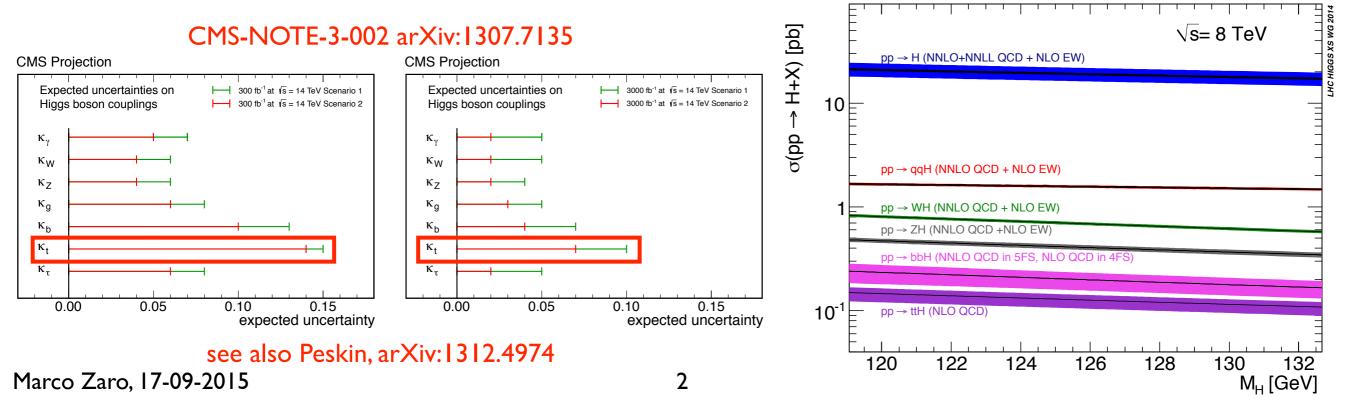


Theory overview for tTH and tH production

Top2015: 8th international workshop on top quark physics Ischia

Marco Zaro LPTHE - Université Pierre et Marie Curie Paris - France



99999991

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG

Why ttH?

- It is the "last" of the main Higgs production mechanisms still to be observed 999999
- It is directly sensitive to the top Yukawa
- Expected precision on y_t at the LHC RunII: 7-10%
- Same order as TH errors (NLO)

Outline:

- Status on higher-order predictions for signal and backgrounds
- Recent results for the signal...
 - NLO Electroweak corrections to ttH
 - The importance of spin correlations
 - Accurate predictions for tH
- ...and for the backgrounds
 - ttbb: beyond QCD-only
 - Recent results for $t\overline{t}VV$
- Can we go below the TH errors in the extraction of y_t ?

Higher order predictions for signal and backgrounds

• ttH

NLO QCD corrections (30% @ Runll) Beenakker et al. hep-ph/0107081 & hep-ph/0211352 Dawson et al. hep-ph/0211438 & hep-ph/0305087 Matching to PS aMC@NLO: Frederix et al. arXiv:1104.5613 Powhel: Garzelli et al. arXiv: 1 108.0387 • ttV 2015! Powheg Box: Hartanto et al. arXiv:1501.04498 NLO QCD corrections to bbl+l-vvH 2015! Denner et al. arXiv:1506.07448 Weak and Electro-Weak corrections (1.<u>5% @</u> Runll) 2015! Frixione et al. arXiv:1407.0823 & arXiv:1504.03446 Zhang et al. arXiv:1407.1110 Soft gluon resummation (2-6% @ RunII) 2015! Kulesza et al. arXiv:1509.02780 • tH NLO QCD corrections ttVV (5FS) Farina et al. arXiv:1211.3737 (5FS) Campbell et al. arXiv:1302.3856 Matching to PS 2015! (4FS and 5FS) Demartin et al. arXiv:1504.00611 tHW see poster by F. Demartin

Marco Zaro, 17-09-2015

• ttbb

NLO QCD corrections
 Bredenstein et al. arXiv:0905.0110 & arXiv:1001.4006
 Bevilacqua et al. arXiv:0907.4723

 Matching to PS
 Kardos et al.1303.6201
 Cascioli et al. 1309.5912

 NLO QCD corrections
 TTY Melnikov et al. arXiv:1102.1967

 TTW,tTY*/Z, tTY Hirschi et al. arXiv:1103.0621

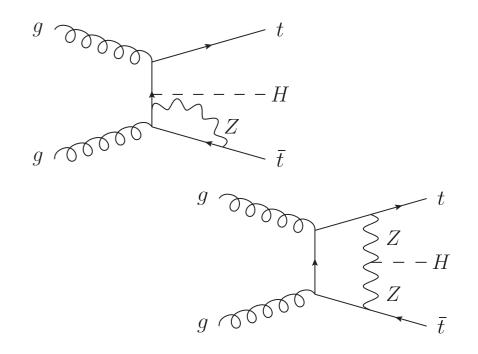
ttZ Lazopoulos et al. arXiv:0804.2220

- ttZ Kardos et al. arXiv:1111.0610 ttW Campbell et al. arXiv:1204.5678
- Matching to PS

