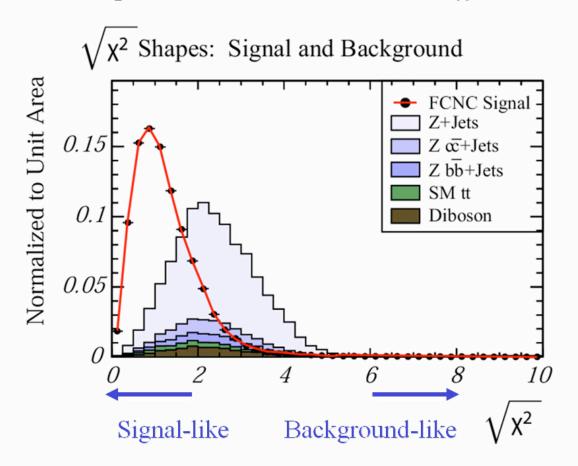


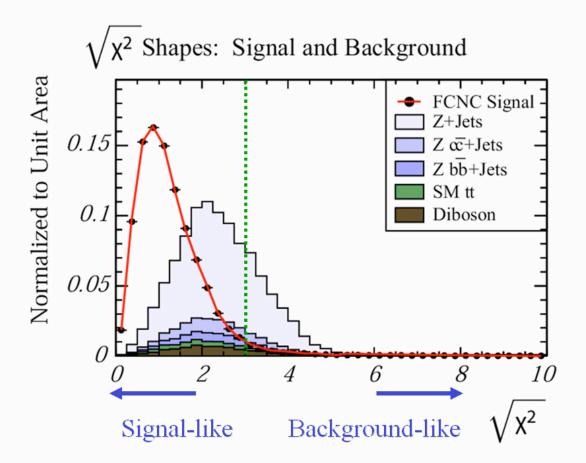
- For our signal, we have three hadronic masses to reconstruct:
 - W mass
 - t \rightarrow Wb mass
 - t \rightarrow Z c mass

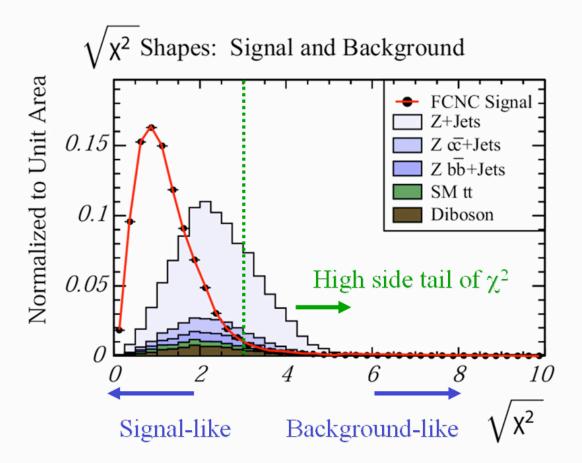
- To improve resolution, we correct the W and Z daughters so that the masses are correct.
 - Rescale the daughters within their resolutions.
 - Smaller mass resolution ⇒
 Better signal separation.

t → Wb mass resolution: 20 GeV ⇒ 16 GeV!


Signal MC with partons correctly matched to reconstructed objects.


- We do not know which partons are reconstructed as which jets.
 - \Rightarrow Loop over all 12 permutations and take lowest χ^2 value.


- We do not know which partons are reconstructed as which jets.
 - \Rightarrow Loop over all 12 permutations and take lowest χ^2 value.


- We do not know which partons are reconstructed as which jets.
 - \Rightarrow Loop over all 12 permutations and take lowest χ^2 value.

- We do not know which partons are reconstructed as which jets.
 - \Rightarrow Loop over all 12 permutations and take lowest χ^2 value.

Round 1: Blind Analysis

- Event signature: $Z \rightarrow 1^+1^- + 4$ jets.
- Motivation for blind analysis: Avoid biases by looking into the data too early.
- Blinding & unblinding strategy:
 - Initial blinded region: $Z + \ge 4$ jets.
 - Later: add control region in $Z + \ge 4$ jets from high side tail of mass χ^2 .
 - Optimization of analysis on data control regions and Monte Carlo (MC) simulation only.
 - Very last step: "opening the box",
 i.e., look into signal region in data.
 - Counting experiment:
 - ⇒ Compared expected background to observed events.

Top FCNC Outline

The Search for Top FCNC Decay

Introduction

Search For Invisible Top Decays

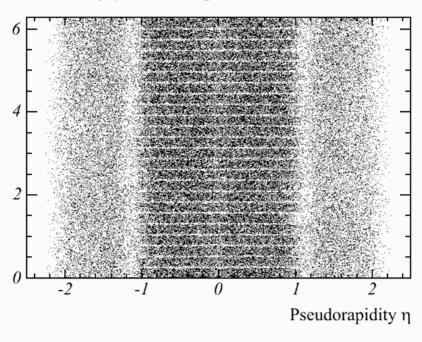
Direct FCNC Search

Acceptances

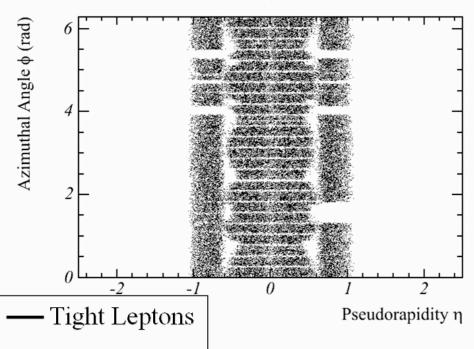
Backgrounds

Unblinding

Fitting For Everything



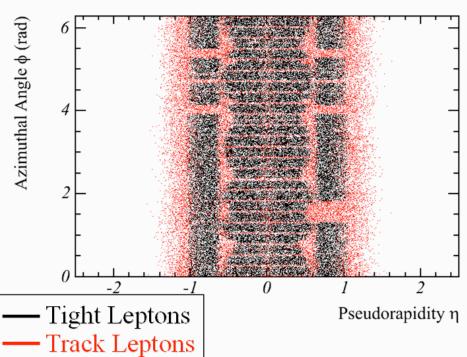
Azimuthal Angle \((rad)


Lepton + Track Z Candidates

η-φ Coverage: Electrons

η-φ Coverage: Muons

- Use isolated track (instead of tight lepton) for second lepton.
 - Doubles acceptance.
 - Almost all backgrounds have real leptons.
- Base Event Selection:
 - Tight lepton + track lepton Z candidate.
 - At least four jets ($|\eta| < 2.4$, corrected $E_T > 15$ GeV).


Lepton + Track Z Candidates

η-φ Coverage: Electrons

 $\frac{6}{4}$

η-φ Coverage: Muons

- Use isolated track (instead of tight lepton) for second lepton.
 - Doubles acceptance.
 - Almost all backgrounds have real leptons.
- Base Event Selection:
 - Tight lepton + track lepton Z candidate.
 - At least four jets ($|\eta| < 2.4$, corrected $E_T > 15$ GeV).

To B-Tag or not to B-Tag?

- Advantage of requiring b-tag:
 - ⇒ Better discrimination against main background (Z + jets).
- Disadvantage:
 - \Rightarrow Reduction of data sample size.

	Before	At least
\mathbf{Sample}	tagging	1 b-tag
Background	130	20
	(100%)	(15%)
Relative		
Signal Acceptance	100%	50%

To B-Tag or not to B-Tag?

- Advantage of requiring b-tag:
 - ⇒ Better discrimination against main background (Z + jets).
- Disadvantage:
 - \Rightarrow Reduction of data sample size.

	Before	At least
\mathbf{Sample}	tagging	1 b-tag
Background	130	20
	(100%)	(15%)
Relative		
Signal Acceptance	100%	50%

- Solution: Use both!
 - Split sample in tagged (at least one tagged jet) and anti-tagged (no tagged jets).
 - Optimize cuts individually for tagged and anti-tagged samples.
 - Combine samples in limit calculation.

$$\mathcal{N}_{\text{signal}} = [(\mathscr{P}(t\bar{t} \to WbZc) \cdot \mathscr{A}_{WZ}) + (\mathscr{P}(t\bar{t} \to ZcZc) \cdot \mathscr{A}_{ZZ})] \cdot \sigma_{t\bar{t}} \cdot \int \mathscr{L}dt$$

$$\mathscr{N}_{\text{signal}} = [(\mathscr{P}(t\bar{t} \to WbZc) \cdot \mathscr{A}_{WZ}) + (\mathscr{P}(t\bar{t} \to ZcZc) \cdot \mathscr{A}_{ZZ})] \cdot \sigma_{t\bar{t}} \cdot \int \mathscr{L}dt$$

$$\mathcal{N}_{\text{signal}} = \left[(\mathcal{P}(t\bar{t} \to WbZc) \cdot \mathcal{A}_{WZ}) + (\mathcal{P}(t\bar{t} \to ZcZc) \cdot \mathcal{A}_{ZZ}) \right] \cdot \frac{\sigma_{t\bar{t}}}{\sigma_{t\bar{t}}} \cdot \int \mathcal{L}dt$$

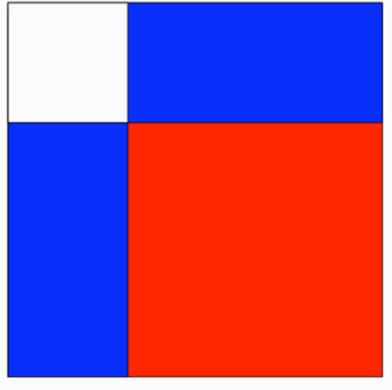
$$= \left[(\mathcal{P}(t\bar{t} \to WbZc) \cdot \mathcal{A}_{WZ}) + (\mathcal{P}(t\bar{t} \to ZcZc) \cdot \mathcal{A}_{ZZ}) \right] \cdot \frac{(\mathcal{N}_{LJ} - B_{LJ})}{\mathcal{A}_{LJ} \cdot (\mathcal{L}dt)} \cdot \int \mathcal{L}dt$$

$$\mathcal{N}_{\text{signal}} = \left[(\mathcal{P}(t\bar{t} \to WbZc) \cdot \mathcal{A}_{WZ}) + (\mathcal{P}(t\bar{t} \to ZcZc) \cdot \mathcal{A}_{ZZ}) \right] \cdot \sigma_{t\bar{t}} \cdot \int \mathcal{L}dt$$

$$= \left[(\mathcal{P}(t\bar{t} \to WbZc) \cdot \mathcal{A}_{WZ}) + (\mathcal{P}(t\bar{t} \to ZcZc) \cdot \mathcal{A}_{ZZ}) \right] \cdot \frac{(\mathcal{N}_{LJ} - B_{LJ})}{\mathcal{A}_{LJ} \cdot [\mathcal{P}dt]} \cdot \int \mathcal{P}dt$$

$$\mathcal{N}_{\text{signal}} = \left[(\mathcal{P}(t\bar{t} \to WbZc) \cdot \mathcal{A}_{WZ}) + (\mathcal{P}(t\bar{t} \to ZcZc) \cdot \mathcal{A}_{ZZ}) \right] \cdot \sigma_{t\bar{t}} \cdot \int \mathcal{L}dt$$

$$= \left[(\mathcal{P}(t\bar{t} \to WbZc) \cdot \mathcal{A}_{WZ}) + (\mathcal{P}(t\bar{t} \to ZcZc) \cdot \mathcal{A}_{ZZ}) \right] \cdot \frac{(\mathcal{N}_{LJ} - B_{LJ})}{\mathcal{A}_{LJ}}$$



$$\mathcal{N}_{\text{signal}} = [(\mathcal{P}(t\bar{t} \to WbZc) \cdot \mathcal{A}_{WZ}) + (\mathcal{P}(t\bar{t} \to ZcZc) \cdot \mathcal{A}_{ZZ})] \cdot \sigma_{t\bar{t}} \cdot \int \mathcal{L}dt$$

$$= [(\mathcal{P}(t\bar{t} \to WbZc) \cdot \mathcal{A}_{WZ}) + (\mathcal{P}(t\bar{t} \to ZcZc) \cdot \mathcal{A}_{ZZ})] \cdot \frac{(\mathcal{N}_{LJ} - B_{LJ})}{\mathcal{A}_{LJ}}$$

$$\text{Br } (t \to Wb) = 68\% \quad \text{Br } (t \to Zc) = 32\%$$

- $P(t\bar{t} \to WbWb) = 46.24\%$
- $P(t\bar{t} \rightarrow Wb Zc) = 43.52\%$
- \square P(tt \rightarrow Z c Zc) = 10.24%

CERN Seminar, July 2nd, 2008

Solution: Running Acceptance

$$\mathcal{N}_{\text{signal}} = \left[(\mathcal{P}(t\bar{t} \to WbZc) \cdot \mathcal{A}_{WZ}) + (\mathcal{P}(t\bar{t} \to ZcZc) \cdot \mathcal{A}_{ZZ}) \right] \cdot \sigma_{t\bar{t}}(\mathcal{B}_{Z}) \cdot \int \mathcal{L}dt$$
... 1/2 page of algebra ...
$$= \mathcal{B}_{Z} \cdot (\mathcal{N}_{LJ} - B_{LJ}) \cdot \frac{\mathcal{A}_{WZ}}{\mathcal{A}_{LJ_{\text{ww}}}} \cdot \frac{\left(2 \cdot (1 - \mathcal{B}_{Z}) + K_{ZZ/WZ} \cdot \mathcal{B}_{Z}\right)}{(1 - \mathcal{B}_{Z})^{2} + 2 \cdot \mathcal{B}_{Z}(1 - \mathcal{B}_{Z}) \cdot \mathcal{R}_{\text{wz/ww}} + \mathcal{B}_{Z}^{2} \cdot \mathcal{R}_{\text{zz/ww}}}$$

Acc.

