

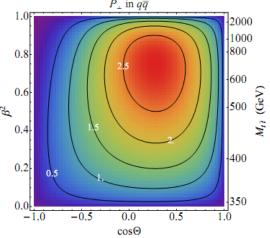
Measurement of the top quark polarization with the DØ detector

Kamil Augsten

augsten@fnal.gov

Czech Technical University in Prague for the DØ collaboration

Motivation


- Top quark is unique, important properties polarization:
 - ullet in SM <u>top quark pairs produced almost unpolarized</u> in par p
 - small polarization is generated by SM parity-violating weak interactions (*Bernreuther, Si, Nucl. Phys. B 837 (2010) 90*)
 - various models beyond SM expect non-zero polarization

observation of significant non-zero top quark polarization -

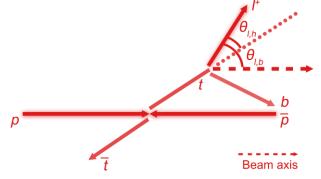
evidence for BSM physics

 strong motivation to measure top quark polarization at Tevatron

- different initial state to LHC
- no $p\bar{p}$ results until 07/2015

Baumgart, Tweedie, JHEP 1308 (2013) 072

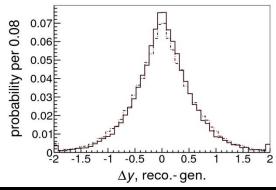
Introduction

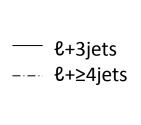

• **Top quark polarization** $P_{\widehat{n}}$ can be measured in the top rest frame through the angular distribution of the top quark decay products with respect to a chosen axis \widehat{n} :

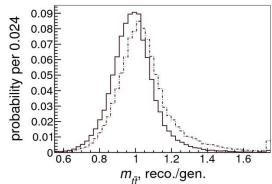
**spin analyzing power: \$\ell \text{ has } \sim 1, d-\text{ type } q \ 0.97,

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{i,\hat{n}}} = \frac{1}{2} \left(1 + P_{\hat{n}} \kappa_i \cos\theta_{i,\hat{n}} \right)$$

decay product : ℓ , q, b, ν


- choice of spin quantization axis:
 - the <u>beam axis</u> \hat{b} given by the direction of the proton beam
 - the <u>helicity axis</u> \hat{h} given by the direction of the parent top
 - the <u>transverse axis</u> \hat{t} given as perpendicular to the production plane (proton × parent top directions)




longitudinal (beam and helicity) angle and axis

Method

- lepton is the most sensitive to the top quark polarization and is the most easily identified final state fermion
 - we focus on angular distribution of leptons
- need **full reconstruction** of the $t\bar{t}$ decay χ^2 -based constrained kinematic fit
 - Demina, Harel, Orbaker, NIM A 788 (2015) 128
 - allows reconstruction of events with $\ell+3$ jets (one jet is lost jet too soft or due inefficiencies in reconstruction/identification)
 - we use all combinations weighted by χ^2 and b-tag probability

Samples/Selection

- full RunII DØ dataset ($p\bar{p}$) of 9.7 fb⁻¹, ℓ +jets channel:
 - one isolated lepton $(p_T > 20 \text{ GeV}, |\eta| < 1.1 \text{ for } e, |\eta| < 2.0 \text{ for } \mu, y < 2.0)$
 - 3 or more jets $(p_T > 20 \text{ GeV}, |\eta| < 2.5,$ leading jet $p_T > 40 \text{ GeV})$
- at least one <u>b-tagged jet</u> (MVA alg.)
- significant missing transverse energy $(E_{T,miss} > 20 \text{ GeV})$
- additional quality cuts
- sample composition by maximum-likelihood fit on discriminant of several variables