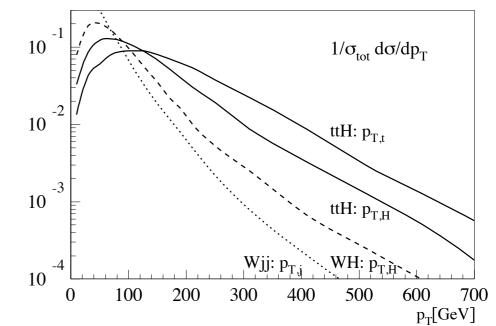
tTZ Garzelli et al. arXiv:1111.1444 tTW, tTZ Garzelli et al. arXiv:1208.2665

- Electro-Weak corrections 2015!ttW,ttZ (and ttH) Frixione et al. arXiv:1504.03446
 - NLO QCD corrections + PS

tτγγ Kardos et al. arXiv:1408.0278 2015! all tτVV Maltoni et al. arXiv:1507.05640 2015! tτγγ van Deurzen et al. arXiv:1509.02077



Recent results for the signal

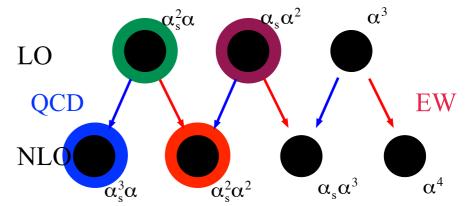


Electro-weak corrections to tTH motivation

- ttH offers unique direct access to the yt coupling
- (Electro-)weak corrections spoil the trivial yt² dependence of the crosssection: crucial for precise extraction of yt
- Boosted searches: EW corrections enhanced because of Sudakov logs (log(pT/mW))

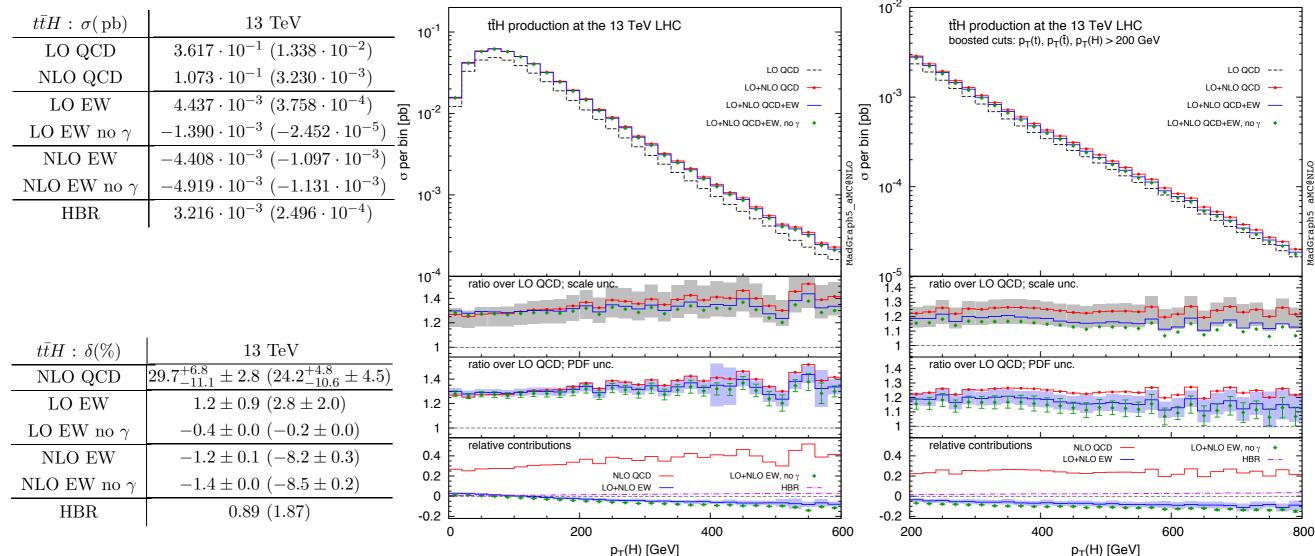
Electro-weak corrections to ttH: setup

Frixione, Hirschi, Pagani, Shao, MZ, arXiv:1407.0823 & 1504.03446


- $\alpha(m_Z)$ -scheme: $\alpha(m_Z)$, m_Z , m_W as input parameters
- m_H=125 GeV, m_t=173.3 GeV
- NNPDF 2.3 QED PDFs (including photon PDF)
- Ren./Fac. scales set to