Ratio

- Acceptance and σ_{tt} depend on \mathscr{B}_{Z}
- Our limit code recalculates acceptance as a function of branching fraction.

L+J yield

- Normalization to double-tagged top pair cross section measurement:
 - Smallest overlap ($\mathcal{R}_{\text{WZ/WW}}$) between acceptances.

$$\mathcal{B}_{Z} \equiv Br(t \to Zc) = 1 - Br(t \to Wb)$$
 $\mathcal{A}_{WZ} \equiv FCNC$ acceptance

 $\mathcal{A}_{ZZ} \equiv Double FCNC$ acceptance

 $\mathcal{A}_{LJ_{WW}} \equiv L+J$ acceptance for SM $t\bar{t}$
 $\mathcal{A}_{LJ_{WZ}} \equiv L+J$ acceptance for FCNC

 $\mathcal{A}_{LJ_{ZZ}} \equiv L+J$ acceptance for FCNC

 $\mathcal{K}_{ZZ/WZ} \equiv \mathcal{A}_{ZZ}/\mathcal{A}_{WZ}$
 $\mathcal{R}_{WZ/WW} \equiv \mathcal{A}_{LJ_{WZ}}/\mathcal{A}_{LJ_{WW}}$
 $\mathcal{R}_{ZZ/WW} \equiv \mathcal{A}_{LJ_{ZZ}}/\mathcal{A}_{LJ_{WW}}$

"Running" Acceptance Correction

Solution: Running Acceptance

$$\mathcal{N}_{\text{signal}} = \left[(\mathcal{P}(t\bar{t} \to WbZc) \cdot \mathcal{A}_{WZ}) + (\mathcal{P}(t\bar{t} \to ZcZc) \cdot \mathcal{A}_{ZZ}) \right] \cdot \sigma_{t\bar{t}}(\mathcal{B}_{Z}) \cdot \int \mathcal{L}dt$$
... 1/2 page of algebra ...
$$= \mathcal{B}_{Z} \cdot (\mathcal{N}_{LJ} - B_{LJ}) \cdot \frac{\mathcal{A}_{WZ}}{\mathcal{A}_{LJ_{ww}}} \cdot \frac{(2 \cdot (1 - \mathcal{B}_{Z}) + K_{ZZ/WZ} \cdot \mathcal{B}_{Z})}{(1 - \mathcal{B}_{Z})^{2} + 2 \cdot \mathcal{B}_{Z}(1 - \mathcal{B}_{Z}) \cdot \mathcal{R}_{wz/ww} + \mathcal{B}_{Z}^{2} \cdot \mathcal{R}_{zz/ww}}$$
Acc.

- Acceptance and σ_{tt} depend on \mathscr{B}_{Z}
- Our limit code recalculates acceptance as a function of branching fraction.

L+J yield

Ratio

- Normalization to double-tagged top pair cross section measurement:
 - Smallest overlap ($\mathcal{R}_{\text{WZ/WW}}$) between acceptances.

$$\mathcal{B}_{Z} \equiv Br(t \rightarrow Zc) = 1 - Br(t \rightarrow Wb)$$
 $\mathcal{A}_{WZ} \equiv FCNC$ acceptance

 $\mathcal{A}_{ZZ} \equiv Double FCNC$ acceptance

 $\mathcal{A}_{LJ_{WW}} \equiv L+J$ acceptance for SM $t\bar{t}$
 $\mathcal{A}_{LJ_{WZ}} \equiv L+J$ acceptance for FCNC

 $\mathcal{A}_{LJ_{ZZ}} \equiv L+J$ acceptance for FCNC

 $\mathcal{K}_{ZZ/WZ} \equiv \mathcal{A}_{ZZ}/\mathcal{A}_{WZ}$
 $\mathcal{R}_{WZ/WW} \equiv \mathcal{A}_{LJ_{WZ}}/\mathcal{A}_{LJ_{WW}}$
 $\mathcal{R}_{ZZ/WW} \equiv \mathcal{A}_{LJ_{ZZ}}/\mathcal{A}_{LJ_{WW}}$

"Running" Acceptance Correction

Top FCNC Outline

The Search for Top FCNC Decay

Introduction

Search For Invisible Top Decays

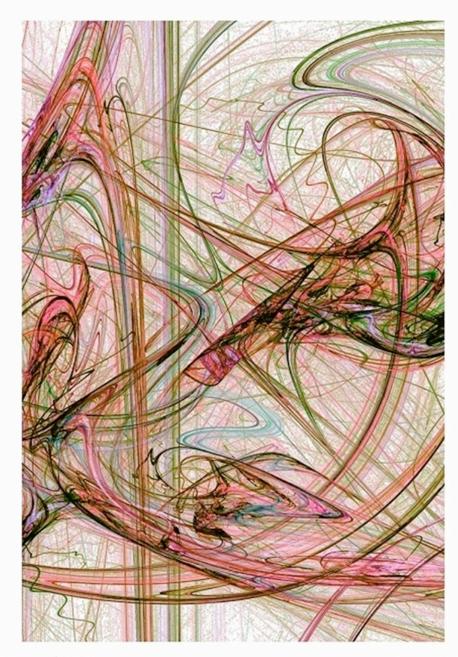
Direct FCNC Search

Acceptances

Backgrounds

Unblinding

Fitting For Everything



- How do you search for a signal that is likely not there? Understand the background!
- Standard model processes that can mimic
 Z + ≥4 jets signature:
 - Z+Jets: Z boson production in association with jets
 → dominant background for top FCNC search, most difficult to estimate
 - Standard model top pair production
 → small background
 - Dibosons: WZ and ZZ diboson production → small background
 - W+Jets, WW: negligible
- Top FCNC background estimate: mixture of data driven techniques and MC predictions

- How do you search for a signal that is likely not there? Understand the background!
- Standard model processes that can mimic Z + ≥4 jets signature:
 - Z+Jets: Z boson production in association with jets
 → dominant background for top FCNC search, most difficult to estimate
 - Standard model top pair production
 → small background
 - Dibosons: WZ and ZZ diboson production → small background
 - W+Jets, WW: negligible
- Top FCNC background estimate: mixture of data driven techniques and MC predictions

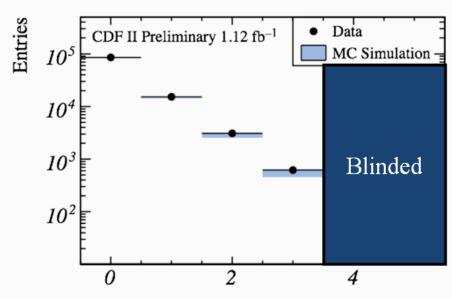
- How do you search for a signal that is likely not there? Understand the background!
- Standard model processes that can mimic
 Z + ≥4 jets signature:
 - Z+Jets: Z boson production in association with jets
 → dominant background for top FCNC search, most difficult to estimate
 - Standard model top pair production
 → small background
 - Dibosons: WZ and ZZ diboson production → small background
 - W+Jets, WW: negligible
- Top FCNC background estimate: mixture of data driven techniques and MC predictions

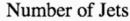
Standard Model Top Pair Production

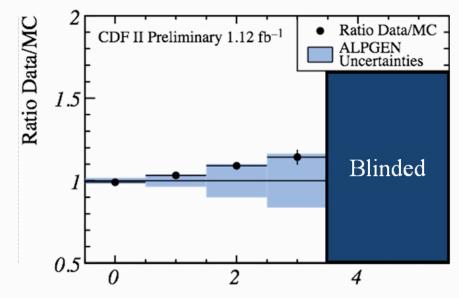
- Small background: no real Z, need extra jets from gluon radiation and/or "fake lepton."
- Dilepton channel
 (tt → Wb Wb → lvb lvb):
 dilepton invariant mass can fall into Z mass window.
- Lepton + Jets channel
 (tt → Wb Wb → lvb qq'b):
 misreconstruct one jet as a lepton
 ("fake"), invariant mass of lepton and
 fake lepton can fall into Z mass window.
- Large fraction of heavy flavor jets: more important in b-tagged samples.
- Estimated from MC simulation.

- How do you search for a signal that is likely not there? Understand the background!
- Standard model processes that can mimic
 Z + ≥4 jets signature:
 - Z+Jets: Z boson production in association with jets
 → dominant background for top FCNC search, most difficult to estimate
 - Standard model top pair production
 → small background
 - Dibosons: WZ and ZZ diboson production → small background
 - W+Jets, WW: negligible
- Top FCNC background estimate: mixture of data driven techniques and MC predictions

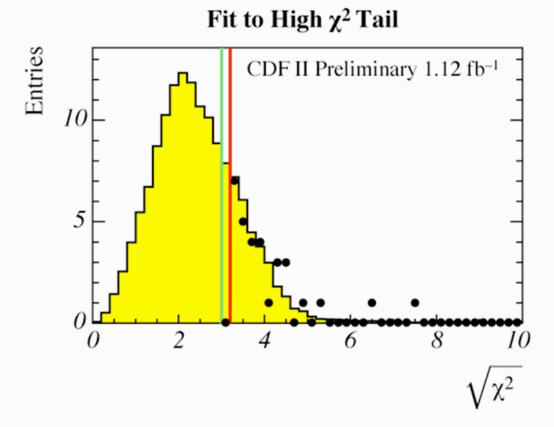
Diboson Production: WZ, ZZ


- Small background (similar in size to standard model tt production).
- Small cross section but real Z.
- Need extra jets from gluon radiation.
- ZZ: Heavy flavor contribution from Z → bb decay.
- Estimated from MC simulation.




Z+Jets Production

- MC tool for Z+Jets: ALPGEN
 - Modern MC generator for multiparticle final states
 - "MLM matching" prescription to remove overlap between jets from matrix element and partons showers
- Comparing ALPGEN with data:
 - Leading order generator: no absolute prediction for cross section.
 - After normalization to total Z yield, still underestimates of number of events with large jet multiplicities.
- Our strategy: only shapes of kinematic distributions from MC, normalization from control samples in data.
 - Normalize to the high side tail of mass χ^2 in data.


Number of Jets

Base Selection Background Estimate

- Fit from high side of χ² tail :
 130 ± 28 total background events.
- Background tagging rate:
 - 5 of 31 events are tagged.
 - Combine with data-based method in lower jet bins.
 - \Rightarrow 15% \pm 4% background event tag rate.

Selection	Expected
Base Selection	130±28
Base Selection (Tagged)	20 ± 6

Optimized Signal Region Selection

Optimized for best average expected limit.

Kinematic Variable	Optimized Cut
Z Mass	\in [76,106] GeV/ c^2
Leading Jet E_T	$\geq 40\mathrm{GeV}$
Second Jet E_T	$\geq 30\mathrm{GeV}$
Third Jet E_T	$\geq 20\mathrm{GeV}$
Fourth Jet E_T	$\geq 15\mathrm{GeV}$
Transverse Mass	$\geq 200\mathrm{GeV}$
$\sqrt{\chi^2}$	< 1.6 (<i>b</i> -tagged)
V	< 1.35 (anti-tagged)

Selection	Expected
Anti-Tagged Selection	7.7 ± 1.8
Tagged Selection	3.2 ± 1.1

 Systematic uncertainties are taken into account, but do not affect limit very strongly.