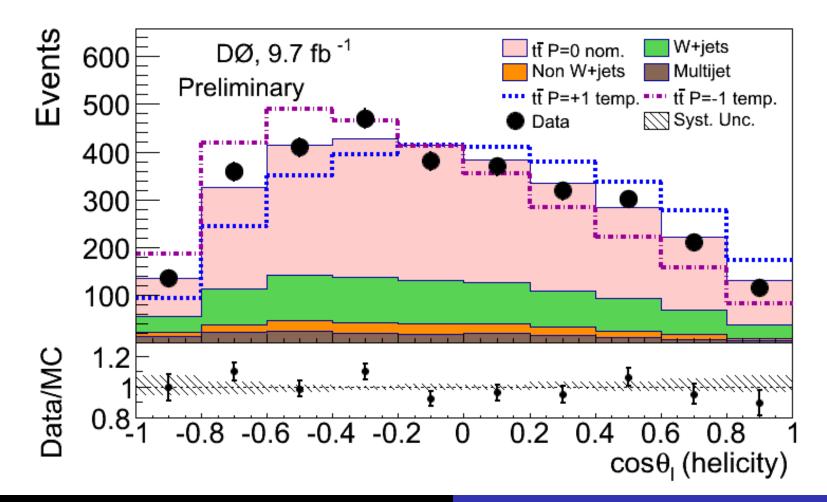
 $t\bar{t}$ signal (MC@NLO+HERWIG), background ALPGEN+PYTHIA (W+jets) or COMPHEP

or data-driven (Multijet)

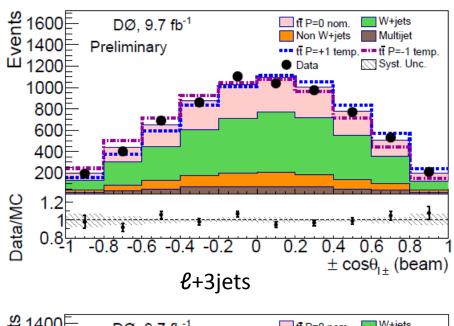
	3 jets		$\geq 4 \text{ jets}$	
Source	e+jets	$\mu + \mathrm{jets}$	e+jets	$\mu + \mathrm{jets}$
W+jets	1741 ± 26	1567 ± 15	339 ± 3	295 ± 3
Multijet	494 ± 7	128 ± 3	147 ± 4	49 ± 2
Other Bg	446 ± 5	378 ± 2	87 ± 1	73 ± 1
$t\overline{t}$ signal	1200 ± 25	817 ± 20	1137 ± 24	904 ± 23
Sum	3881 ± 37	2890 ± 25	1710 ± 25	1321 ± 23
Data	3872	2901	1719	1352

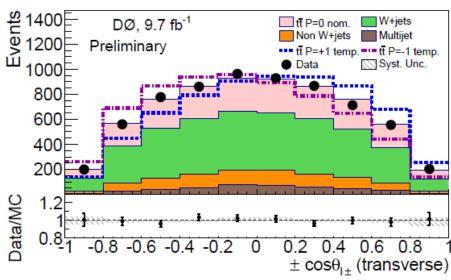
Method

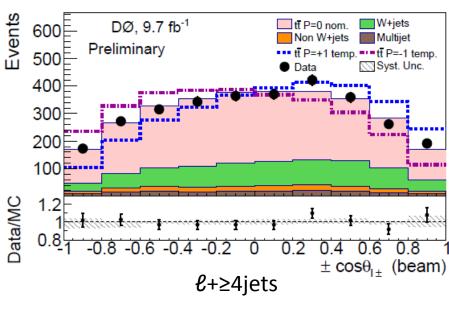
- we **reweight the W+jets MC** events so that the $\cos \theta_{\ell,\hat{n}}$ distribution shows good agreement with the data in control region 3 jets, 0 *b*-tag
- our signal $t\bar{t}$ MC sample does have zero polarization, we reweight to **templates** $P_{\hat{n}} = \pm 1$ with double distribution $1/\Gamma d\Gamma/d\cos\theta_1\cos\theta_2$

