

Alternative top quark mass determinations in ATLAS and CMS

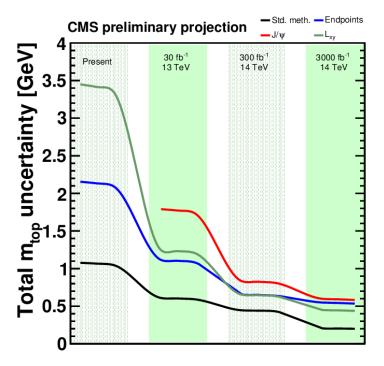
Marcel Vos (IFIC, CSIC/UV, Valencia, Spain)

On behalf of the ATLAS and CMS collaborations

Top2015, Ischia, September 2015

Prospects for precision

Today's **direct measurements reach 0.5% precision**, limited by statistics (still ~0.17%), detector systematics (few JES-related sources of order 0.1%) and modeling (few sources of 0.15%) see *talk by Andrea Castro, Andreas Maier*


For a long time the LHC claimed it would reach 1 GeV, but we can be a bit more ambitious now **Pessimistic (EPJ C74, 2014):**

"a top mass extraction with uncertainty as low as 500-600 MeV" Optimistic (CMS-FTR-13-017-PAS):

"[the ultimate reach of the] conventional method is 200 MeV", based on "assumptions [that] are optimistic but not unrealistic."

Alternative determinations help with a different "systematics mix":

- reveal systematic bias, or
- reduce overall uncertainty

Prospects for precision: alternatives

The MC mass is not the pole mass

Ask me after the talk, or (better still) Gennaro Corcella in the next session Literature: Juste et al., EPJ C74 (2014), Hoang, arXiv:1412.3649

The top quark mass measurements need a theory uncertainty

Like any other quantity inferred from the data. Truncated perturbative series, parametric uncertainties, intrinsic limitations of mass definition.

A precise & universal relation between the MC and pole mass may exist, and numerically this difference may even be vanishing, but currently this relation is unknown

Related uncertainties have long been negligible, but we're embarking on an attempt to perform a per-mil level quark mass measurement now!

Alternative determinations may provide a clear interpretation in terms of a well-defined scheme and a more robust basis for estimating theory uncertainties

Top quark mass - alternatives

Change final state

- single top, 2.1 GeV, ATLAS-CONF-2014-055

Change observable

- J/psi spectra t \rightarrow Wb \rightarrow lvb \rightarrow lvJ/ ψ \rightarrow lvll \rightarrow CMS-PAS-TOP-13-007
 - ATLAS-CONF-2015-040
- Endpoint, 2 GeV, CMS, arXiv:1304.5783
- B-hadron L_{xy} , lepton p_T
 - → CDF 8 GeV, PLB698
 - $\rightarrow\,$ CMS 3 GeV, CMS-PAS-TOP-12-030
- m_{bl}, 1.3 GeV, CMS-PAS-TOP-14-014
- b-jet energy spectrum, 3 GeV, CMS-PAS-TOP-15-002

Extraction from cross-section

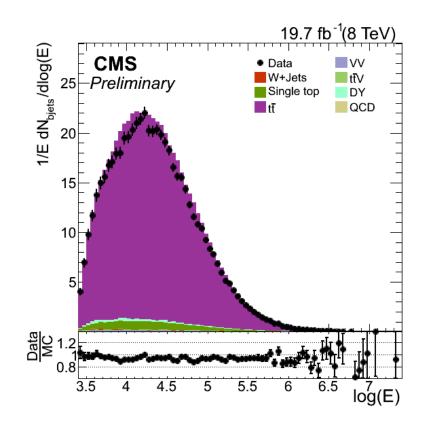
- Connect theory prediction with measurement
- Traditionally inclusive cross-section, but...