Top FCNC Outline

The Search for Top FCNC Decay

Introduction

Search For Invisible Top Decays

Direct FCNC Search

Acceptances

Backgrounds

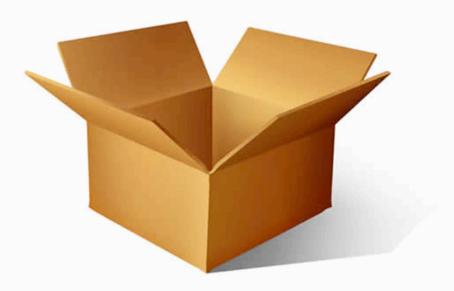
Unblinding

Fitting For Everything

First Look

• Before we unblind the signal regions, we want to check our base predictions:

Selection	Observed	Expected
Base Selection	141	130 ± 28
Base Selection (Tagged)	17	20 ± 6


First Look

 Before we unblind the signal regions, we want to check our base predictions:

Selection	Observed	Expected
Base Selection	141	130±28
Base Selection (Tagged)	17	20 ± 6

• So far, so good... Let's open the box!

Open the Signal Box

- Opening the box with 1.1 fb⁻¹
 - Event yield consistent with background only.
 - Fluctuated about 1σ high: slightly "unlucky."

Selection	Observed	Expected
Base Selection	141	130±28
Base Selection (Tagged)	17	20 ± 6
Anti-Tagged Selection	12	7.7 ± 1.8
Tagged Selection	4	3.2 ± 1.1

• Result:

$$\mathscr{B}(t \to Zq) < 10.4\%$$
 @ 95%C.L.

- Expected limit: $6.8\% \pm 2.9\%$.

Open the Signal Box

- Opening the box with 1.1 fb⁻¹
 - Event yield consistent with background only.
 - Fluctuated about 1σ high: slightly "unlucky."

Selection	Observed	Expected
Base Selection	141	130±28
Base Selection (Tagged)	17	20 ± 6
Anti-Tagged Selection	12	7.7 ± 1.8
Tagged Selection	4	3.2 ± 1.1

• Result:

$$\mathscr{B}(t \to Zq) < 10.4\%$$
 @ 95%C.L.

- Expected limit: $6.8\% \pm 2.9\%$.

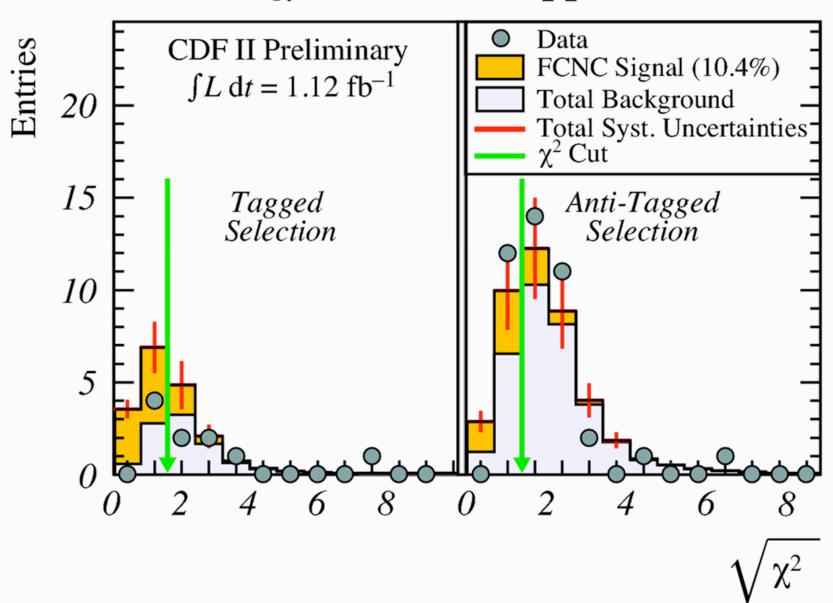
Open the Signal Box

- Opening the box with 1.1 fb⁻¹
 - Event yield consistent with background only.
 - Fluctuated about 1σ high: slightly "unlucky."
 - "unlucky."

Selection	Observed	Expected
Base Selection	141	130±28
Base Selection (Tagged)	17	20 ± 6
Anti-Tagged Selection	12	7.7 ± 1.8
Tagged Selection	4	3.2 ± 1.1

Or is it the first hint of a signal?!

• Result:


$$\mathscr{B}(t \to Zq) < 10.4\%$$
 @ 95%C.L.

- Expected limit: $6.8\% \pm 2.9\%$.

Mass χ^2 (95% C.L. Upper Limit)

Top FCNC Outline

The Search for Top FCNC Decay

Introduction

Search For Invisible Top Decays

Direct FCNC Search

Acceptances

Backgrounds

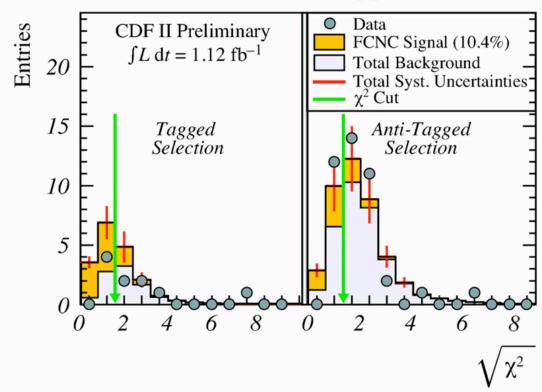
Unblinding

Fitting For Everything

Round 2: Is That The Best We Can Do?

• More $\int \mathcal{L} dt$:

- Add 70% more data (1.9 fb^{-1}) .


• Fit χ^2 Shape:

- Previous version: counting experiment.
- Template fit to √χ² shape: exploit full shape information, less sensitive to background normalization.

Build on previous experience:

- Same event selection
- Same acceptance algebra
- Same method of calculating (most) systematic uncertainties

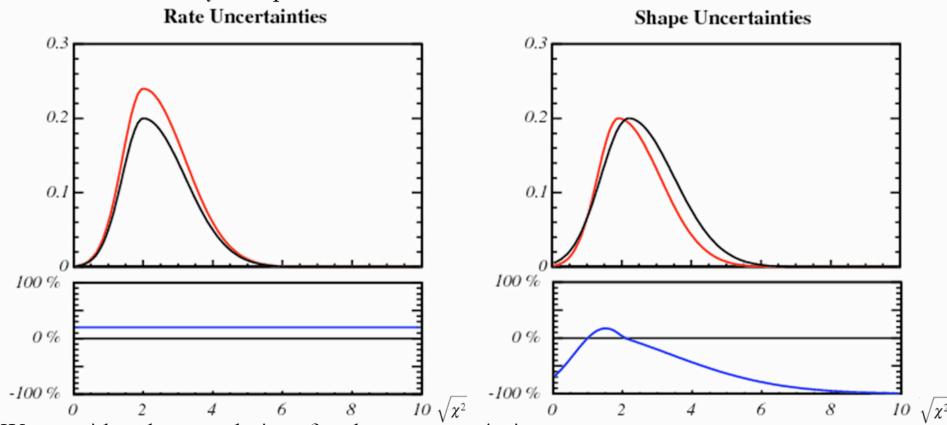
Mass χ^2 (95% C.L. Upper Limit)

Differences From Counting Experiment

Advantages:

- Absolute estimation of Z + jets background is difficult. This drove the counting experiment.
- Since we are fitting:
 - No absolute Z + jets background estimation needed.
 - No estimate of Z + jets tagging fraction needed.
- \Rightarrow Let these both float in the fit.
 - Smaller backgrounds are fixed to SM expectations.

Disadvantages:

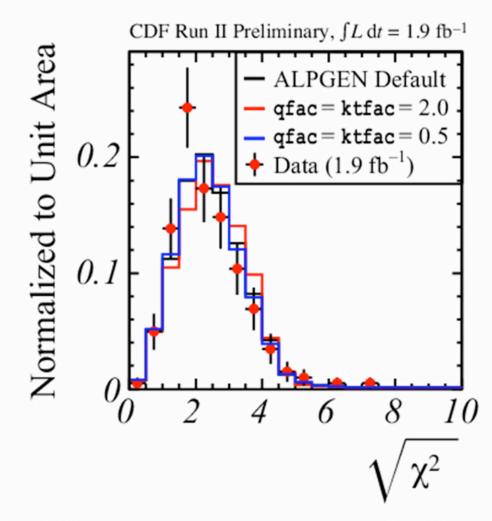

- Counting experiment does not have shape systematic uncertainties.
 - Counting experiment: Only worry about ratios of acceptances.
 - Fit χ^2 : We need to understand and account for this.

Shape Uncertainties

What do we mean by "shape uncertainties"?

- We considered many choices for shape uncertainties.
- The two dominant effects were much larger than all others.
 - Factorization/Renormalization (Q²) scale for Z + jets MC.
 - Jet energy scale uncertainties.

Shape Uncertainties: Q²

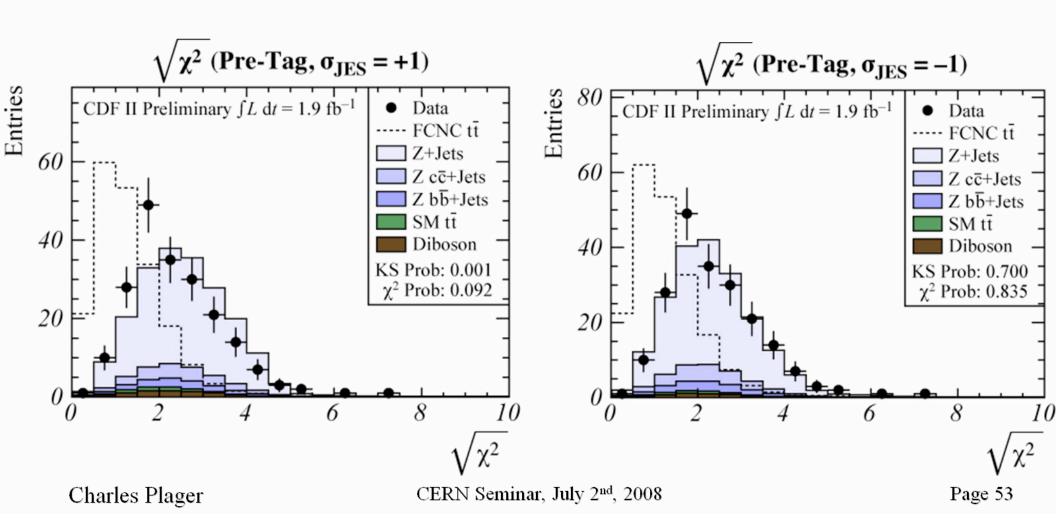

- ALPGEN: two Q² "knobs" to turn.
 - Factorization/renormalization scale:

$$Q = \operatorname{qfac} \times \sqrt{M_Z^2 + \sum p_T^2(p)}$$

- Vertex Q² (for evaluation of α_S):

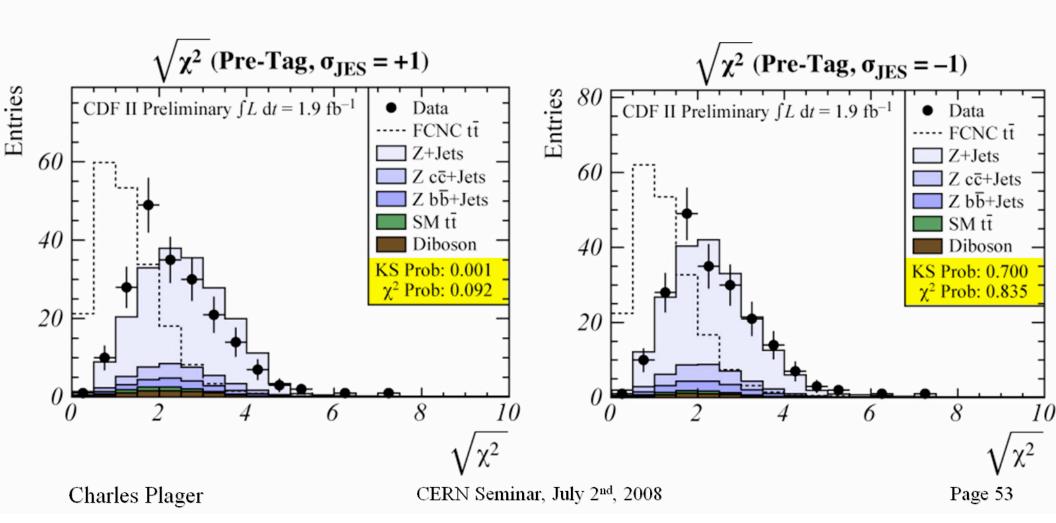
$$Q = \text{ktfac} \times p_T$$

- We turn both at the same time.
- Not enough to explain data.

