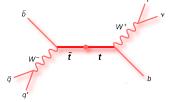
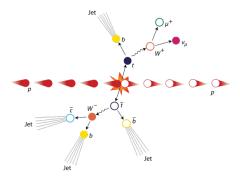


DIFFERENTIAL CROSS-SECTION MEASURE-MENTS OF TOP QUARK PAIR PRODUCTION at 8 TeV with the ATLAS Detector

15. September 2015


Benjamin Tannenwald

on behalf of the ATLAS Collaboration

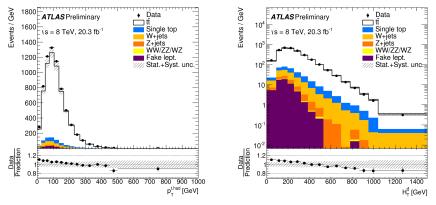

MOTIVATION

- 1. Large LHC top pair production cross section means there are lots of tops to study
 - \rightarrow Can search for resonant top production from exotic decays
 - → Observe new physics from unexpected behaviour in tails of differential distributions
- 2. Top quark pairs are leading background for $t\bar{t}H$ and WH Higgs analyses and BSM searches
 - ightarrow To understand Higgs/BSM results, need to understand $t\bar{t}$
- 3. Differential distributions are tool to compare
 - → MC generators
 - \rightarrow QCD radiation models
 - → PDF sets
 - → Calculations to different perturbative orders

SELECTION + RECONSTRUCTION

Pseudo-Top reconstruction of $t\bar{t}$ system keeps strong correlation with parton-level kinematics while reducing dependence on details of Monte Carlo simulation

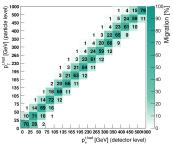
Event Selection

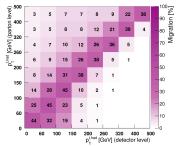

 $\begin{array}{l} \text{Lepton: } \mathsf{p}_{T}^{\ell} > 25 \; \text{GeV}, \mid \eta^{\ell} \mid < 2.5, \; \text{Triggered} \\ \text{Jets: } \text{Anti-}k_{T} \; 0.4, \; \mathsf{p}_{T}^{\text{jet}} > 25 \; \text{GeV}, \mid y^{\text{jet}} \mid < 2.5 \\ \text{Event: } = 1 \; \text{lepton}, \geq 4 \; \text{jets}, \geq 2 \; \text{b-jets} \end{array}$

Pseudo-Top Reconstruction

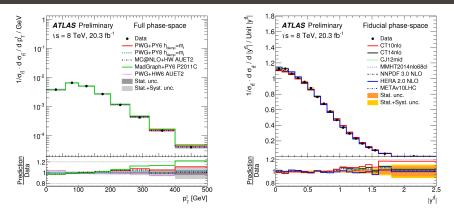
- 1. Reconstruct neutrino p_z using W-mass constraint
- 2. Build leptonic W from lepton and neutrino
- 3. Select two highest p_T b-jets
- 4. Build leptonic top from W and b-jet closest in ΔR to lepton
- 5. Create hadronic W from two non b-tagged jets with invariant mass closest to m_W
- 6. Build hadronic top from hadronic W and remaining b-jet

OBSERVABLES


- → ATLAS studied number of 'classic' observables (p^t_T, | y^t |, m_{tt}, p^t_T, | $y^{t\bar{t}}$ |, $\Delta \phi^{t\bar{t}}$)
- → Also studied variables inspired from dijet-physics, e.g. out-of- $t\bar{t}$ plane transverse momenta, scalar sum of jet and lepton p_T (H_T), and more
- → The goal is modelling
 - \rightarrow Need variables specifically sensitive to different PDF sets, additional radiation associated to $t\bar{t}$ pair, and new physics