Marcel Vos, alternative top mass

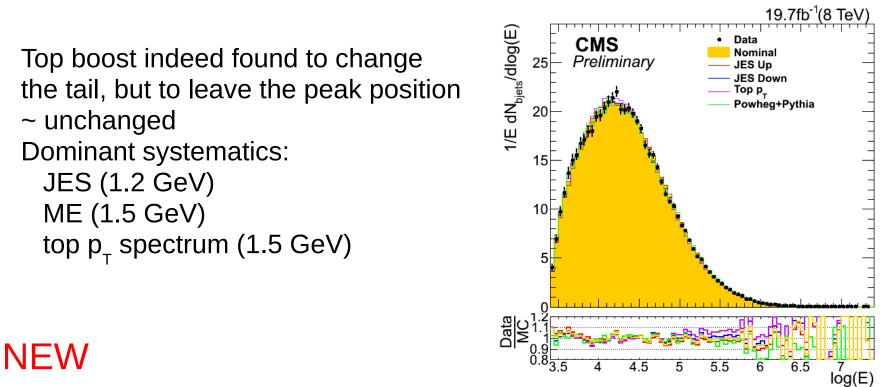
This talk

S

Meaurement of the b-jet energy spectrum


Based on following observations for products of 2-body decay:

- the peak of the energy distribution in the parent rest frame is related to the parent mass


- for unpolarized parent and massless daughter the relation holds also in the laboratory frame K. Agashe, R. Franceschini, D. Kim, PRD88

CMS PAS TOP-15-002

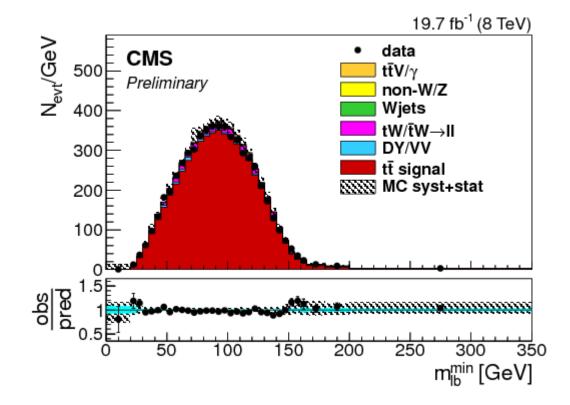
- Measures b-jet energy distribution in $e\mu$ events
- Peak energy extracted from Gaussian fit to 1/E log(E) distribution
- Calibration to b-quark energy peak using pseudo-experiments isnumerically small: 171.0 GeV → 172.3 GeV

Measurement from b-jet energy measurement

Mass extracted using simple kinematical relation: $M_{t}=172.3 \pm 1.2$ (stat.) ± 2.7 (syst.) GeV

Promising result for determination of the mass of new particles (authors of PRD88 expected 2.5 GeV for 5/fb at 7 TeV)

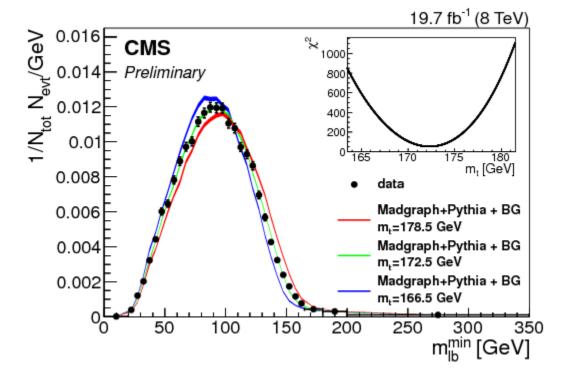
Marcel Vos, alternative top mass


Measurement from m_{Ib} distribution

S. Biswas, K. Melnikhov, M. Schulze, JHEP 1008 (2010) 048

Observable is boost-invariant \rightarrow little sensitivity to production

CMS-TOP14-014


Full 2012 data set Clean selection based on opposite-sign eµ events Minimal invariant mass between charged lepton and b-jet

