

Meeting of the Physics Study Convenors of the LHeC CERN, November 4th 2014

LHeC - Low x Kinematics

coordinated with small x: Paul Newman and Anna Stasto

Contents:

- I. Brief review as in CDR.
- 2. Ongoing plans.
- 3. FCC-he.
- 4. Activities at the LHC.
- 5. How to attract manpower.

Motivation: nPDFs

• Lack of data \Rightarrow

models and **DGLAP** analysis (up to NLO) give vastly different results at small scales and all x: problem for benchmarking in HIC. • Glue

• Grue unconstrained for $x < 10^{-2}$.

LHO Motivation: eA for small x

- Three pQCD-based alternatives to describe small-x ep and eA data (differences at moderate $Q^2(>\Lambda^2_{QCD})$) and small x):
- \rightarrow DGLAP evolution (fixed order perturbation theory).
- → Resummation schemes: BFKL, CCFM, ABF, CCSS.
- → Saturation (CGC, dipole models).
- Non-linear effects (unitarity constraints) are density effects: where? \Rightarrow two-pronged approach at the LHeC: $\downarrow x / \uparrow A$.

Motivation: HI program

N.Armesto, 04.11.2014 5

eA: I. CDR.

Motivation: LHC vs. LHeC

The LHeC will explore a region overlapping with the LHC:
in a cleaner experimental setup;
on firmer theoretical grounds.

Inclusive studies

• Good precision can be obtained for $F_{2(c,b)}$ and F_L at small x (Glauberized 3-5 flavor GBW model, NA '02).

LHO Elastic VM production in eA:

eA: I. CDR.

N.Armesto, 04.11.2014 8

eA: I. CDR.

Other aspects:

- Relation of diffraction and shadowing.
- t-differential studies in exclusive VM production.
- Jets in photoproduction.
- Hadronization and QCD radiation inside the nuclear medium.

Contents:

- I. Brief review as in CDR.
- 2. Ongoing plans.
- 3. FCC-he.
- 4. Activities at the LHC.
- 5. How to attract manpower.

New nPDF studies:

• New pseudo data for 10⁻⁵<x<1, 2<Q²<10⁵ GeV², P=-0.8, as reduced cross sections: new fits done (Hannu Paukkunen, Max and NA).

Ee (GeV)	Pol	Lumi (fb ^{-I}) in ep		Lumi (fb ⁻¹) in ePb	
		NC	CC	NC	CC
20	-0.8	0.03	0.03	0.03	0.03
26.9	-0.8	0.02	0.02	0.02	0.02
60	-0.8				

- SACOT scheme \rightarrow GM-VFNS.
- Only NC \rightarrow CC+NC.
- Same parametrisation as in CDR \rightarrow relax assumptions.
- No flavour decomposition \rightarrow add it.
- Errors in quadrature \rightarrow separate correlated ones. Part of this is doable for March 2015.

eA: 2. Ongoing plans.

New nPDF studies:

eA: 2. Ongoing plans.

Longer term plans:

• Study the possibility of accommodating saturation effects (in ep and eA) within DGLAP fits using reweighting: with Hannu Paukkunen and a master student. It might be possible to have something for the white paper.

• Elastic VM production in eA: refined predictions (with Amir Rezaeian) possibilities for distinguishing coherent from incoherent diffraction (detector, EIC people).

• Monte Carlo for eA (with Paul, HPH2020 proposal - little money).

eA: 2. Ongoing plans.

FCC-he:

• Repeat LHeC studies for larger energy: no major surprises to be expected.

eA: 3. FCC

Contents:

- I. Brief review as in CDR.
- 2. Ongoing plans.
- 3. FCC-he.
- 4. Activities at the LHC.
- 5. How to attract manpower.

nPDFs:

 CMS dijets to substitute neutral pion data from RHIC (which may contain hadronisation effects).

eA: 4. Activities at the LHC.

nPDFs: dijets

eA: 4. Activities at the LHC.

nPDFs: EW bosons

[qu]

• Statistics is crucial.

eA: 4. Activities at the LHC.

nPDFs: UPCs in PbPb

Photon flux from on
Pb can be used to study
nPDFs on the other Pb.