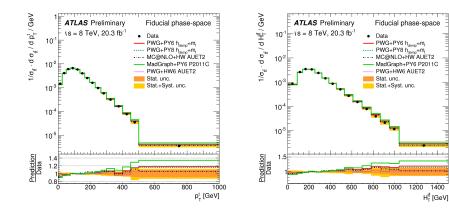

UNFOLDING

- → Corrects for detector resolution, acceptance, and reconstruction algorithms
 - → Iterative Bayesian used to unfold resolution effects
- → Measurements performed at both particle and parton levels
 - → Extrapolates from detector level measurements
 - → Particle level unfolding corrects for detector effects and reconstruction
 - → Parton level extends further into the entire phase space
- → Allows 'detector-free' comparison against theoretical predictions and measurements from other experiments

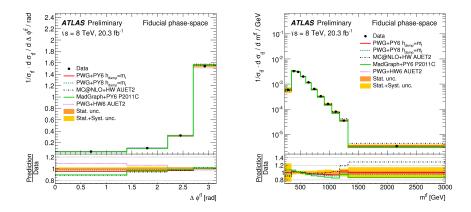

ATLAS Simulation Preliminary

ATLAS Simulation Preliminary

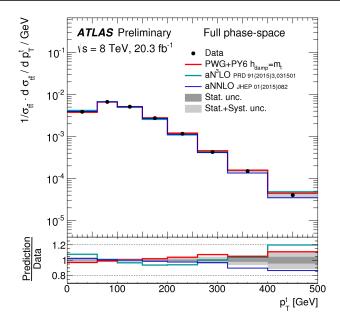
RESULTS!

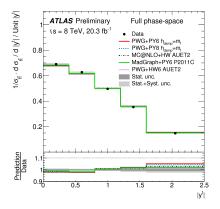

- → Unfolded distributions produced for both fiducial and full phase spaces
- → Data/MC comparisons against Powheg + Pythia6/8, Powheg + Herwig, MC@NLO, and MadGraph
- \rightarrow Difference between data and prediction at high p_T^t
 - → Tension between data and MC also observed in tails of $H_T^{t\bar{t}}$ and $y_{t\bar{t}}$
 - → Note improvement in Data/MC agreement with newer PDF sets

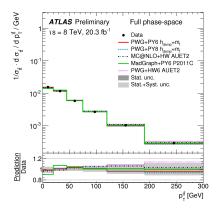
CONCLUSIONS


- → ATLAS has produced particle and parton level differential measurements of top quark pair production at 8 TeV
- $\rightarrow~$ Overall good agreement between data and Monte Carlo
 - → Top quark p_T spectrum softer in data for all MC predictions
- → Unfolded distributions powerful tool for comparing and improving
 - → Different generators
 - → PDF sets
 - → Radiation models
- → Measurements like these improve our ability to make more precise measurements in Run II
 - → New discoveries?

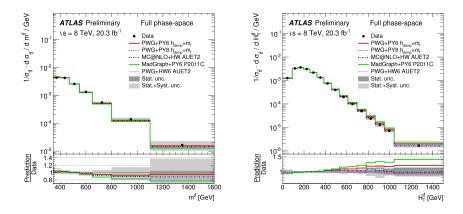
BACKUP SLIDES


MORE DIFFERENTIAL PLOTS

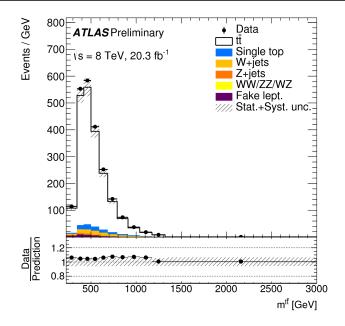

MORE DIFFERENTIAL PLOTS



COMPARING PERTURBATIVE ORDER CALCULATIONS



FULL PHASE-SPACE DIFFERENTIAL PLOTS



MORE FULL PHASE-SPACE DIFFERENTIAL PLOTS

JUSTICE FOR PSEUDO-TOPS