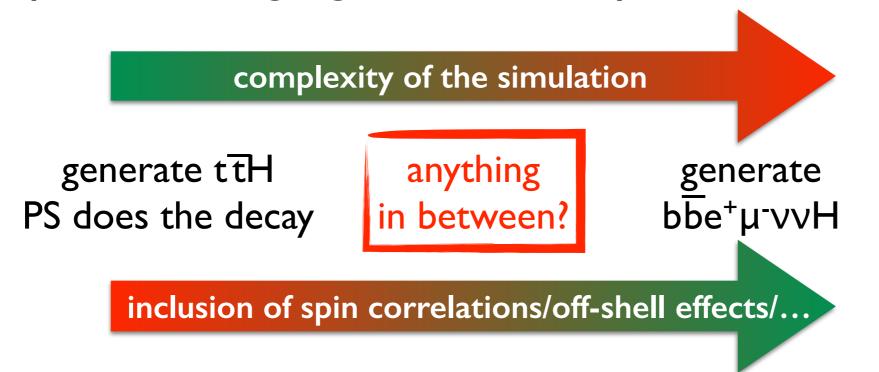
$$u = \frac{H_T}{2}$$

• QCD scale variations computed with


$$\frac{1}{2}\mu \le \mu_R, \mu_F \le 2\mu$$

- Both inclusive and boosted regime $(p_T(t, \overline{t}, H) > 200 \text{ GeV})$
- Code generated within MadGraph5_aMC@NLO
- The following terms are computed: LO QCD, LO EW (only gγ and bb)
 NLO QCD, NLO EW+HBR (tTHV)

Electro-weak corrections to tTH: results at I3 TeV



 Bottom line: EW corrections are small for total rate, but become important at large p_T; only partial compensation of Sudakov logs by HBR

The importance of spin correlations

- Spin correlation from the top decay products carry useful information for H CP studies and to enhance signal/background
- The inclusion in a NLO+PS computation is not trivial (decay chains are gauge invariant only in the NWA)

The importance of spin correlations

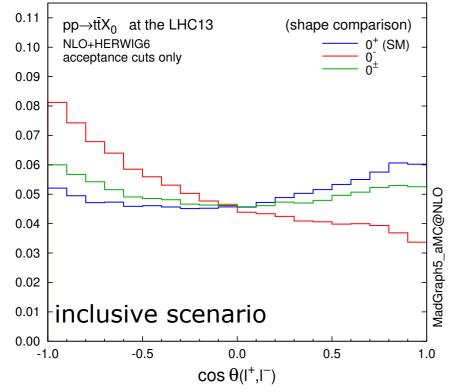
- Spin correlation from the top decay products carry useful information for H CP studies and to enhance signal/background
- The inclusion in a NLO+PS computation is not trivial (decay chains are gauge invariant only in the NWA)

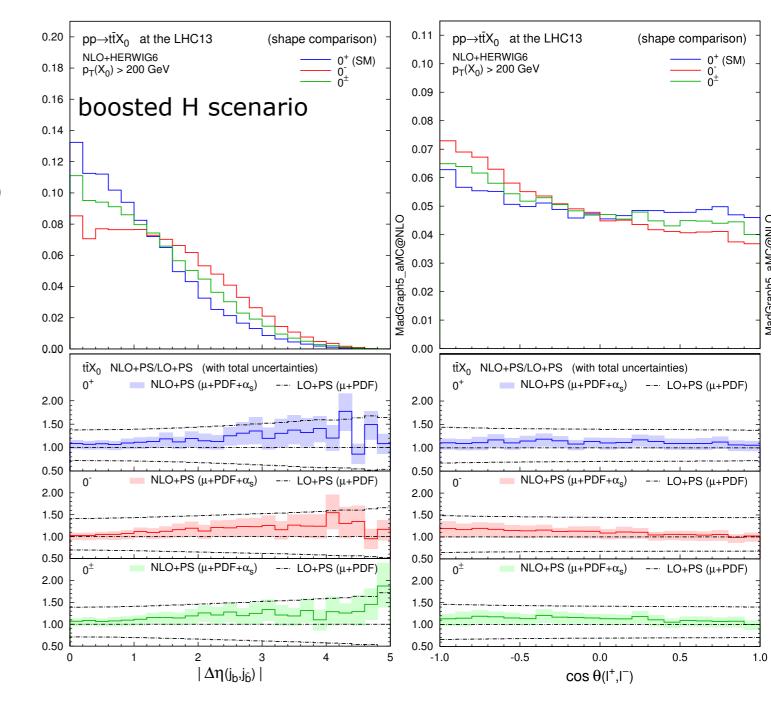
Frixione, Leanen, Motylinski, Webber, arXiv:hep-ph/0702198