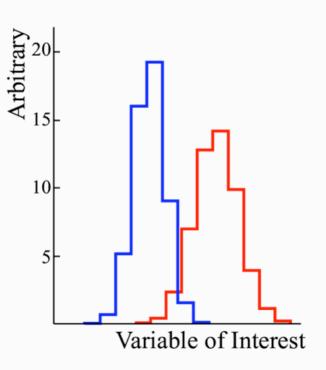


Shape Uncertainties: JES

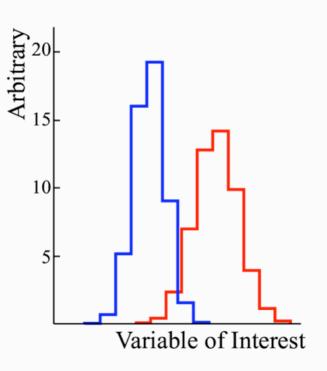
- We need to convert "raw" jets to "corrected" jets
 - ⇒ Jet Energy Scale correction (JES)
 - Takes into account detector effects, neutral particles in jets, particles outside of the jet cone, underlying events, multiple interactions, ...



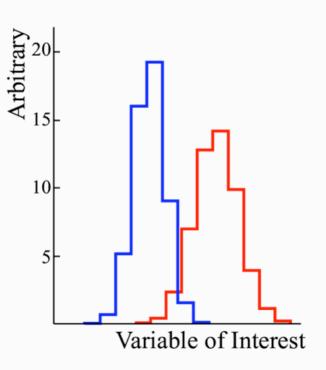
Shape Uncertainties: JES

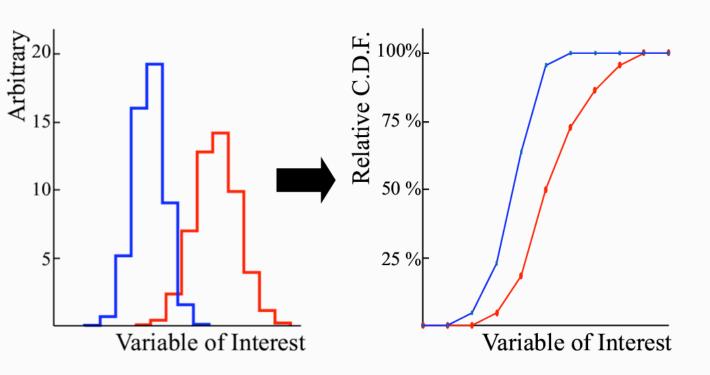

- We need to convert "raw" jets to "corrected" jets
 - ⇒ Jet Energy Scale correction (JES)
 - Takes into account detector effects, neutral particles in jets, particles outside of the jet cone, underlying events, multiple interactions, ...

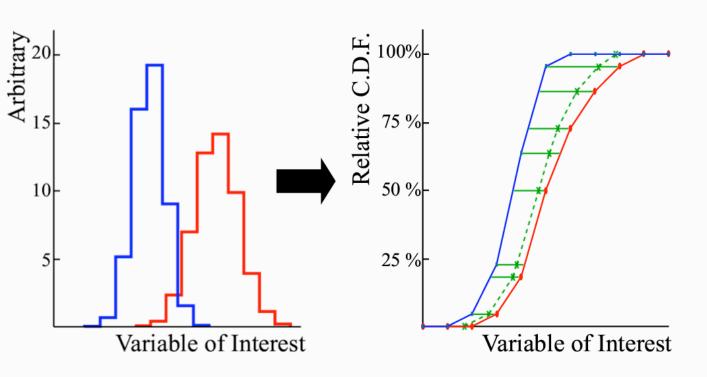
- Now that we have JES shifts, how do we incorporate this in our machinery?
 ⇒ Implemented *compound horizontal template morphing*.
- Horizontal morphing is simply interpolating between two normalized cumulative distribution functions (*i.e.*, the normalized integral of the histogram).



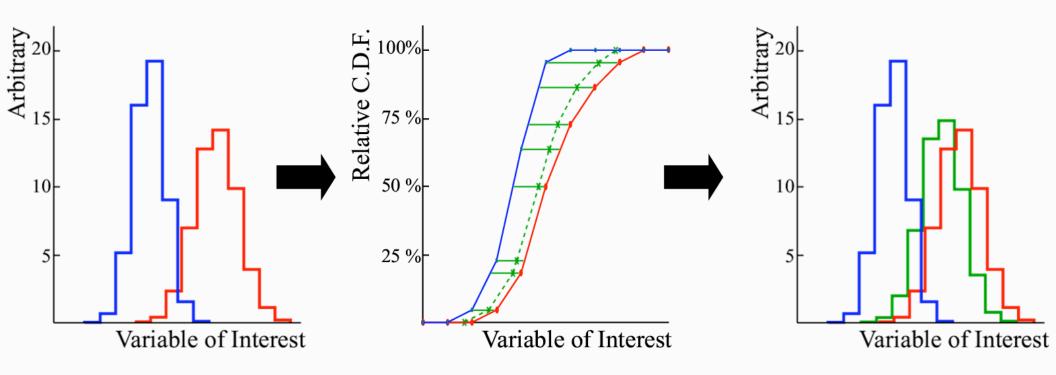
"Everything You Always Wanted To Know About Template Morphing But Were Afraid To Ask."


- Now that we have JES shifts, how do we incorporate this in our machinery?
 ⇒ Implemented *compound horizontal template morphing*.
- Horizontal morphing is simply interpolating between two normalized cumulative distribution functions (*i.e.*, the normalized integral of the histogram).


- Now that we have JES shifts, how do we incorporate this in our machinery?
 ⇒ Implemented *compound horizontal template morphing*.
- Horizontal morphing is simply interpolating between two normalized cumulative distribution functions (*i.e.*, the normalized integral of the histogram).

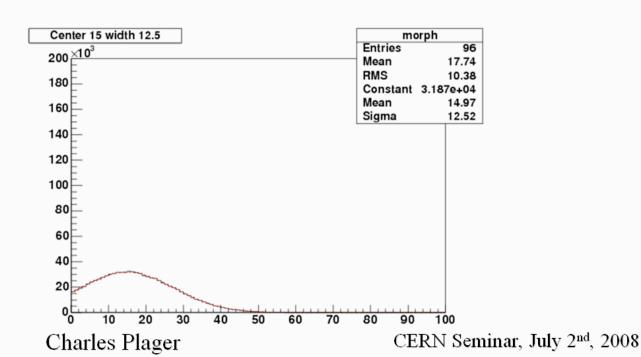

- Now that we have JES shifts, how do we incorporate this in our machinery?
 ⇒ Implemented *compound horizontal template morphing*.
- Horizontal morphing is simply interpolating between two normalized cumulative distribution functions (*i.e.*, the normalized integral of the histogram).

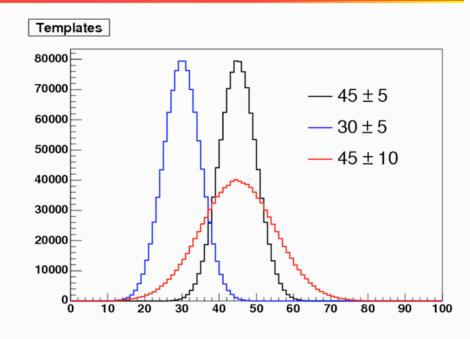
- Now that we have JES shifts, how do we incorporate this in our machinery?
 ⇒ Implemented compound horizontal template morphing.
- Horizontal morphing is simply interpolating between two normalized cumulative distribution functions (*i.e.*, the normalized integral of the histogram).
 - The green C.D.F. curve is the 75% interpolation between the blue and red C.D.F. curves.



Template Morphing

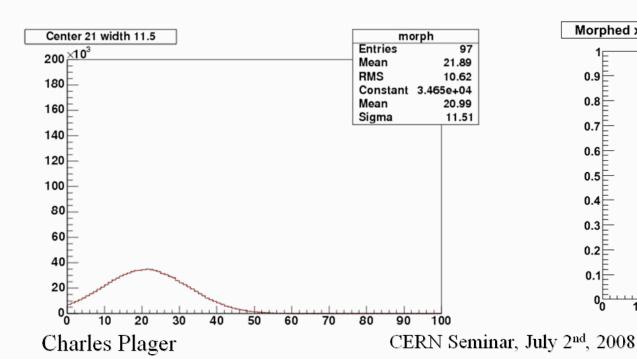
- Now that we have JES shifts, how do we incorporate this in our machinery?
 ⇒ Implemented compound horizontal template morphing.
- Horizontal morphing is simply interpolating between two normalized cumulative distribution functions (*i.e.*, the normalized integral of the histogram).
 - The green C.D.F. curve is the 75% interpolation between the blue and red C.D.F. curves.

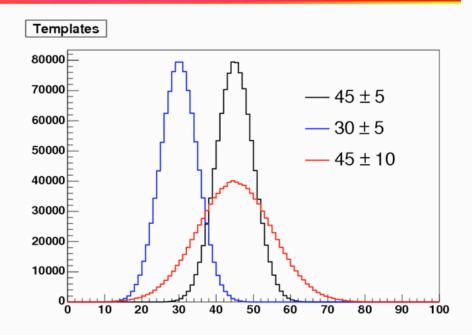


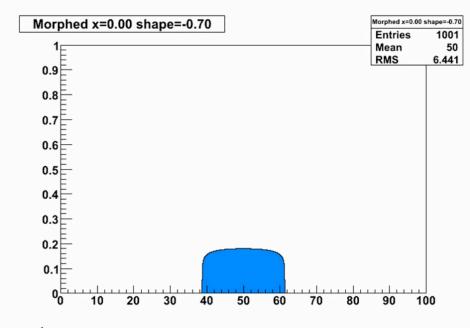


Does Morphing Work?

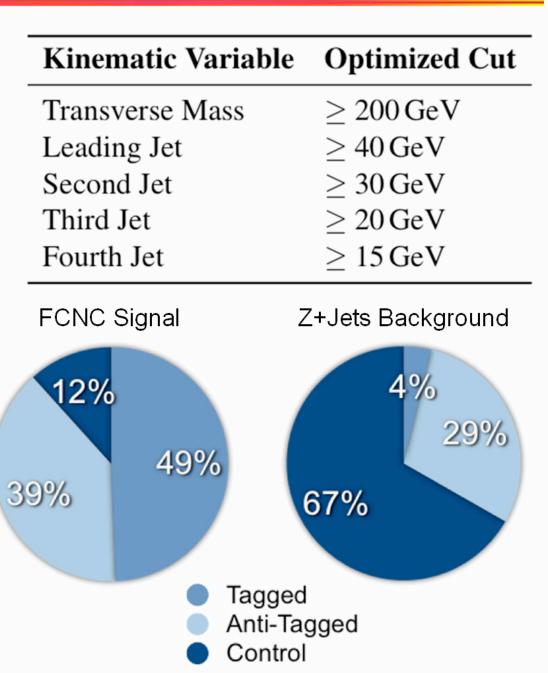
- Test with Gaussians
 - Easy to verify it is working as expected.
- Works on much more complicated shapes.
 - Squares
 - Half-circles
 - mass χ^2 shapes





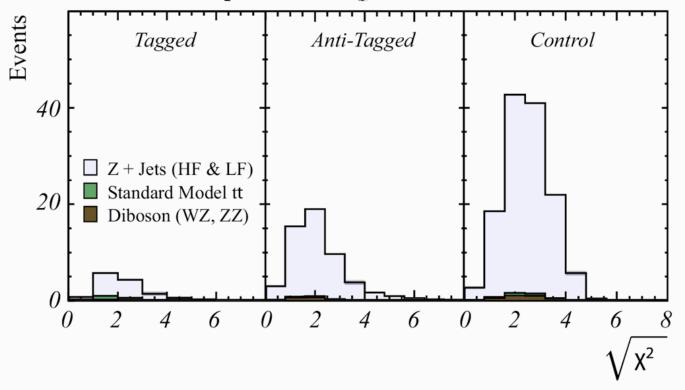

Does Morphing Work?