Results from m_{Ib}

CMS-TOP14-014-PAS

Observable is very sensitive to m_t Experimental systematics and modelling uncertainty are under control

		Fitted m_t [GeV]
Prediction	Fit method	from m_{lb}^{min}
MadGraph+Pythia	shape+rate	$173.1 \substack{+1.9 \\ -1.8}$
MadGraph+Pythia	rate	$173.7 \ ^{+3.5}_{-3.4}$
MadGraph+Pythia	shape	$172.3 \ ^{+1.3}_{-1.3}$
MCFM (LO)	shape	$171.5 \substack{+1.1 \\ -1.1}$
MCFM (NLO)	shape	$171.4 \ ^{+1.0}_{-1.1}$

Shape information more effective than absolute rate. MCFM fixed-order predictions are folded to account for detector effects.

Marcel Vos, alternative top mass

Interpretation of m_{lb} mass

Currently, the mass is calibrated to MC. A reliable extraction of (pole) mass is possible, but requires a more sophisticated description of decay to fix the renormalization scheme and estimate theory uncertainty

LO scale variations are small < 100 MeV

→ scale variations known to underestimate error at LO LO << NLO << WbWb, see Heinrich et al., JHEP06 (2014)</p>

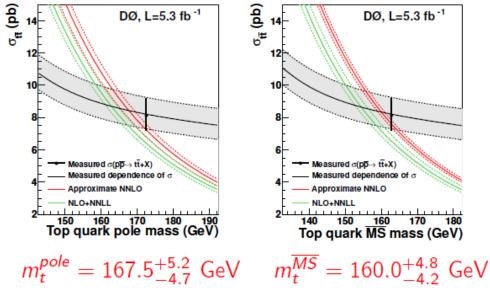
 \rightarrow large difference between LO and NLO in decay found by CMS

MCFM (NLO prod. + LO decay) MCFM (NLO prod. + NLO decay) 171.4 ± 1.1 GeV 172.3 ± ? GeV

Top quark mass extraction: mass schemes

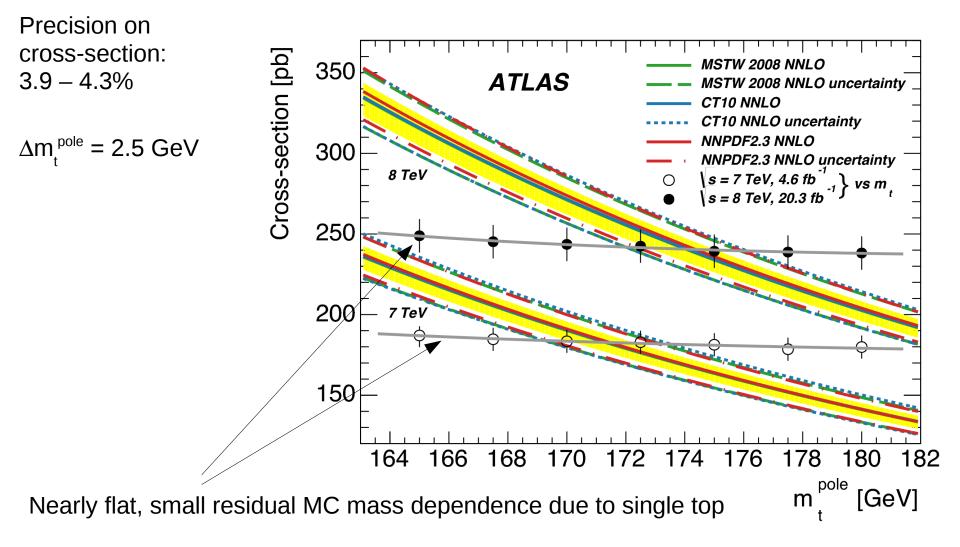
The scheme makes a difference:

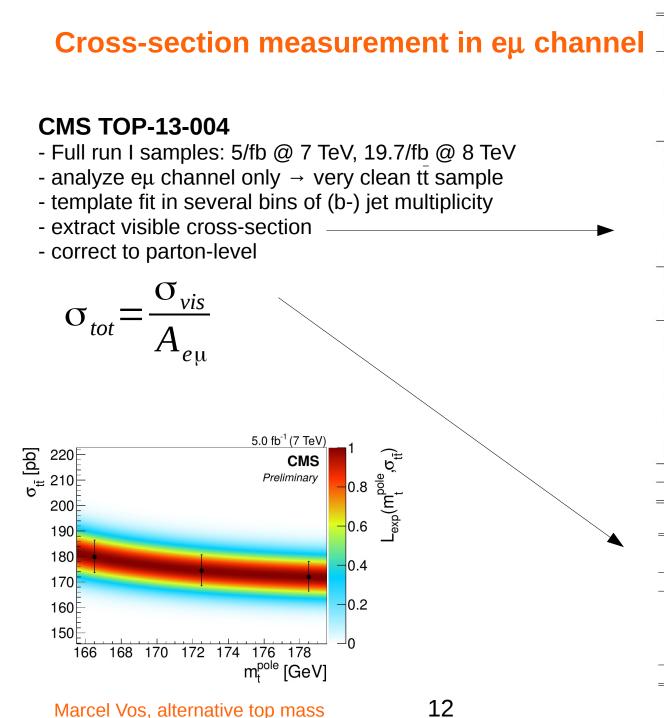
For a top quark pole mass of 173 GeV, the $\overline{\text{MS}}$ mass at the top mass ~167 GeV


We need the mass as input to calculations:

Pole mass \rightarrow ultimately limited by O(Λ_{QCD}) ambiguity? Running mass \rightarrow hopes of faster convergence? Tentatively, for O(1 GeV): whichever can be extracted most precisely Ultimately, for O(100 MeV): MS mass?

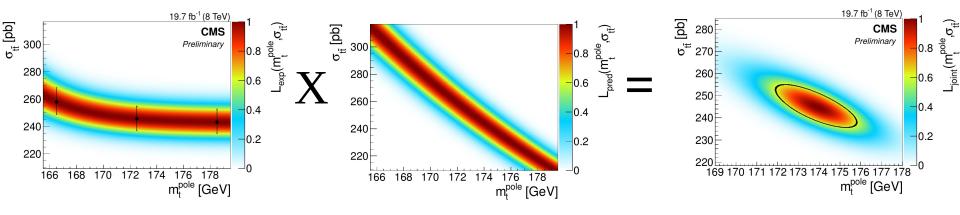
Conversion between schemes can be made very precise


Marquard et al., PRL 114 (2015)


D0, extraction of the the pole and running mass from the inclusive cross section using approximate NNLO calculation, PLB 703, 422 (2011)

Alternative: top quark pole mass from cross-section

 $\sigma_{tt}(7 TeV) = 182.9 \pm 3.1(stat.) \pm 4.2(syst.) \pm 3.6(lumi.) \pm 3.3(energy) pb$ $\sigma_{tt}(8 TeV) = 242.4 \pm 1.7(stat.) \pm 5.5(syst.) \pm 7.5(lumi.) \pm 4.2(energy) pb$



G	Uncertainty [%]		
Source	$7 { m TeV}$	8 TeV	
Trigger	1.2	1.2	
Lepton ID/isolation	1.4	1.5	
Lepton energy scale	0.1	0.1	
Jet energy scale	0.7	0.9	
Jet energy resolution	0.1	0.1	
Single top	0.9	0.6	
DY	1.2	1.2	
$t\bar{t}$ other	0.1	0.1	
$t\bar{t} + V$	0.0	0.1	
Diboson	0.2	0.6	
W+jets	0.0	0.0	
QCD	0.0	0.0	
B-tag	0.5	0.5	
Mistag	0.2	0.1	
Pileup	0.3	0.3	
Q^2 scale	0.3	0.3	
ME/PS matching	0.2	0.1	
$\rm MG{+}PY \rightarrow \rm PH{+}PY$	0.2	0.4	
Hadronization (JES)	0.6	0.8	
Top p_T	0.3	0.3	
Color reconnection	0.1	0.0	
Underlying event	0.0	0.1	
PDF	0.2	0.7	
Luminosity	2.2	2.6	
Statistical	1.2	0.6	