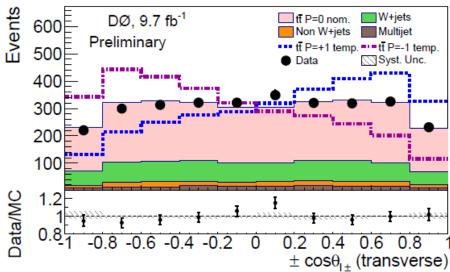

$$\frac{1}{4}\left(1+\kappa_{1}P_{\hat{n},1}\cos\theta_{1}+\rho\kappa_{2}P_{\hat{n},2}\cos\theta_{2}-\kappa_{1}\kappa_{2}C\cos\theta_{1}\cos\theta_{2}\right)$$
top quark decay product
(ℓ or ℓ -type ℓ)

anti-top quark decay product
spin correlation factor
-0.368 (\hat{h}), 0.791 (\hat{b}), 0 (\hat{t})


- in the SM with CP invariance $\rho=1$ for helicity and $\rho=-1$ for beam and transverse bases (Bernreuther, J. Phys. G 35 (2008) 083001 (2008))
- simultaneous template fit is performed to the data using $P=\pm 1$ templates and background expectations
- polarization $P=f_+-f_-$, where f_\pm are fractions returned in the fit


Results


 example of cos θ distribution in data, backgrounds, and signal templates P = +1, 0, -1, selection ℓ+≥4 jets



Results

Uncertainties

- difference in polarization when using the respective alternative model or uncertainties/assumptions related to method
- three groups of systematic uncertainties:
 - <u>signal and background modeling</u> dominant contribution from hadronization, higher order correction, PDF
 - <u>detector modeling</u> dominant JES, b-tagging, flavor dependent jets response
 - method dominant uncertainty on sample composition fit

Beam	Helicity	Transverse
± 0.019	± 0.022	± 0.009
± 0.017	± 0.034	± 0.011
± 0.014	± 0.008	± 0.005
± 0.030	± 0.041	± 0.015
± 0.046	± 0.044	± 0.030
± 0.055	± 0.060	± 0.034
	± 0.019 ± 0.017 ± 0.014 ± 0.030 ± 0.046	Beam Helicity ± 0.019 ± 0.022 ± 0.017 ± 0.034 ± 0.014 ± 0.008 ± 0.030 ± 0.041 ± 0.046 ± 0.044 ± 0.055 ± 0.060

Results/Conclusion

measured polarizations for the three spin quantization bases

Axis	Measured polarization $P_{\hat{n}}$	SM prediction
Beam	$+0.070 \pm 0.055$	-0.002
Helicity	-0.102 ± 0.060	-0.004
Transverse	$+0.040 \pm 0.034$	+0.011

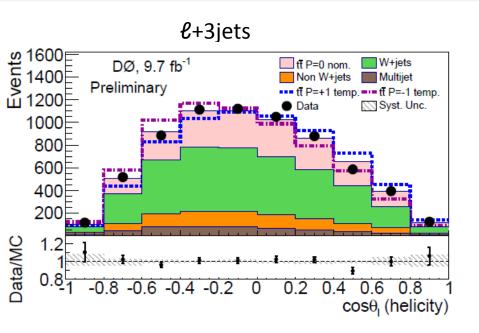
- polarizations are consistent with zero and with the predicted SM values
- transverse polarization measured for the first time at a hadron collider
- recent DØ result along beam axis in dilepton channel
 - $P_{\hat{b}} = 0.113 \pm 0.093$ (arXiv:1507.05666 [hep-ex] -> PRD)

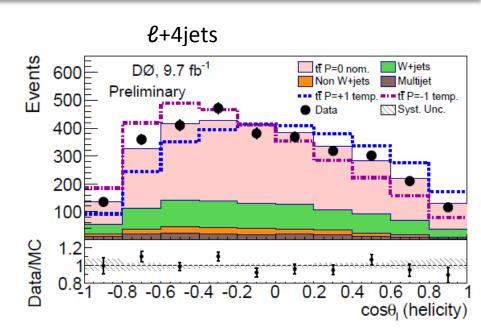
The End

Thank you for your attention

Back-up slides...