- Test with Gaussians
 - Easy to verify it is working as expected.
- Works on much more complicated shapes.
 - Squares
 - Half-circles
 - mass χ^2 shapes



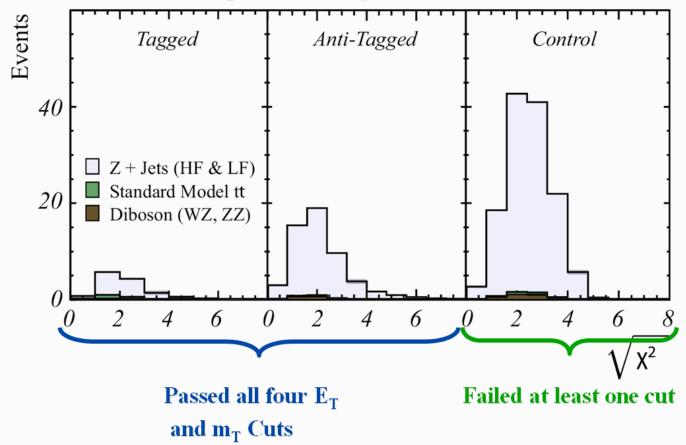
Signal and Control Regions

- "How do we control shape uncertainties without hiding a small signal?"
- Solution: add control region with little signal acceptance:
 - Constrain shape uncertainties without "morphing away" signal.
 - Definition: At least one optimized E_T or m_T cut failed (do not look at any b-tagging information).

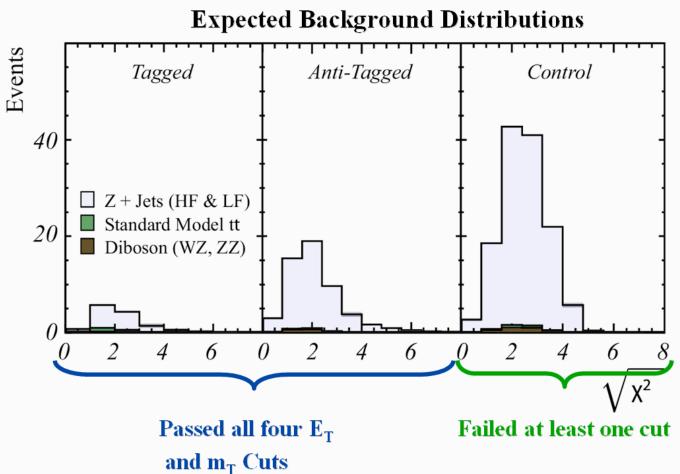


- We have validated that the MC works fairly well in a jet bin, but we do not trust
 it across jet bins.
 - \Rightarrow No absolute Z + jet constraints.
- Use MC to predict the ratio of Z + jets acceptance in the two signal regions to the control region.

Expected Background Distributions

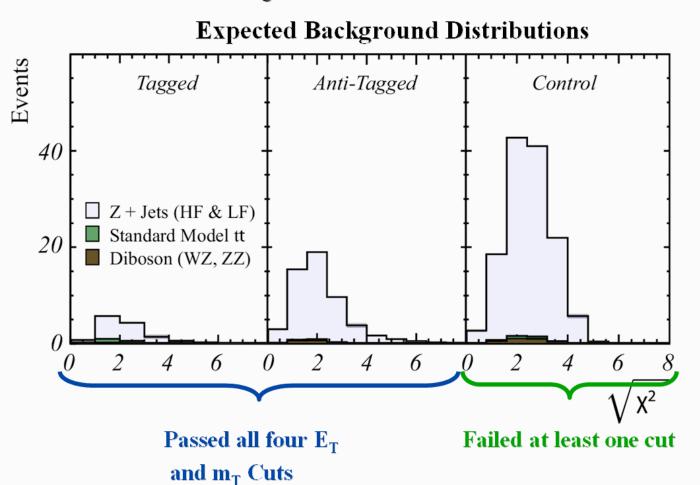


- We have validated that the MC works fairly well in a jet bin, but we do not trust
 it across jet bins.
 - \Rightarrow No absolute Z + jet constraints.
- Use MC to predict the ratio of Z + jets acceptance in the two signal regions to the control region.


Charles Plager

CERN Seminar, July 2nd, 2008

- We have validated that the MC works fairly well in a jet bin, but we do not trust it across jet bins.
 - \Rightarrow No absolute Z + jet constraints.
- Use MC to predict the ratio of Z + jets acceptance in the two signal regions to the control region.

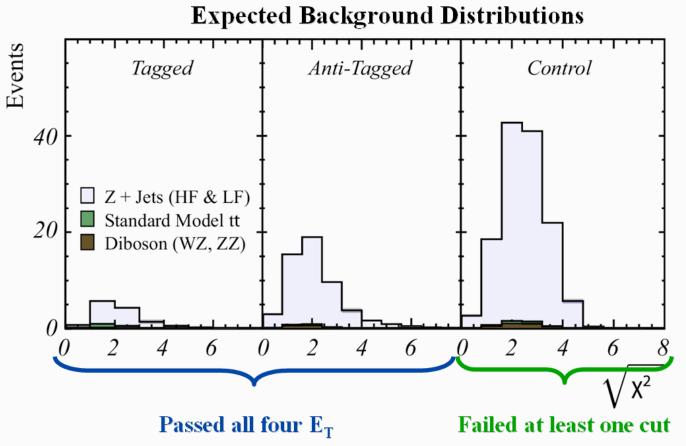

 \mathscr{R}_{sig} Ratio of Z + jetsin the signal regions to the control region.

CERN Seminar, July 2nd, 2008

- We have validated that the MC works fairly well in a jet bin, but we do not trust
 it across jet bins.
 - \Rightarrow No absolute Z + jet constraints.
- Use MC to predict the ratio of Z + jets acceptance in the two signal regions to the control region.

 $\mathcal{R}_{sig} \equiv \text{Ratio of Z + jets}$ in the signal regions to the control region.

 \Rightarrow 20% constraint


Charles Plager

CERN Seminar, July 2nd, 2008

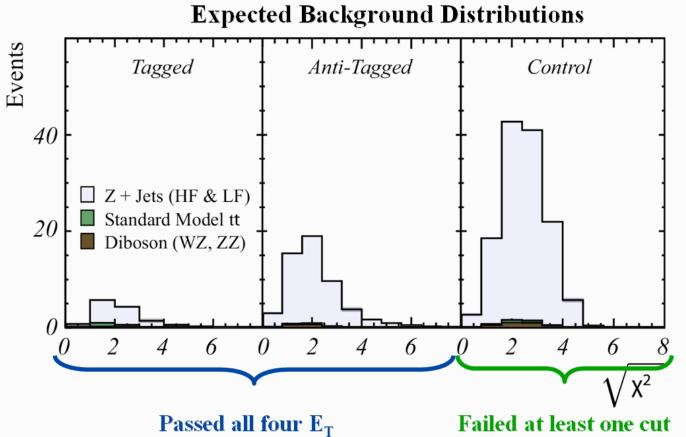
- We have validated that the MC works fairly well in a jet bin, but we do not trust it across jet bins.
 - \Rightarrow No absolute Z + jet constraints.
- Use MC to predict the ratio of Z + jets acceptance in the two signal regions to the control region.

 \mathscr{R}_{sig} Ratio of Z + jetsin the signal regions to the control region.

 \Rightarrow 20% constraint

Fraction of signal f_{tag} region Z + jet events that contain at least on b-tag.

and m_T Cuts


CERN Seminar, July 2nd, 2008

Charles Plager

- We have validated that the MC works fairly well in a jet bin, but we do not trust it across jet bins.
 - \Rightarrow No absolute Z + jet constraints.
- Use MC to predict the ratio of Z + jets acceptance in the two signal regions to the control region.

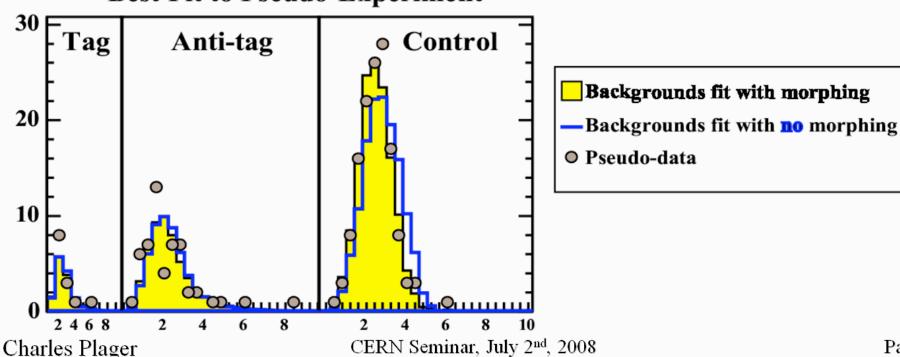
 \mathscr{R}_{sig} Ratio of Z + jetsin the signal regions to the control region.

 \Rightarrow 20% constraint

Fraction of signal f_{tag} region Z + jet events that contain at least on b-tag.

 \Rightarrow No constraint!

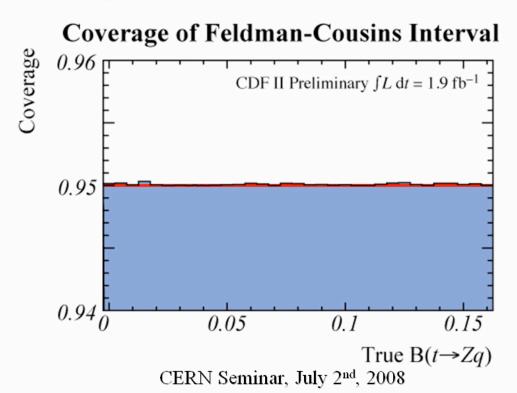
and m_T Cuts



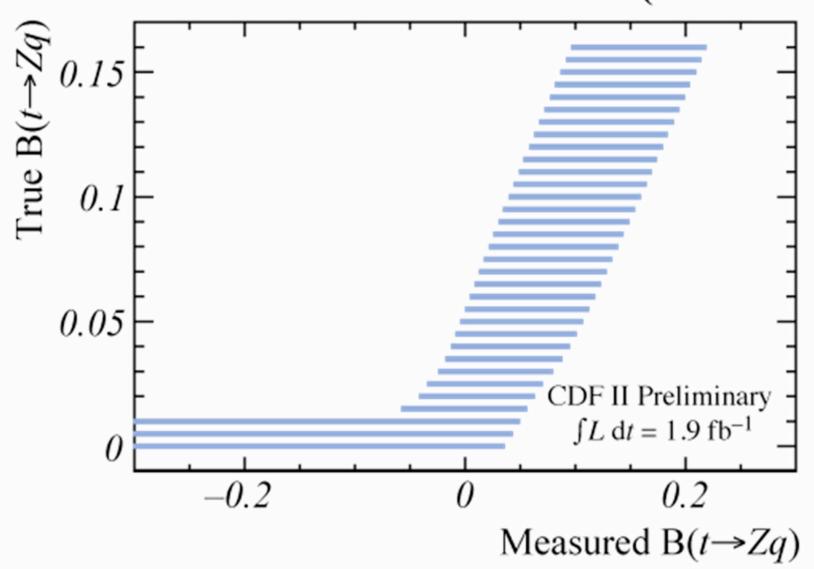
Fitting χ^2 Roundup

- No absolute Z + jet background estimate needed.
- For the template fit, we need to deal with shape uncertainties.
 - Find dominant sources \Rightarrow JES
 - Morphing of JES templates in fitter.
- Do not want to "morph away" a real signal \Rightarrow Control region.
 - Use control region also for Z + jet constraints.
- Investigated effect of shape **not** being from JES ⇒ Small effect.