Source	Uncertainty [%]		
Source	$7 { m TeV}$	$8 {\rm TeV}$	
Total (vis)	$\pm^{3.5}_{3.4}$	$\pm^{3.7}_{3.4}$	
Q^2 scale (extrapol.)	$\pm^{0.4}_{0.0}$	$\pm^{0.2}_{0.1}$	
$\rm ME/PS$ matching (extrapol.)	$\mp^{0.1}_{0.1}$	$\pm^{0.3}_{0.3}$	
Top p_T (extrapol.)	$\pm^{0.4}_{0.2}$	$\pm^{0.8}_{0.4}$	
PDF (extrapol.)	$\mp^{0.2}_{0.1}$	$\mp^{0.1}_{0.2}$	
Total	$\pm^{3.6}_{3.4}$	$\pm^{3.8}_{3.5}$	

Total uncertainty on visible cross-section: 3.4%

Pole mass extraction

Extract top quark pole mass by minizing product of experimental and theoretical likelihood distribusions

Theory likelihood includes:

- uncertainties NNLO + NNLL scale variations
- PDF uncertainties from one PDF set at a time
- 1 GeV shift for relation MC and pole masses
- 1.7-1.8% uncertainty to account for uncertaint beam energy

NEW M_t^{pole} =173.6 ± 1.8 GeV (CMS-PAS-TOP-13-004) assuming NNPDF3.0 and $\alpha_{\underline{}}$ = 0.118 ± 0.001

Marcel Vos, alternative top mass

Pole mass extraction, PDFs and uncertainties

ATLAS EPJC :

 $\Delta \sigma$ = 3.9% (7 TeV) – 4.3% (8 TeV) Δm_t^{pole} = 2.5 GeV, using "PDF4LHC" envelope of CT10, MSTW, NNPDF2.3

CMS PAS TOP 13-004:

 $\Delta \sigma$ = 3.6% (7 TeV) – 3.8% (8 TeV) Δm_{f}^{pole} = 1.8 GeV, assuming NNPDF3.0 and α_{s} = 0.118 ± 0.001

Full "PDF4LHC" uncertainty is more conservative than single PDF

New PDFs have smaller uncertainties than previous generation, thanks to the inclusion in the fit of LHC data

At 13 TeV the uncertainties due to PDFs are smaller than a 7/8 TeV, as we probe gluon content at lower x. ($\Delta\sigma$ (PDF) ~ 2.8% at 7 TeV, 1.8% at 14 TeV)

PDFs or top mass? Or both?

NNPDF3.0 includes pair production cross-section: "Finally, we include six independent measurements of the total top quark pair production cross-section from ATLAS and CMS, both at 7 TeV and at 8 TeV." (Parton distributions for the LHC Run II, JHEP1504 (2015) 040).

		m_t
Same is true for MMHT14 See Robert Thorne's talk on Thursday	NNPDF30	$173.6 \pm {}^{1.7}_{1.8} \text{ GeV}$
	MMHT2014	$173.9 \pm {}^{1.8}_{1.9} \text{ GeV}$
	CT14	$174.1 \pm ^{2.1}_{2.2} \text{GeV}$

However, not for CT14:

"[tt data] are not included into our fit, as the differential NNLO tt cross section predictions for the LHC are not yet complete. In addition, constraints on the PDFs from tt cross sections are mutually correlated with the values of QCD coupling and top quark mass." (arXiv:1506:07443)

Avoid a circular exercise:

Extracting the mass from the inclusive cross-section after using the x-sec to constrain the PDFs leads to a bias

Can PDF fitter collaboration provide a separate set excluding just the $t\bar{t}$ cross-section data?