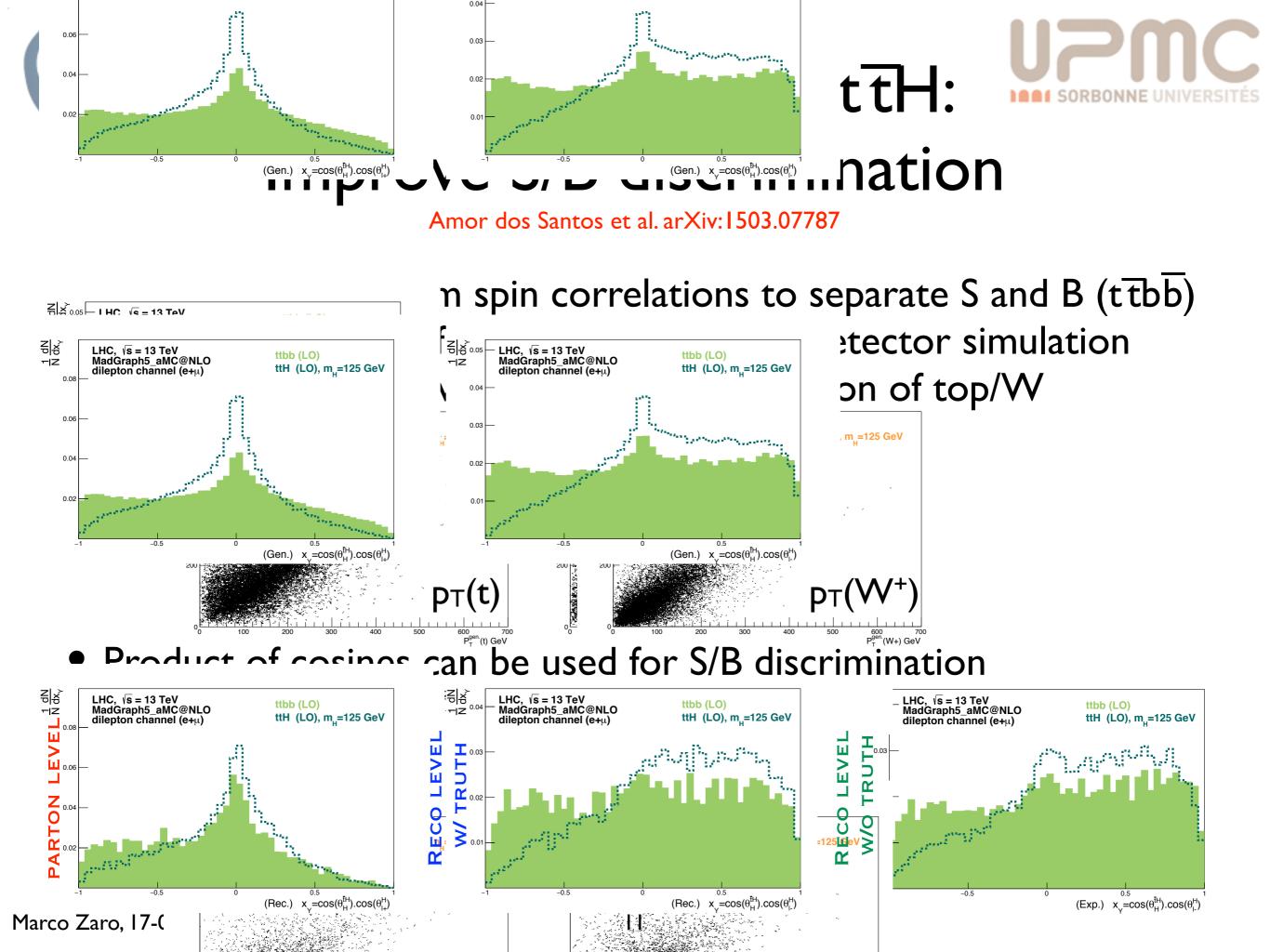
method automated in MadSpin (MadGraph5_aMC@NLO)

and Decayer (PowHel)

Artoisenet, Frederix, Mattelaer, Rietkerk, arXiv:1212.3460 Garzelli, Kardos, Trocsanyi, arXiv:1405.5859

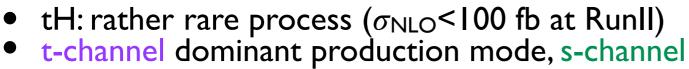

inclusion of spin correlations/off-shell effects/...

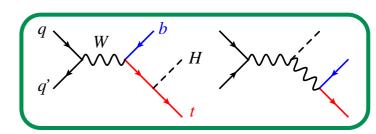


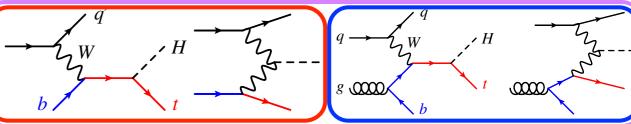

Spin correlation in tTH: H CP determination

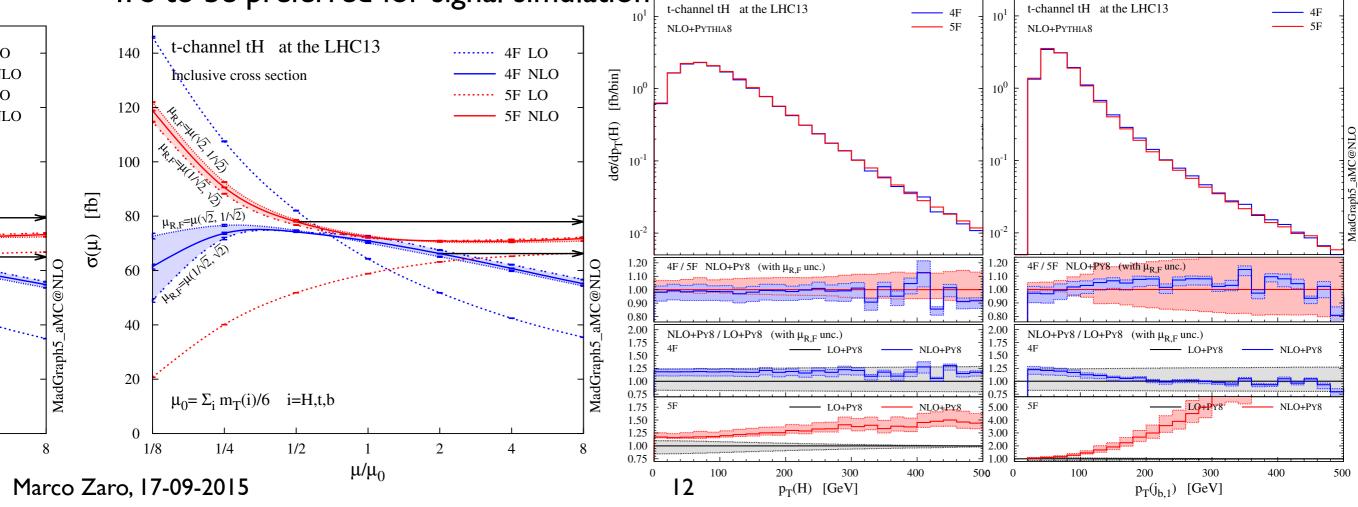
Demartin, Maltoni, Mawatari, Page, MZ, arXiv: 1407.5089