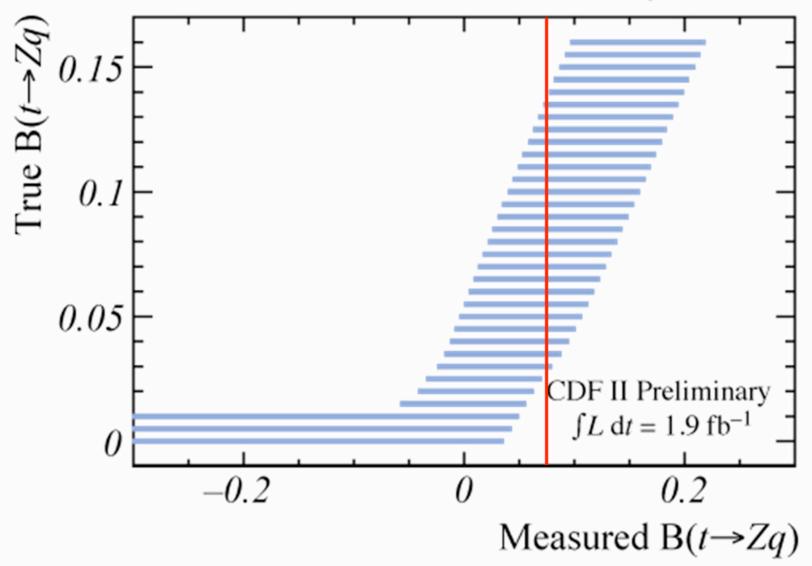
Best Fit to Pseudo-Experiment

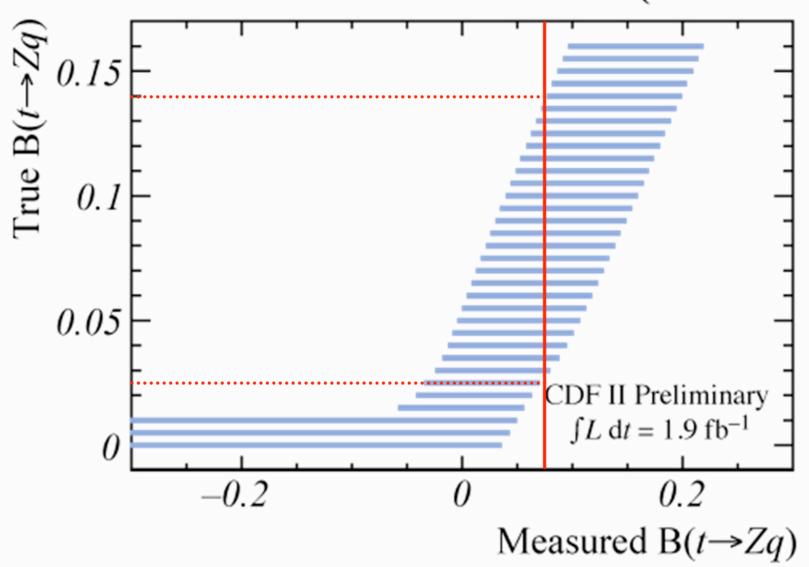


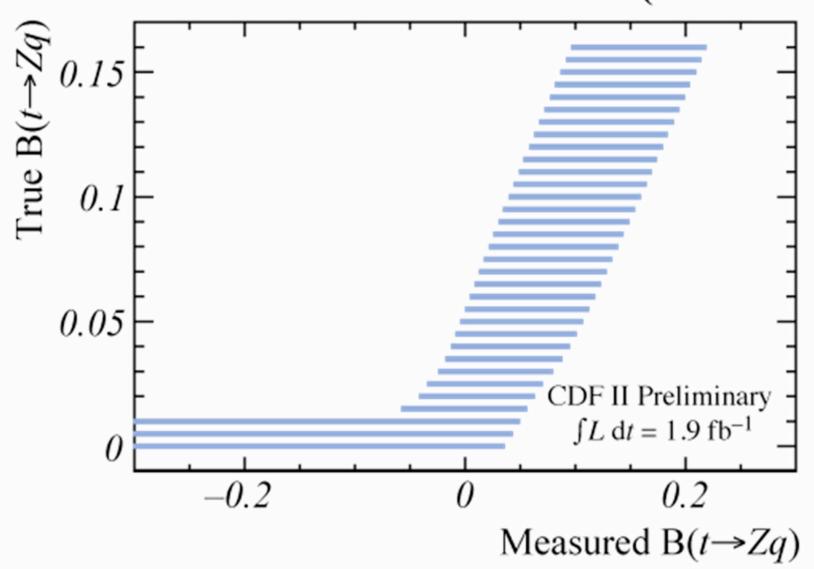
Feldman-Cousins in Five Minutes

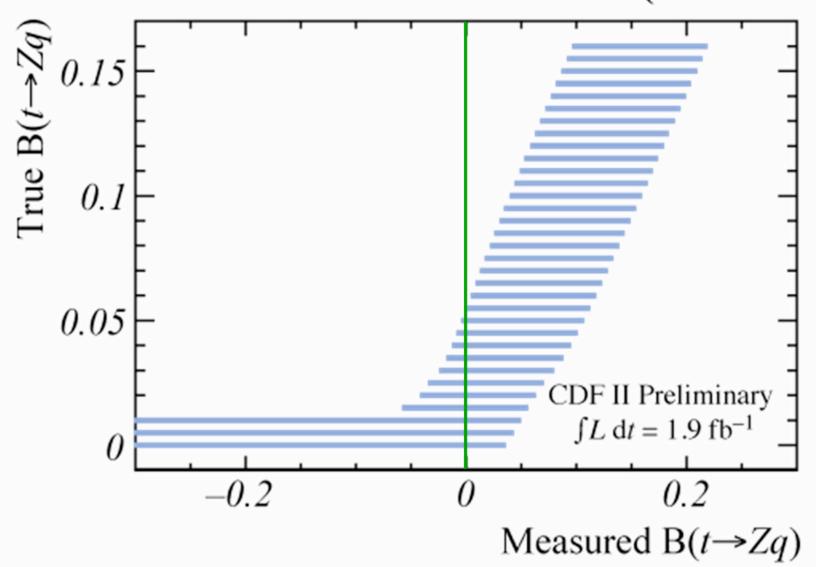


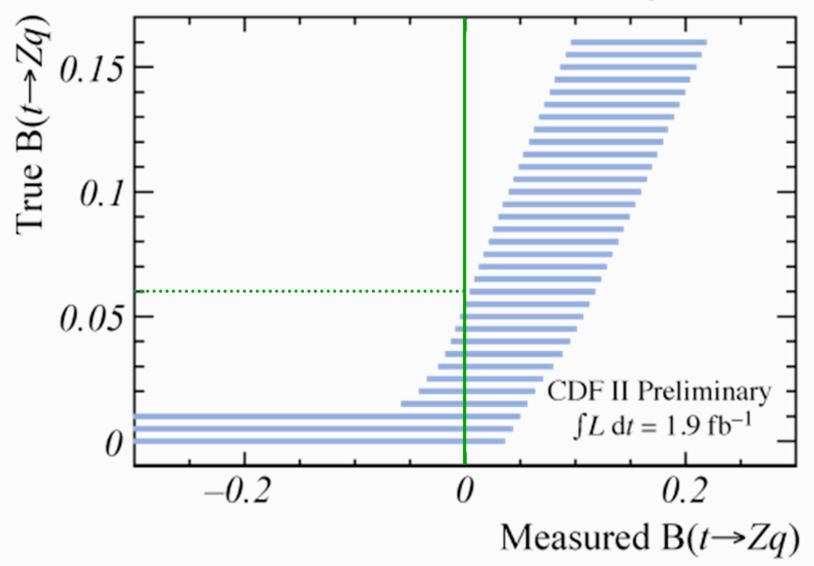
- How are we going to interpret our results?
- Feldman-Cousins answers the question:
 - "What range of true values are likely to lead to this measured value?"
- Why use Feldman-Cousins?
 - Guarantees coverage.
 - Data tell us whether we should report a measurement or a limit.
 - Our method incorporates systematic uncertainties easily.

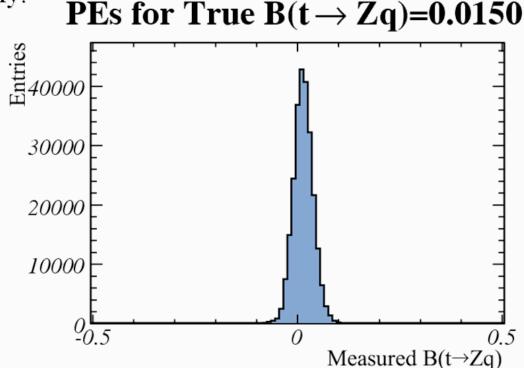






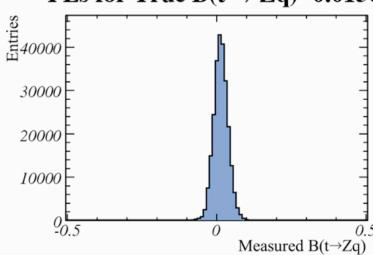


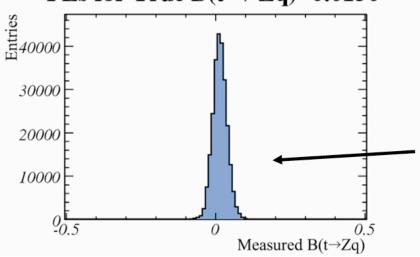




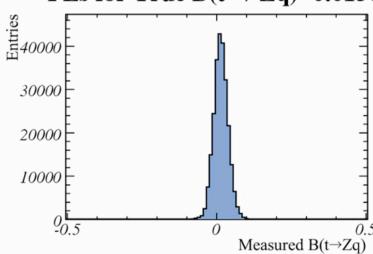
Pseudo-Experiments (PEs)

Pseudo-experiment: Generate all necessary numbers/templates to emulate data from an experiment.

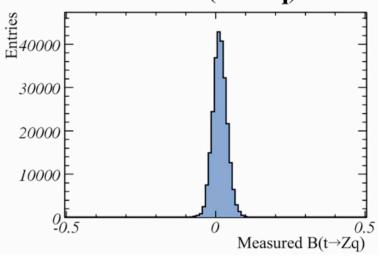

- 1. Generate random numbers to simulate all systematic uncertainties.
 - Pay attention to correlations.
 - Vary all systematic uncertainties.
 - Verify all numbers are physical.
 - Morph all templates appropriately.
- 2. Generate numbers of background and signal events.
- 3. For each type of event, use templates to generate mass χ^2 .
- 4. Fit as if data.
- Repeat!



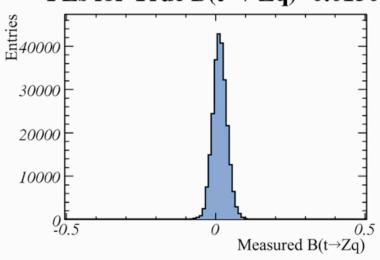
PEs for True $B(t \rightarrow Zq)=0.0150$



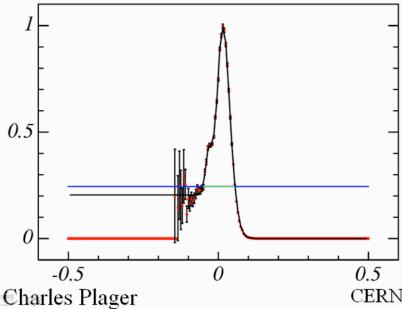
PEs generated with all statistical and systematic uncertainties.