Sample composition


construct a likelihood discriminant


- good separation power between signal and W+jets bkg
- well modeled input variables
- small or no correlation between input variables and measurement
- *ℓ*+3jets
- $k_T^{min} = \min(p_{T,a}, p_{T,b}) \cdot \Delta R_{ab}$, where $\Delta R_{ab} = \sqrt{(\eta_a \eta_b)^2 + (\phi_a \phi_b)^2}$ is the angular distance between the two closest jets, a and b, and $\min(p_{T,a}, p_{T,b})$ represents the smaller transverse momentum of the two jets;
- aplanarity, $A = 3/2\lambda_3$, where λ_3 is the smallest eigenvalue of the normalized momentum tensor $M_{i,j}$;
- H_T^{ℓ} , the scalar sum of the jets and lepton transverse momenta;
- ΔR(jet1, jet2), ΔR between the leading jet and the second leading jet;
- $\Delta \mathcal{R}(\text{lepton, jet1})$, $\Delta \mathcal{R}$ between the lepton and the leading jet.

• *ℓ*+≥4jets

- k_T^{min} ;
 - centrality, $C = H_T/H$, where H_T is the scalar sum of all jet transverse momenta and H is the scalar sum of all jet energies.
- aplanarity;
- the lowest χ^2 of the different kinematic fit solutions;
- \bullet H_T^l ;
- $(p_T^{b_{\text{had}}} p_T^{b_{\text{lep}}})/(p_T^{b_{\text{had}}} + p_T^{b_{\text{lep}}})$, the relative asymmetry of the transverse momenta of the two *b*-jet candidates, where b_{lep} is from the top quark that decays to $b\ell\nu$ and b_{had} is from the top quark that decays to $bq\overline{q}'$;
- M_{jj} , the invariant mass of the jets corresponding to the $W \to q\overline{q}'$ decay.

Results

Uncertainties

 complete breakdown of sources:

Source	Beam	Helicity	Transverse	
Signal and background modeling:				
Alternate signal	± 0.009	± 0.014	± 0.003	
Initial/final state radiation	± 0.008	± 0.003	± 0.003	
Color reconnection	± 0.003	± 0.007	± 0.003	
Multijet background	± 0.001	± 0.008	± 0.002	
Background normalization	± 0.004	± 0.003	± 0.002	
b-jet fragmentation	± 0.001	± 0.001	± 0.000	
PDF uncertainty	± 0.013	± 0.011	± 0.003	
Top quark mass	± 0.002	± 0.005	± 0.003	
Instantaneous luminosity	± 0.000	± 0.002	± 0.002	
Detector modeling:				
Residual jet energy scale	± 0.009	± 0.022	± 0.003	
Flavor-dependent jets response	± 0.009	± 0.008	± 0.007	
b-tagging	± 0.009	± 0.014	± 0.005	
Trigger efficiency	± 0.002	± 0.005	± 0.001	
Lepton momentum scale	± 0.002	± 0.008	± 0.001	
$t\bar{t}$ transverse momentum	± 0.005	± 0.001	± 0.002	
Jet energy resolution	± 0.003	± 0.005	± 0.005	
Jet identification efficiency	± 0.001	± 0.004	± 0.003	
Lepton identification	± 0.006	± 0.016	± 0.002	
Vertex confirmation	± 0.004	± 0.002	± 0.004	
Method:				
W+jets calibration	± 0.002	± 0.003	± 0.001	
Sample composition	± 0.012	± 0.007	± 0.004	
MC template statistics	± 0.001	± 0.001	± 0.001	
$A_{\rm FB}$ uncertainty	± 0.005	± 0.000	± 0.000	
Total systematic uncertainty	± 0.030	± 0.041	± 0.015	
Total statistical uncertainty	± 0.046	± 0.044	± 0.030	
Total uncertainty	± 0.055	± 0.060	± 0.034	

Polarization and A_{FB} dependence

- we observe dependence of polarization on forwardbackward asymmetry and polarization
 - we correct for difference in A_{FB} as our $t\bar{t}$ signal (MC@NLO) is generated with asymmetry of 5.01 % and recent NNLO calculation (SM) shows asymmetry of 9.5 % (arXiv:1411.3007~[hep-ph])
 - correction 3% in beam axis, 0.2% helicity, negligible transverse
- similarly recent simultaneous measurement of A_{FB} and polarization in dilepton channel observed correlation between those 2 measurements
 - due to acceptance and resolution eff. in reconstruction
 - arXiv:1507.05666 [hep-ex]