- Include CP violating ttH interaction in an effective theory approach, at NLO+PS $\mathcal{L}_{0}^{t} = -\bar{\psi}_{t} (c_{\alpha}\kappa_{Htt}g_{Htt} + is_{\alpha}\kappa_{Att}g_{Att}\gamma_{5})\psi_{t} X_{0}$
- Study dileptonic top decay

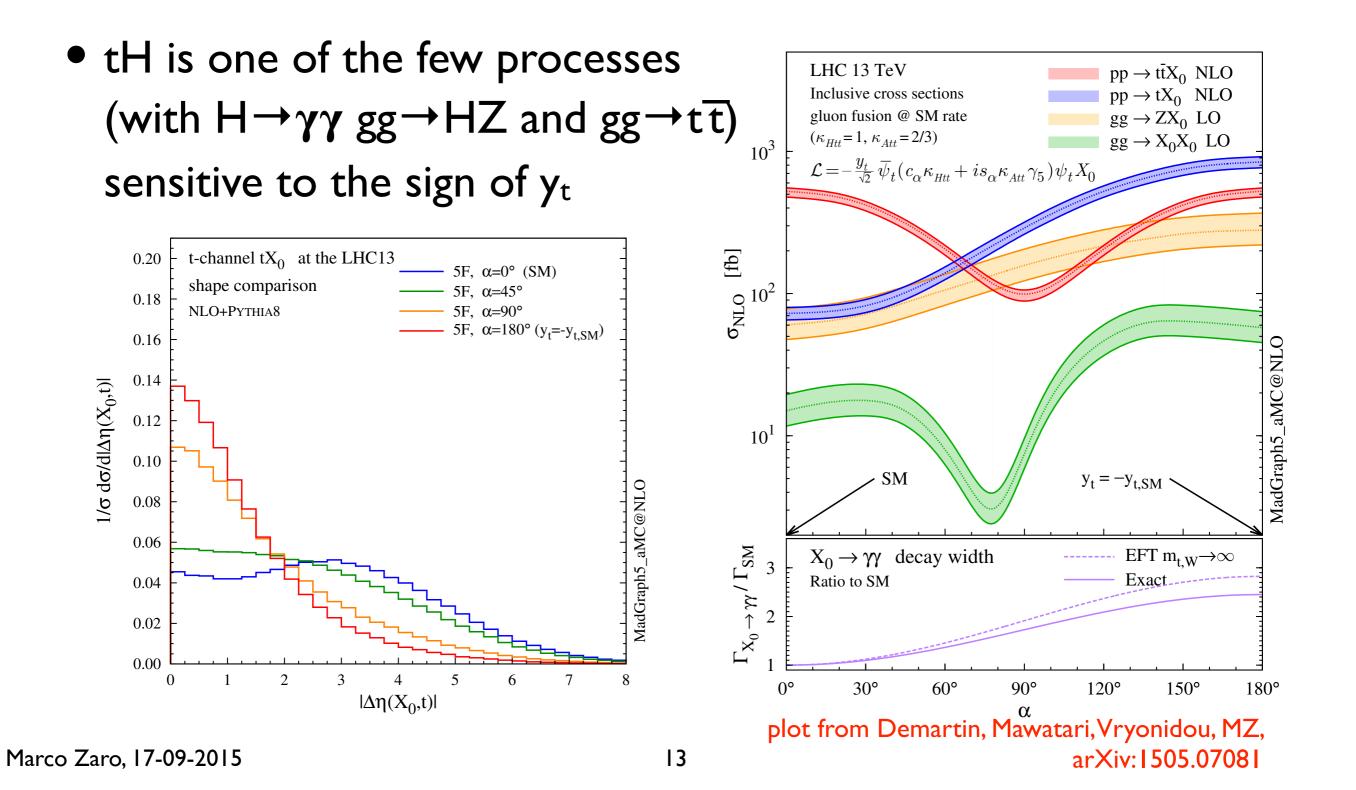




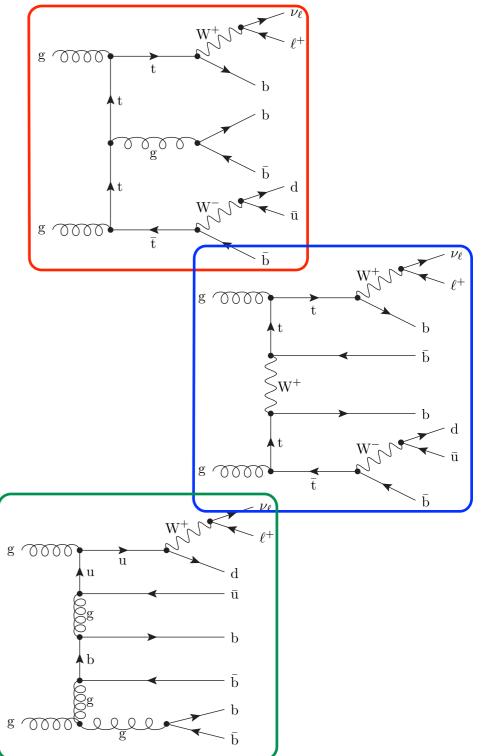

Demartin, Maltoni, Mawatari, MZ, arXiv:1504.00611



- much suppressed (σ_{NLO} <3 fb)
- Can be described either in the 4FS (m_b>0) or in the 5FS (m_b=0)
- NLO corrections (and wise scale choice) improve agreement between two schemes



A peculiar process


Recent results for the backgrounds

ttbb: going beyond the pure-QCD contribution

- ttbb is usually studied with stable tops and including only contributions of QCD origin (LO at α_s^4)
- Are we missing anything?
 - What is the effect of non-pure-QCD diagrams (and of interferences between different orders)?
 - Are non-resonant contributions important?

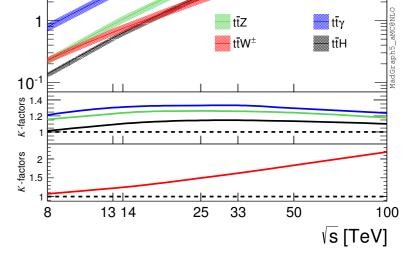
ttbb beyond QCD-only: Setup and results

Denner, Feger, Scharf, arXiv:1412.5290

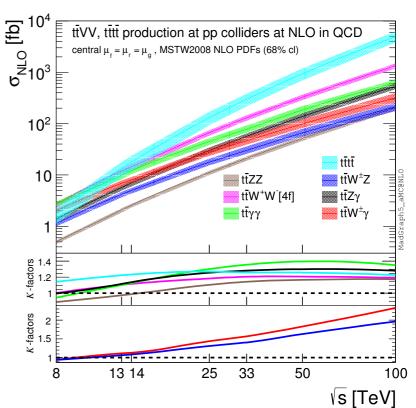
- Simulation done at LO
- Semi-leptonic top decay
- Standard cuts on final state leptons, missing-E_T and (b-)jets
- Non-QCD effects are large (60% of QCD-only) for ttbb
