

 Condor Cgroups Condor Cgroups
 —— Gang Qin, Gareth Roy

Nov. 17th , 2014

 Condor-Cgroups (1)

 Control Groups (Cgroups)
• Linux kernel feature to limit/account/isolate resources usage among user-defined groups

of tasks(processes) .

• Available Resource Controllers (subsystems):

– Block-I/O, cpu/cpuacct/cpuset/devices/freezer/memory/net_cls/net_prio/ns

 Installation/Configuration/Testing

 Condor-Cgroups (2) How condor use cgroups?
• Condor put each job into a dedicated cgroup for selected subsystems

• Control cpu usage at job level:

– Writing cpu.shares with fixed/dynamic value for static/partitionable slots

• Control Memory usage at job level:

– Writing memory.limit_in_bytes and memory.soft_limit_in_bytes:

– Three policies for memory control

» none: No limit applied

» soft: job can access memory than allocated if there are still free physical
memory available in the system

» hard: job can't access more physical memory than allocated

• Test: For a job which requires 1000MB memory, we have:
–

 Motivation for studying info collected by Cgroups
• Get better knowledge of jobs to identify suspicious/broken jobs

• Current studies focus on jobs' memory footprints

Policy Memory.limit_in_bytes Memory_soft_limit_in_bytes

none 9223372036854775807 9223372036854775807
soft 9223372036854775807 1073741824

 hard 1073741824 9223372036854775807

 Memory Footprints of Jobs
 Condor Cluster

• Status: Fully in production instance since early Aug, receiving ~ 400k jobs

• Scale: 1 ARC-CE (8core), 1 condor central server (8core), 16 worker-nodes (744cores)

 Condor Database
• Mysql database setup to select/record historical info of condor jobs

– ClusterId/GlobalJobId/JobStatus/ExitCode/LastJobStatus/RequestCpus/Requ
estMemory/JobMemoryLimit/JobTimeLimit/User and etc..

• Updates at 5:00 every morning
 Data collection

• Every minute on each WN, Cgmemd collects:
– Timestamp, GlobalJobId(batchID), requested_cpus

– RSS: anomymous and swap cache, not including tmpfs (shmem)

– Cache: page cache, including tmpfs(shmem)

– Mapped_file: size of memory-mapped mapped files, including tmpfs(shmem)

– Swap: swap usage

 Analysis
• Currently focus on ATLAS Multicore Simu/Reco jobs

Overview of good ATLAS Multicore Jobs

 Empty pilots

 Simu/Reco Jobs

 Empty pilots

Simu Reconstruction

ATLAS Multicore Empty Pilots

● ~ 2/3 jobs runs < 10 minutes

● In future analysis, we require jobs Lifetime > 3 minutes and Max_rss > 0.2GB

ATLAS Multicore Simulation Jobs

ATLAS Multicore Reconstruction Jobs

● Shape introduced for better identification

– Studies on Number/Length of peaks with different thresh-hold

 Thresh-hold = 1GB

● Change threshold to 4GB

Thresh hold = 4 GB

Broken Multicore Jobs

 Jobs could get broken at any step
 A broken job takes 48 hours while a

normal multicore reconstruction job
only takes ~ 2 hours

 A broken multicore jobs leads a loss of
384 cpu-hours

 Possible to be identified with its memory
footprints

 Future Work

 Enrich Condor database
• Some job info only exists on panda central monitoring page, frequent queries

might crack down the database thus not allowed.

• Use Cgmemd to retrieve more info from the logs of running jobs

 Further studies on more subsystems and more VO jobs
• ATLAS

• CMS

• Small Vos: no good central monitoring, Machine learning techniques required

 Suspicious Job Detecting System
• Jobs running too long become suspicious and it's recorded information in

Cgroups could be used for further check
• Periodical calibration required?

– possibly Yes, depending on future studies
• Integration with site monitoring/security tools

 Questions? Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