Can we use only $d\sigma/dp_{\tau}$ shape information for PDFs?

Marcel Vos, alternative top mass

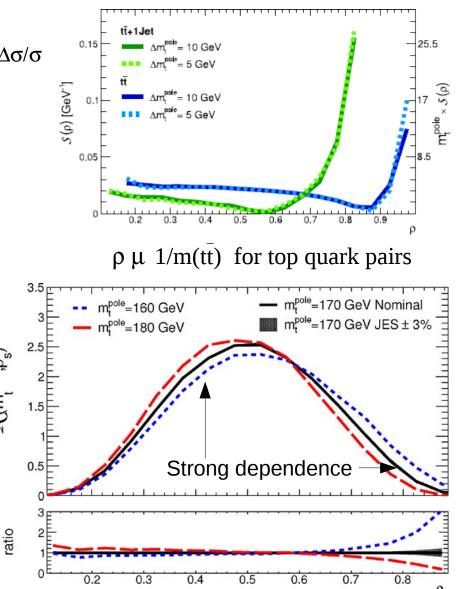
Extraction from differential cross-section

Alioli, Moch, Uwer, Fuster, Irles, Vos, EPJC73 (2013) 2438, arXiv:1303.6415

Extraction from total cross section

Precision limited by poor sensitivity: $\Delta m/m \sim 0.2 \Delta \sigma/\sigma$

tt threshold offers better sensitivity, but:


- \rightarrow is limited to a very narrow region
- → requires description of bound state effects

Now consider the $t\bar{t}j$ cross-section

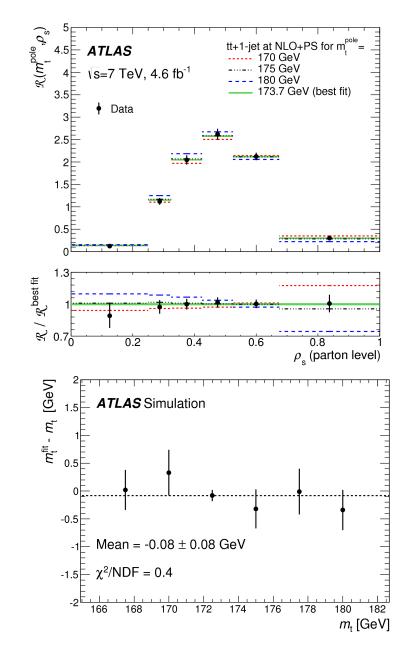
Sensitivity enhanced by mass-dependent radiation Threshold effect spreads over large region Infer mass from (normalized) shape of $\rho = 1/m(ttj)$ distribution

- $\rho \mu 1/m(t\bar{t}j)$ for associated $t\bar{t}j$ production $\rightarrow 1$ at threshold
 - \rightarrow 0 for boosted production

Marcel Vos, alternative top mass

ATLAS: Top quark mass from tt + 1 jet events

ATLAS, arXiv:1507.01769


Unfold normalized differential crosssection at 7 TeV to parton-level

Fit with $t\bar{t} + 1$ jet NLO+PS theory

Mass scheme fixed in NLO calculation (difference NLO vs. NLO+PS ~ 300 MeV)

Negligible MC mass dependence in the correction of the normalized differential cross-section