- Interference between orders: -6% for gg, -5% on sect (rather flat on most of the distributions)
- Non-resonant effects: +3% on gg-qq (with similar interferences), +8% on xsect due to new partonic channels

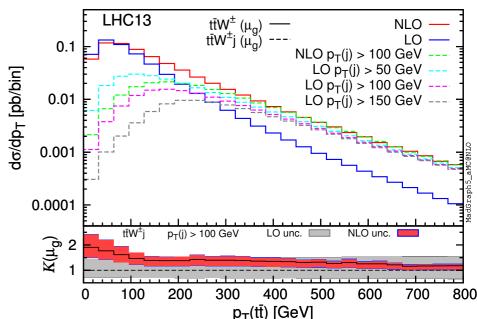
$\mathbf{p}\mathbf{p}$	pp Cross section (fb) pp→ttbb → lvjjbbbb					
	$\mathcal{O}ig((lpha^4)^2ig)$	$\mathcal{O}ig((lpha_{ m s} lpha^3)^2ig)$	$\mathcal{O}ig((lpha_{ m s}^{2}lpha^{2})^{2}ig)$	\mathbf{Sum}	Total	
$q \bar{q}$	0.018134(6)	2.4932(9)	0.9199(2)	3.4312(9)	3.4366(6)	
gg	-	7.818(4)	16.650(9)	24.47(1)	23.010(7)	
\sum	0.018134(6)	10.311(4)	17.570(9)	27.90(1)	26.446(7)	

pp	Cross section (fb) $pp \rightarrow lv j j b \bar{b} b \bar{b}$					
	$\mathcal{O}ig((lpha^4)^2ig)$	$\mathcal{O}ig((lpha_{ m s}lpha^3)^2ig)$	$\mathcal{O}ig((lpha_{ m s}^2lpha^2)^2ig)$	$\mathcal{O}ig((lpha_{ m s}^{3}lpha)^{2}ig)$	\mathbf{Sum}	Total
$\mathrm{g}q$	_	0.231(4)	0.370(2)	0.365(1)	0.966(4)	0.944(9)
$\mathrm{g} \bar{q}$	_	0.0421(6)	0.0679(3)	0.0608(2)	0.1708(7)	0.167(1)
$qq^{(\prime)}$	0.001471(2)	0.0575(5)	0.1106(2)	0.07871(9)	0.2483(6)	0.2478(8)
$q\bar{q}$	0.01973(3)	2.531(6)	0.957(1)	0.00333(1)	3.511(6)	3.538(4)
gg	_	8.01(2)	17.19(6)	0.00756(2)	25.21(6)	23.71(6)
\sum	0.02120(3)	10.87(2)	18.69(6)	0.516(2)	30.10(6)	28.60(6)