• Large modelling inside - as for the proton.

N.Armesto, 04.11.2014 20

eA: 4. Activities at the LHC.

ALI-PUB-66209

nPDFs: DY in pPb@LHC

• Note: this is constrained by the shape of the nPDFs. And we were optimistic about data.

• Effect on sea and glue. N.Armesto, 04.11.2014 21

nPDFs: charged in pPb@LHC

- Note: this is constrained by the shape of the nPDFs.
- Reduction of uncertainties around a factor 2 for glue.
- Tension may appear for some scenarios.

eA: 4. Activities at the LHC.

nPDFs: charged in pPb@LHC

'CGC' (saturation) pseudodata

- Note: this is constrained by the shape of the nPDFs.
- Reduction of uncertainties around a factor 2 for glue.
- Tension may appear for some scenarios.

eA: 4. Activities at the LHC.

309.5371

nPDFs: charged in pPb@LHC

 Constrains to nPDFs at moderate /large x are to appear.

• Constrains to nPDFs at small x are problematic: use of small p_T data for benchmarking dubious as probably there are collective effects in pPb@LHC (breakdown of factorisation).

• The same holds for the search of non-linear dynamics at small x.

• UPC data will offer some constrains for nPDFs, but

- No they are limited by statistics and, above all, for the
- Re theoretical modelling required.

30

1.4

1.3

1.2

1.1

0.9

0.8

0.7 1.1

0.9

0.5

0.4

0.3

 $d\sigma^{pPb}/d\sigma^{pp}$

do^{ppb}/do^{pp}

• Tension may appear for some scenarios. eA: 4. Activities at the LHC.

- The bottleneck of the plan is manpower, to linked to some extent to financial support but also to scientific policy.
- Manpower:
 - Hannu Paukkunen and some master student for nPDF/small x studies.
 - → Amir Rezaeian for VM production.
 - → Paul, master students for diffraction and eA Monte Carlo plus collaborations with EIC people.
- Financial resources:
 - → 20 KEUR from HPH2020 (hopefully...) for a PhD student.
 - → What we can take from our own grants, when possible.
 - → Applications for ERC grants.
 - → CERN?
- Some HI people has recent shown strong interest de, but probably not much to offer as they are really busy.
- Link LHeC studies to those at the LHC to attract people!!! eA: 5. Manpower. N. Armesto, 04.11.2014 25

eA: I. CDR.

N.Armesto, 04.11.2014 27

• F_2 data substantially reduce the uncertainties in DGLAP analysis; inclusion of charm, beauty and F_L also give constraints.

eA: I. CDR.

N.Armesto, 04.11.2014 28

LHO Diffraction in ep and shadowing:

• Diffraction is linked to nuclear shadowing through basic QFT (Gribov): eD to test and set the 'benchmark' for new effects.

eA: I. CDR.

LHO Transverse scan: elastic VM

eA: I. CDR.

N.Armesto, 04.11.2014 30

lets:

- Jets: large E_T even in eA.
- Useful for studies of parton dynamics in nuclei (hard probes), and for photon structure.
- Background subtraction, detailed reconstruction pending.

eA: I. CDR.

LHO Radiation and hadronization:

- LHeC: dynamics of QCD radiation and hadronization.
- Most relevant for particle production off nuclei and for QGP analysis in HIC. $P^{h}(z, \nu) = \frac{1}{2} \frac{dN^{h}_{A}(z, \nu)}{dN^{h}_{L}(z, \nu)}$
- Low energy: hadronization inside → formation time, (pre-)hadronic absorption,...

eA: I. CDR.

Contents:

- I. Brief review as in CDR.
- 2. Ongoing plans.
- 3. FCC-he.
- 4. Activities at the LHC.
- 5. How to attract manpower.

N.Armesto, 04.11.2014 34

N.Armesto, 04.11.2014 35

N.Armesto, 04.11.2014 36

N.Armesto, 04.11.2014 37

N.Armesto, 04.11.2014 38