PEs for True B($t \rightarrow Zq$)=0.0150

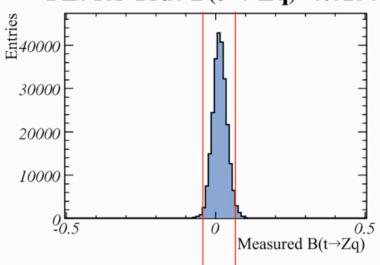

• Use *Likelihood Ratio Ordering Principle*:

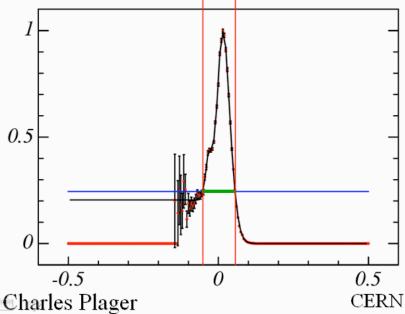
Likelihood Ratio(
$$\mu_{\text{meas}}$$
) = $\frac{P(\mu_{\text{meas}}|\mu_{\text{true}})}{P(\mu_{\text{meas}}|\mu_{\text{best}})}$


PEs for True B($t \rightarrow Zq$)=0.0150

• Use Likelihood Ratio Ordering Principle:

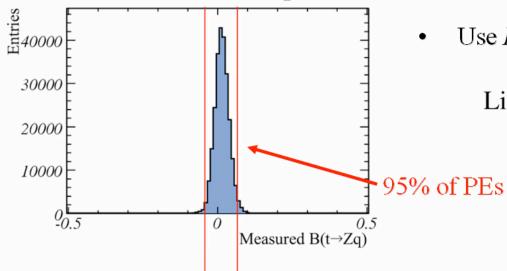
Likelihood Ratio
$$(\mu_{\text{meas}}) = \frac{P(\mu_{\text{meas}}|\mu_{\text{true}})}{P(\mu_{\text{meas}}|\mu_{\text{best}})}$$

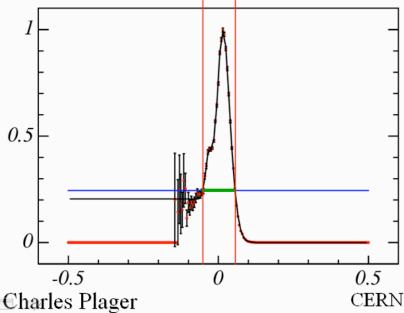

Likelihood Ratio for $B(t \rightarrow Zq) = 0.0150$


PEs for True B($t \rightarrow Zq$)=0.0150

• Use Likelihood Ratio Ordering Principle:

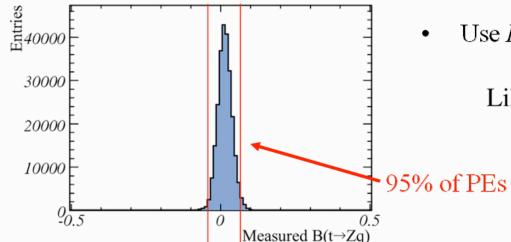
Likelihood Ratio
$$(\mu_{\text{meas}}) = \frac{P(\mu_{\text{meas}}|\mu_{\text{true}})}{P(\mu_{\text{meas}}|\mu_{\text{best}})}$$


Likelihood Ratio for B(t \rightarrow Zq) = 0.0150

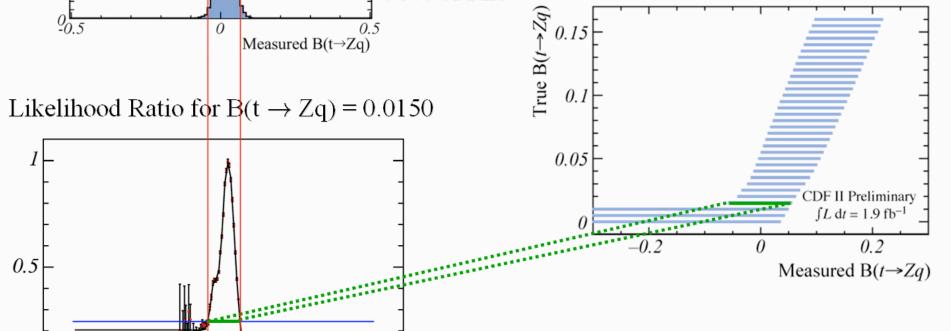

PEs for True B($t \rightarrow Zq$)=0.0150

Use Likelihood Ratio Ordering Principle:

Likelihood Ratio
$$(\mu_{\text{meas}}) = \frac{P(\mu_{\text{meas}}|\mu_{\text{true}})}{P(\mu_{\text{meas}}|\mu_{\text{best}})}$$


Likelihood Ratio for B(t \rightarrow Zq) = 0.0150

PEs for True B($t \rightarrow Zq$)=0.0150

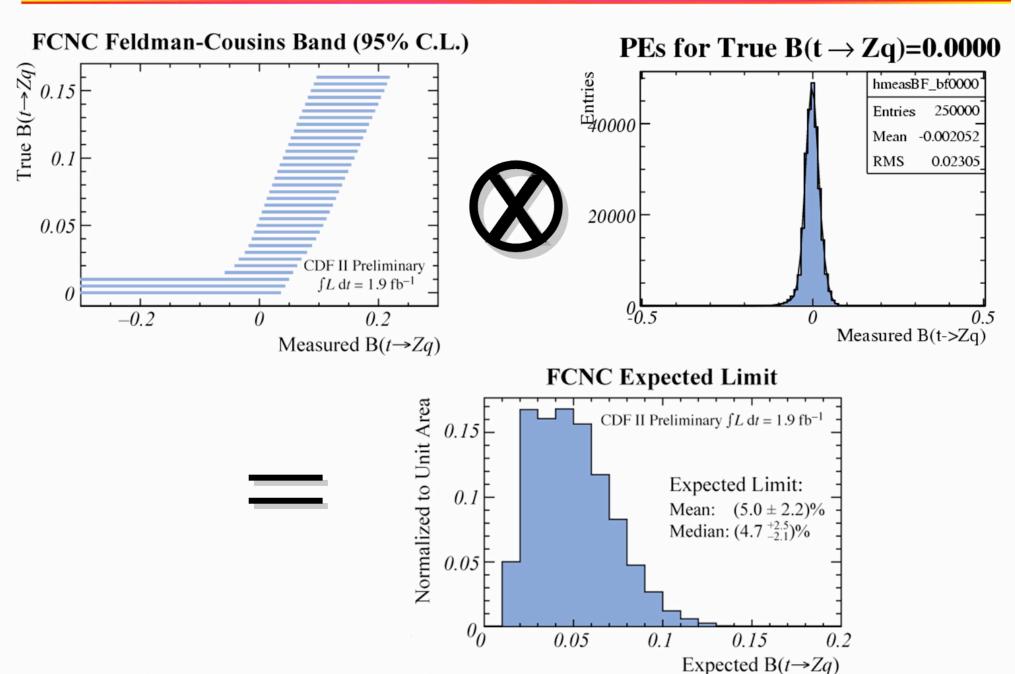


0

Use Likelihood Ratio Ordering Principle:

Likelihood Ratio
$$(\mu_{\text{meas}}) = \frac{P(\mu_{\text{meas}}|\mu_{\text{true}})}{P(\mu_{\text{meas}}|\mu_{\text{best}})}$$

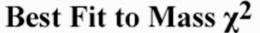
FCNC Feldman-Cousins Band (95% C.L.)

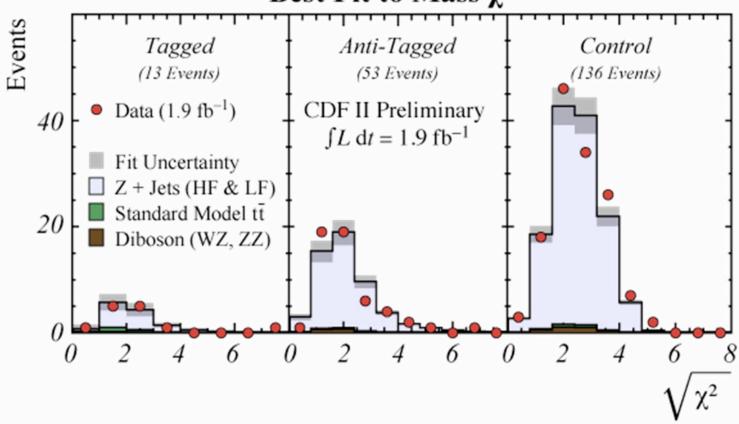

0

0.5

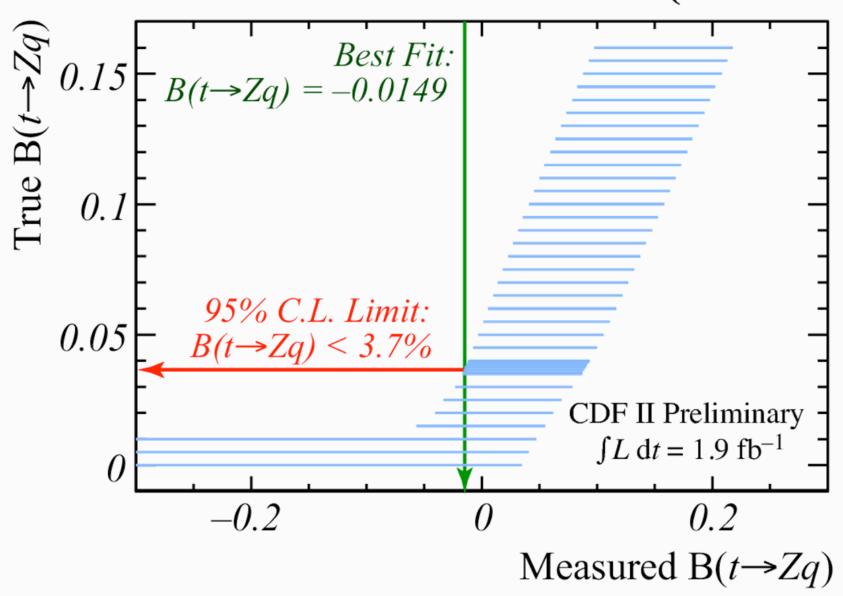
Expected Limit

The Fit to the Data




Fit Parameter $(\int \mathcal{L}dt = 1.9 \text{fb}^{-1})$	Value		
Branching Fraction, $\mathscr{B}(t \to Zq)$ (%)	-1.49	±	1.52
Z+Jets Events in Control Region, $Z_{control}$	129.0	\pm	11.1
Ratio Signal/Control Region, \mathcal{R}_{sig}	0.52	\pm	0.07
Tagging Fraction, f_{tag} (%)	20.0	\pm	5.9
Jet Energy Scale Shift, $\sigma_{\rm JES}$	-0.74	\pm	0.43

The Fit to the Data



Fit Parameter $(\int \mathcal{L}dt = 1.9 \text{fb}^{-1})$	Value		
Branching Fraction, $\mathscr{B}(t \to Zq)$ (%)	-1.49	±	1.52
Z+Jets Events in Control Region, Z _{control}	129.0	\pm	11.1
Ratio Signal/Control Region, \mathcal{R}_{sig}	0.52	\pm	0.07
Tagging Fraction, f_{tag} (%)	20.0	\pm	5.9
Jet Energy Scale Shift, $\sigma_{\rm JES}$	-0.74	\pm	0.43

F.C. 95% C.L. Limit

Outline

The Tevatron and the CDF Experiment

Top Quark Physics

The Search for Top FCNC Decay

Summary

- CDF and the Tevatron are running very well.
 - Thanks Tevatron!

- We just finished Run II's first search for Top FCNC $t \rightarrow Z$ c.
 - Using 1.9 fb⁻¹,
 we have the world's best limit:
 Br (t → Z c) < 3.7% at 95% C.L.
- Using data-based background techniques will be very important for the LHC.

t- Zc Search Results Branching Fraction (%) 35 30 25 20 15 10 5 **CDF** L3 **CDF CDF** Run I LEP II Run II Run II

 (630 pb^{-1})

 (110 pb^{-1})

 (1.9 fb^{-1})

 (1.1 fb^{-1})

- CDF and the Tevatron are running very well.
 - Thanks Tevatron!

- We just finished Run II's first search for Top FCNC $t \rightarrow Z$ c.
 - Using 1.9 fb⁻¹,
 we have the world's best limit:
 Br (t → Z c) < 3.7% at 95% C.L.
- Using data-based background techniques will be very important for the LHC.

t- Zc Search Results Branching Fraction (%) 35 33% **30** 25 20 15

L3

LEP II

 (630 pb^{-1})

CDF

Run II

 (1.1 fb^{-1})

10

5

CDF

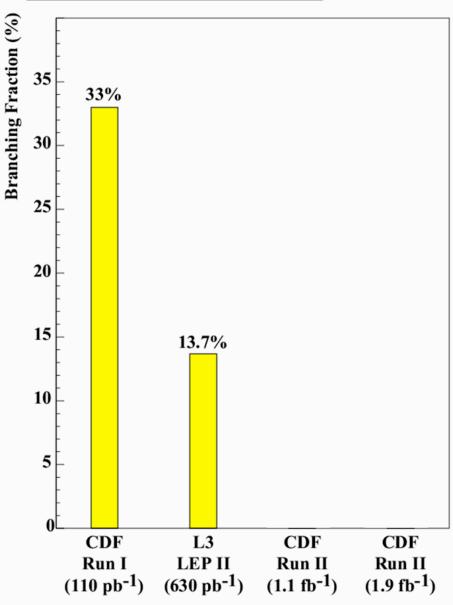
Run I

 (110 pb^{-1})

CDF

Run II

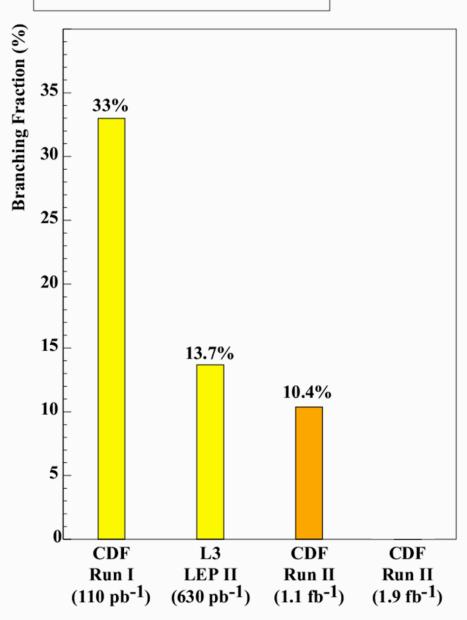
 (1.9 fb^{-1})



- CDF and the Tevatron are running very well.
 - Thanks Tevatron!