Bottom line: non-QCD effects may be important

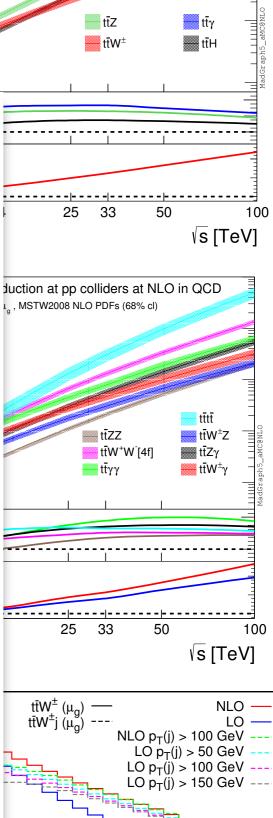
(how large are they in the tTH signal region?) tTbb provides a reasonable approximation to the full process Marco Zaro, 17-09-2015

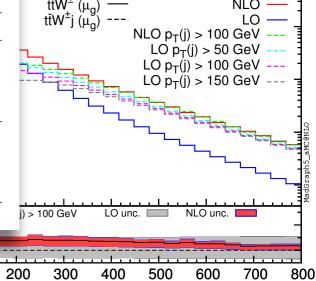



Recent results for tTVV

Maltoni, Tsinikos, Pagani, arXiv: 1507.05640

- All tt+1,2V processes studied at NLO +PS accuracy
- NLO corrections essential for realistic phenomenology
 - K-factor ~ 2 @100TeV for qq initiated processes @LO
 - Huge K factors in p_T(tt) for ttV due to recoil against hard jets; further corrections (ttVj @NLO) found to be small
- Detailed study in the context of tTH searches





- All tt+1,2
 +PS accurate
- NLO corr phenomer
 - K-factor
 processe
 - Huge K recoil ag correction small
- Detailed s searches