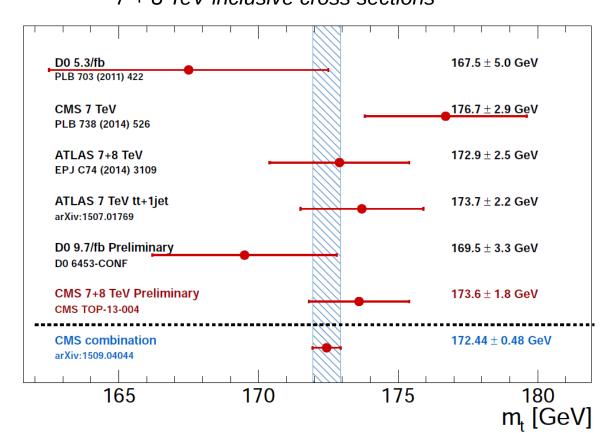
$$M_{t}^{pole}$$
=173.7 ± 2.2 GeV

Marcel Vos, alternative top mass

Top quark pole mass

ATLAS pole mass extractions;

 M_t^{pole} =172.9 ± 2.5 GeV 7 + 8 TeV inclusive cross-section


 M_t^{pole} =173.7 ± 2.2 GeV 7 TeV tt+jet differential,

```
Reaching 2 GeV
Potential to reach 1 GeV
```

CMS pole mass extractions;

 M_t^{pole} =176.7 ± 2.9 GeV 7 TeV inclusive cross-section

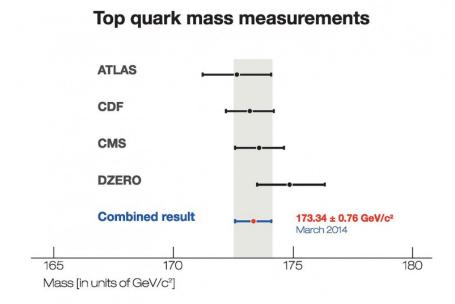
 M_t^{pole} =173.6 ± 1.8 GeV for NNPDF3.0 7 + 8 TeV inclusive cross sections

Marcel Vos, alternative top mass

Top quark mass: the alternative programme

With increasing precision, a healthy systematics mix, rigorous interpretation and quantifiable theory uncertainties are mandatory Alternative mass extraction methods may provide these

Many new methods are being deployed:


- B hadron decay length, lepton $p_{T,} J/\psi$, endpoints...
- *b*-jet energy spectrum, CMS: $m_t = 172.3 \pm 1.2$ (stat.) ± 2.7 (syst.) GeV
- m_{bl} has demonstrated great potential, CMS: $m_t = 172.3 \pm 1.3$ GeV

Extraction of top pole mass from cross-section

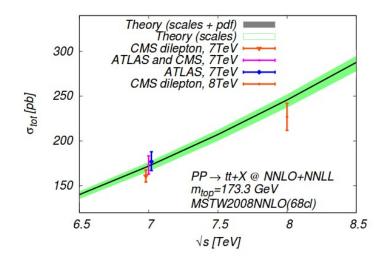
- Has achieved 1% precision, with a rigorous interpretation
- Improve PDFs without biasing the pole mass extraction
- Increase sensitivity: differential tt+jet x-section can yield ~GeV precision

Top quark mass - today

LHC/Tevatron combination of direct measurements (*arXiv:1403.4427*) provides a quark mass measurement to better than 0.5%

Consistent result in different experiments, continents, initial and final states and kinematic regimes See talk by Andrea Castro, Andreas Maier Break-down of uncertainties on March '14 world average:

Statistics: already < 300 MeV


Jet energy scale:

in situ JES (240 MeV), standardJES (200 MeV), flavourJES (120 MeV) and b-JES (250 MeV)

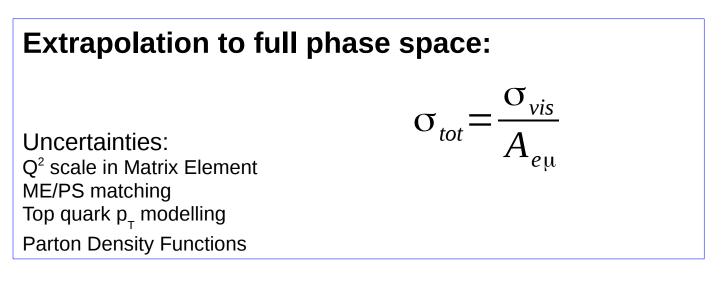
Modelling:

(strongly correlated even between experiments): Monte Carlo (380 MeV) radiation (210 MeV) colour reconnection (310 MeV)

Theory milestone

Theory milestone:

full NNLO and NNLL result for top quark pair production at hadron colliders


Collider	$\sigma_{\rm tot} ~[{\rm pb}]$	scales [pb]	pdf [pb]
Tevatron	7.009	+0.259(3.7%) -0.374(5.3%)	+0.169(2.4%) -0.121(1.7%)
LHC 7 TeV	167.0	+6.7(4.0%) -10.7(6.4%)	+4.6(2.8%) -4.7(2.8%)
LHC 8 TeV	239.1	+9.2(3.9%) -14.8(6.2\%)	$+6.1(2.5\%) \\ -6.2(2.6\%)$
LHC 14 TeV	933.0	$+31.8(3.4\%) \\ -51.0(5.5\%)$	$+16.1(1.7\%) \\ -17.6(1.9\%)$

cf. CMS PAS TOP-13-004 & ATLAS EPJC (2014) 8 TeV: s = 252.9 $^{+6.4}_{-8.6}$ (scales) +/- 11.7 (α_{s} + PDF) 7 TeV: s = 177.3 $^{+4.7}_{-6.0}$ (scales) +/- 9.0 (α_{s} + PDF) (Top++ 2.0, PDF4LHC)

Marcel Vos, alternative top mass

Custometico	Source	Uncertainty [%]	
Systematics	Source	$7 { m TeV}$	$8 {\rm TeV}$
	Trigger	1.2	1.2
1-2% variations in data/MC SF	Lepton ID/isolation	1.4	1.5
	Lepton energy scale	0.1	0.1
27 sources —	Jet energy scale	0.7	0.9
	Jet energy resolution	0.1	0.1
	Single top	0.9	0.6
	DY	1.2	1.2
	$t\bar{t}$ other	0.1	0.1
Conservative 30%	$t\bar{t} + V$	0.0	0.1
17 sources $\left\{ 5-8\% \text{ variation in } \sigma_{\text{max}} \right\}$	Diboson	0.2	0.6
	W+jets	0.0	0.0
	QCD	0.0	0.0
	B-tag	0.5	0.5
	Mistag	0.2	0.1
	Pileup	0.3	0.3
MG scales for LO matrix	Q^2 scale	0.3	0.3
	ME/PS matching	0.2	0.1
element and ME-PS matching MG vs. Powheg Pythia vs. Herwig++, b-frag reweighting P11, noCR vs. CR P11, MPIHi vs. TeV	$\rm MG{+}PY \rightarrow PH{+}PY$	0.2	0.4
	Hadronization (JES)	0.6	0.8
	Top p_T	0.3	0.3
	Color reconnection	0.1	0.0
	Underlying event	0.0	0.1
	PDF	0.2	0.7
CT10, 90%	Luminosity	2.2	2.6
	Statistical	1.2	0.6

Extrapolation to full phase space

Source	Uncertainty [%]		
Source	$7 { m TeV}$	$8 {\rm TeV}$	
Total (vis)	$\pm^{3.5}_{3.4}$	$\pm^{3.7}_{3.4}$	
Q^2 scale (extrapol.)	$\pm^{0.4}_{0.0}$	$\pm^{0.2}_{0.1}$	
ME/PS matching (extrapol.)	$\mp^{0.1}_{0.1}$	$\pm^{0.3}_{0.3}$	
Top p_T (extrapol.)	$\pm^{0.4}_{0.2}$	$\pm^{0.8}_{0.4}$	
PDF (extrapol.)	$\mp^{0.2}_{0.1}$	$\mp^{0.1}_{0.2}$	
Total	$\pm^{3.6}_{3.4}$	$\pm^{3.8}_{3.5}$	