- We just finished Run II's first search for Top FCNC $t \rightarrow Z$ c.
 - Using 1.9 fb⁻¹,
 we have the world's best limit:
 Br (t → Z c) < 3.7% at 95% C.L.
- Using data-based background techniques will be very important for the LHC.

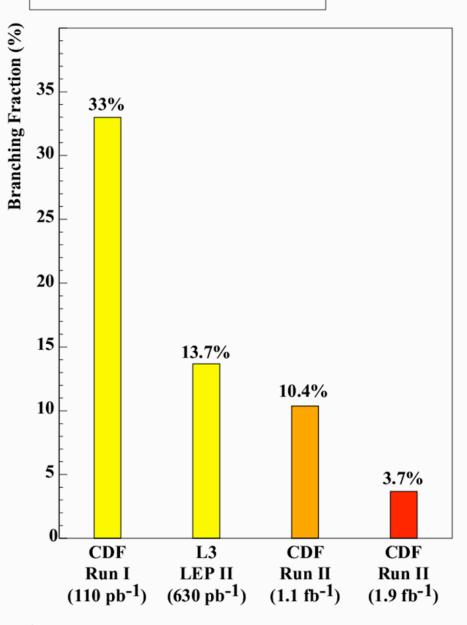
t- Zc Search Results



- CDF and the Tevatron are running very well.
 - Thanks Tevatron!

- We just finished Run II's first search for Top FCNC $t \rightarrow Z$ c.
 - Using 1.9 fb⁻¹,
 we have the world's best limit:
 Br (t → Z c) < 3.7% at 95% C.L.
- Using data-based background techniques will be very important for the LHC.

t- Zc Search Results


Summary

- CDF and the Tevatron are running very well.
 - Thanks Tevatron!

- We just finished Run II's first search for Top FCNC $t \rightarrow Z$ c.
 - Using 1.9 fb⁻¹,
 we have the world's best limit:
 Br (t → Z c) < 3.7% at 95% C.L.
- Using data-based background techniques will be very important for the LHC.

t- Zc Search Results

Money Plot

Best Fit to Mass χ²

2006 PDG Top Entry

t

$$I(J^P) = 0(\frac{1}{2}^+)$$

Charge =
$$\frac{2}{3} e$$
 Top = $+1$

$$Top = +1$$

t DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)
Wq(q=b, s, d)			_
W b			-
ℓu_ℓ anything	[c,d] (9.4±2.4) %		_
$ au u_{ au}$ b			-
$\gamma q(q=u,c)$	$[e] < 5.9 \times$	10 ⁻³ 95%	-
$\Delta T = 1$ wea	k neutral current (<i>T</i> 1) modes	
Zq(q=u,c)	[f] < 13.7 %	95%	_

2008 PDG Top Entry

t

$$I(J^P) = 0(\frac{1}{2}^+)$$

Charge =
$$\frac{2}{3} e$$
 Top = $+1$

$$\mathsf{Top} = +1$$

t DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)
Wq(q=b, s, d)			_
W b			-
ℓu_ℓ anything	[c,d] (9.4±2.4) %		_
$ au u_{ au}$ b			-
$\gamma q(q=u,c)$	$[e] < 5.9 \times$	10 ⁻³ 95%	-
$\Delta T = 1$ wea	k neutral current (<i>T</i> 1) modes	
Zq(q=u,c)	[f] < 13.7 %	95%	_

2008 PDG Top Entry

t

$$I(J^P) = 0(\frac{1}{2}^+)$$

Charge =
$$\frac{2}{3} e$$
 Top = $+1$

$$\mathsf{Top} = +1$$

t DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)
Wq(q=b, s, d)			
W b			-
ℓu_ℓ anything	[c,d] (9.4±2.4) %)	-
$ au u_{ au}$ b			_
$\gamma q(q=u,c)$	[e] < 5.9 ×	10 ⁻³ 95%	-
$\Delta T =$	1 weak neutral current (T	1) modes	
Zq(q=u,c)	T1 [f] < 13.7 %	95%	_

2008 PDG Top Entry

t

$$I(J^P) = 0(\frac{1}{2}^+)$$

Charge =
$$\frac{2}{3} e$$
 Top = $+1$

$$\mathsf{Top} = +1$$

t DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)
Wq(q=b, s, d)			_
W b			-
ℓu_ℓ anything	[c,d] (9.4±2.4) %		_
$ au u_{ au}$ b			-
$\gamma q(q=u,c)$	$[e] < 5.9 \times 1$	10 ⁻³ 95%	-
$\Delta T = 1$ wea	k neutral current (<i>T1</i>) modes	
Zq(q=u,c)	[f] < 3.7 %	95%	_

2010 PDG Top Entry

t

$$I(J^P) = 0(\frac{1}{2}^+)$$

Charge =
$$\frac{2}{3} e$$
 Top = $+1$

$$Top = +1$$

Mass
$$m=172.6\pm1.4~{\rm GeV}^{[b]}$$
 (direct observation of top events)
Mass $m=172.3^{+10.2}_{-7.6}~{\rm GeV}$ (Standard Model electroweak fit)

t DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)
Wq(q=b, s, d)			
W b			-
ℓu_ℓ anything	[c,d] (9.4±2.4) %		_
$ au u_{ au}$ b			_
$\gamma q(q=u,c)$	$[e] < 5.9 \times$	10 ⁻³ 95%	-
$\Delta T =$	1 weak neutral current (T	!) modes	
Zq(q=u,c)	T1 [f] < 3.7 %	95%	_

2010 PDG Top Entry

t

$$I(J^P) = 0(\frac{1}{2}^+)$$

Charge =
$$\frac{2}{3} e$$
 Top = $+1$

$$Top = +1$$

t DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)
Wq(q=b, s, d)			_
W b			_
ℓu_ℓ anything	[c,d] (9.4±2.4) %		-
$ au u_{ au}$ b			_
$\gamma q(q=u,c)$	$[e] < 5.9 \times 10$	95%	-
$\Delta T = 1$ weal	k neutral current (<i>T1</i>)	modes	
Zq(q=u,c) T1	[f] < 3.7 %	95%	-
$\gamma q (q = u,c)$			

2010 PDG Top Entry

t

$$I(J^P) = 0(\frac{1}{2}^+)$$

Charge =
$$\frac{2}{3} e$$
 Top = $+1$

$$Top = +1$$

t DECAY MODES		Fraction (Γ	_i /Γ)	Confidence level	(MeV/c)
Wq(q=b, s, d)					_
W b					-
ℓu_ℓ anything		[c,d] (9.4±2.	4) %		_
$ au u_{ au}$ b					_
$\gamma q(q=u,c)$		[e] < 5.9	× 10 -	3 95%	-
$\Delta T = 1$	weak n	eutral current	(<i>T</i> 1) m	nodes	
Z q(q=u,c)	T1	[f] < 3.7	%	95%	-
$\gamma q (q = u,c)$					
g q (q = u,c)					

2010 PDG Top Entry

t

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$\mathsf{Charge} = \tfrac{2}{3} \ e \qquad \mathsf{Top} = +1$$

$$Top = +1$$

Mass
$$m=172.6\pm1.4~{\rm GeV}^{[b]}$$
 (direct observation of top events)
Mass $m=172.3^{+10.2}_{-7.6}~{\rm GeV}$ (Standard Model electroweak fit)

t DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)
Wq(q=b, s, d)			
W b			_
ℓu_ℓ anything	[c,d] (9.4±2.4) %		_
$ au u_{ au}b$			_
$\gamma q(q=u,c)$	$[e] < 5.9 \times 10$	95%	-
$\Delta T =$	1 weak neutral current (T1)	modes	
Z q(q=u,c)	T1 [f] < 3.7 %	95%	-
$\gamma q (q = u,c)$ g q (q = u,c)			
5σ Evidence for single to	op production		

2010 PDG Top Entry

t

$$I(J^P) = 0(\frac{1}{2}^+)$$

Charge =
$$\frac{2}{3} e$$
 Top = $+1$

$$Top = +1$$

t DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)
Wq(q=b, s, d)			_
W b			_
ℓu_ℓ anything	[c,d] (9.4±2.4) %		-
$ au u_{ au}$ b			-
$\gamma q(q=u,c)$	$[e] < 5.9 \times 10$	0-3 95%	-
$\Delta T = 1$ wea	ak neutral current (<i>T1</i>)	modes	
Z q(q=u,c)	[f] < 3.7 %	95%	_
γ q (q = u,c) g q (q = u,c) 5σ Evidence for single top pro	duction		

2010 PDG Top Entry

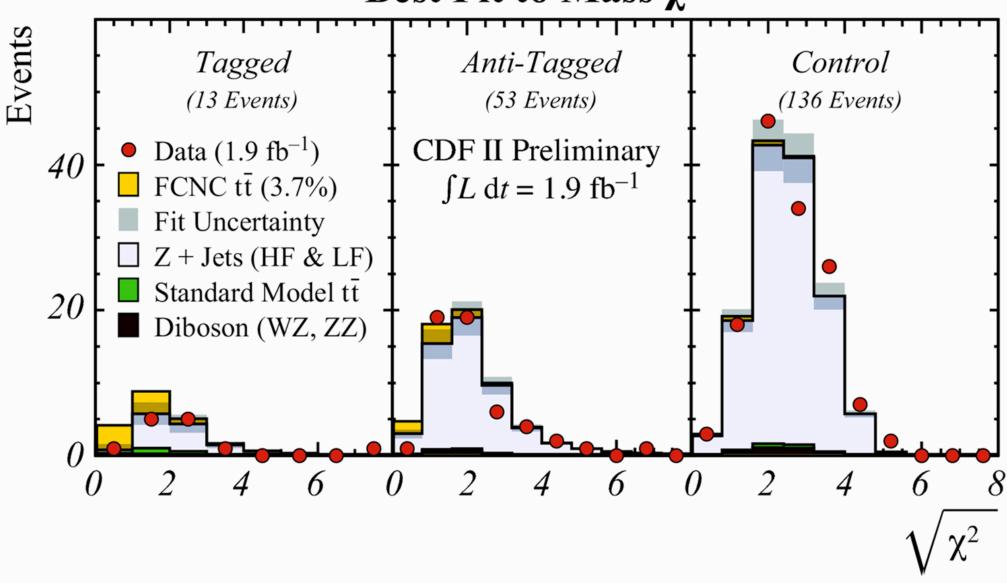
t

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$\mathsf{Charge} = \tfrac{2}{3} \ e \qquad \mathsf{Top} = +1$$

$$Top = +1$$

t DECAY MODES		Fraction (Γ_i /	Γ) (Confidence level	(MeV/c)
$\overline{Wq(q=b, s, d)}$					_
W b					-
ℓu_ℓ anything		[c,d] (9.4 ± 2.4)) %		_
$ au u_{ au}$ b					_
$\gamma q(q=u,c)$		[e] < 5.9	\times 10 ⁻³	95%	_
$\Delta T = 1$	1 weak r	neutral current ((<i>T</i> 1) mo	odes	
Zq(q=u,c)	T1	[f] < 3.7	%	95%	-
$\gamma q (q = u,c)$ g q (q = u,c) 5σ Evidence for single to	p produc	tion			
(Your analysis here?!)					



Thank You!

Best Fit to Mass χ^2