	П)		10-1
13 TeV σ [fb]		SR1	SR2	SR3
	NLO+PS	$1.54^{+5.1\%}_{-9.0\%}~^{+2.2\%}_{-2.6\%}\pm0.02$	$1.47^{+5.2\%}_{-9.0\%}~^{+2.0\%}_{-2.4\%}\pm0.02$	$0.095^{+7.4\%}_{-9.7\%}~^{+2.0\%}_{-2.4\%}\pm0.002$
$t\bar{t}H(H \to WW^*)$	LO+PS	$1.401^{+35.6\%}_{-24.4\%} {}^{+2.1\%}_{-2.2\%} \pm 0.008$	$1.355^{+35.2\%}_{-24.1\%}~^{+2.0\%}_{-2.2\%}\pm0.008$	$0.0855^{+34.9\%}_{-24.0\%}~^{+2.0\%}_{-2.2\%}\pm0.0007$
K = 1.10	K^{PS}	1.10 ± 0.02	1.09 ± 0.02	1.11 ± 0.02
	NLO+PS	$0.0437^{+5.5\%}_{-9.2\%} {}^{+2.3\%}_{-2.8\%} \pm 0.0004$	$0.119^{+6.3\%}_{-9.6\%}~^{+2.1\%}_{-2.5\%}\pm0.002$	$0.0170^{+5.0\%}_{-8.5\%}~^{+2.0\%}_{-2.4\%}\pm0.0003$
$t\bar{t}H(H \to ZZ^*)$	LO+PS	$0.0404^{+36.1\%}_{-24.6\%} {}^{+2.2\%}_{-2.3\%} \pm 0.0002$	$0.1092^{+35.3\%}_{-24.2\%} {}^{+2.0\%}_{-2.2\%} \pm 0.0008$	$0.0152^{+34.7\%}_{-23.9\%}~^{+1.9\%}_{-2.1\%}\pm0.0001$
K = 1.10	K^{PS}	1.08 ± 0.01	1.09 ± 0.02	1.12 ± 0.02
	NLO+PS	$0.563^{+4.6\%}_{-8.8\%} {}^{+2.2\%}_{-2.7\%} \pm 0.007$	$0.669^{+6.0\%}_{-9.4\%}~^{+2.1\%}_{-2.6\%}\pm0.008$	$0.0494^{+7.1\%}_{-9.9\%}~^{+2.1\%}_{-2.5\%}\pm0.0007$
$\bar{t}H(H \to \tau^+ \tau^-)$	LO+PS	$0.513^{+35.9\%}_{-24.5\%} {}^{+2.2\%}_{-2.3\%} \pm 0.003$	$0.611^{+35.4\%}_{-24.2\%}~^{+2.1\%}_{-2.2\%}\pm0.003$	$0.0438^{+35.1\%}_{-24.1\%}~^{+2.0\%}_{-2.2\%}\pm0.0003$
K = 1.10	K^{PS}	1.10 ± 0.02	1.10 ± 0.01	1.13 ± 0.02
	NLO+PS	$5.77^{+15.1\%}_{-12.7\%} {}^{+1.6\%}_{-1.2\%} \pm 0.07$	$2.44^{+13.1\%}_{-11.6\%}~^{+1.7\%}_{-1.4\%}\pm0.01$	-
$t\bar{t}W^{\pm}$	LO+PS	$4.57^{+27.7\%}_{-20.2\%} {}^{+1.8\%}_{-1.9\%} \pm 0.03$	$1.989^{+27.5\%}_{-20.0\%}~^{+1.8\%}_{-1.9\%}\pm0.007$	-
K = 1.22	KPS	1.26 ± 0.02	1.23 ± 0.01	-
	NLO+PS	$1.61^{+7.7\%}_{-10.5\%} {}^{+2.0\%}_{-2.5\%} \pm 0.02$	$2.70^{+9.0\%}_{-11.2\%}~^{+2.0\%}_{-2.5\%}\pm0.03$	$0.280^{+9.8\%}_{-11.0\%}~^{+1.9\%}_{-2.3\%}\pm0.003$
$t\bar{t}Z/\gamma^*$	LO+PS	$1.422^{+36.8\%}_{-24.9\%} \stackrel{+2.2\%}{_{-2.3\%}} \pm 0.008$	$2.21^{+36.4\%}_{-24.7\%} {}^{+2.1\%}_{-2.2\%} \pm 0.01$	$0.221^{+35.8\%}_{-24.4\%}~^{+2.0\%}_{-2.2\%}\pm0.001$
K = 1.23	K^{PS}	1.13 ± 0.02	1.23 ± 0.01	1.27 ± 0.01
	NLO+PS	$0.288^{+8.0\%}_{-11.1\%} {}^{+2.3\%}_{-2.6\%} \pm 0.003$	$0.201^{+7.4\%}_{-10.7\%}~^{+2.1\%}_{-2.3\%}\pm0.003$	$0.0116^{+6.9\%}_{-10.2\%}~^{+2.2\%}_{-2.3\%}\pm 0.0002$
$t\bar{t}W^+W^-$	LO+PS	$0.260^{+38.4\%}_{-25.5\%} \ {}^{+2.3\%}_{-2.3\%} \pm 0.001$	$0.181^{+38.0\%}_{-25.3\%}~^{+2.2\%}_{-2.2\%}\pm0.001$	$0.01073^{+37.7\%}_{-25.1\%} {}^{+2.2\%}_{-2.2\%} \pm 0.0008$
K = 1.10	K^{PS}	1.11 ± 0.01	1.11 ± 0.01	1.08 ± 0.02
	NLO+PS	$0.340^{+27.5\%}_{-25.8\%} {}^{+5.5\%}_{-6.4\%} \pm 0.004$	$0.211^{+27.4\%}_{-25.6\%} {}^{+5.2\%}_{-6.1\%} \pm 0.003$	$0.0110^{+27.0\%}_{-25.5\%}~^{+5.0\%}_{-5.9\%}\pm0.0002$
$tar{t}tar{t}$	LO+PS	$0.271^{+80.9\%}_{-41.5\%}~^{+4.6\%}_{-4.6\%}\pm0.001$	$0.166^{+80.3\%}_{-41.4\%}~^{+4.4\%}_{-4.4\%}\pm0.001$	$0.00871^{+79.8\%}_{-41.2\%} {}^{+4.2\%}_{-4.2\%} \pm 0.0000'$
K = 1.22	K^{PS}	1.26 ± 0.02	1.27 ± 0.02	1.26 ± 0.03
13 TeV $\sigma[ab]$		SR1	SR2	SR3
	NLO+PS	$9.60^{+3.5\%}_{-8.4\%} {}^{+1.8\%}_{-1.8\%} \pm 0.06$	$5.02^{+3.7\%}_{-8.3\%}~^{+1.8\%}_{-1.7\%}\pm0.04$	$0.249^{+7.2\%}_{-9.6\%}~^{+1.9\%}_{-1.8\%}\pm0.009$
$t\bar{t}ZZ$	LO+PS	$9.71^{+36.3\%}_{-24.5\%} {}^{+1.9\%}_{-1.9\%} \pm 0.02$	$5.08^{+35.9\%}_{-24.3\%}~^{+1.9\%}_{-1.9\%}\pm0.02$	$0.250^{+35.5\%}_{-24.2\%}~^{+1.9\%}_{-1.9\%}\pm0.004$
K = 0.99	K^{PS}	0.99 ± 0.01	0.99 ± 0.01	1.00 ± 0.04
	NLO+PS	$62.0^{+9.0\%}_{-10.2\%} \stackrel{+2.2\%}{_{-1.6\%}} \pm 0.7$	$27.9^{+9.2\%}_{-10.3\%}~^{+2.3\%}_{-1.7\%}\pm0.5$	$0.91^{+7.2\%}_{-9.2\%}~^{+2.4\%}_{-1.7\%}\pm 0.02$
$t\bar{t}W^{\pm}Z$	LO+PS	$60.2^{+32.2\%}_{-22.6\%} {}^{+2.4\%}_{-2.3\%} \pm 0.3$	$26.4^{+32.0\%}_{-22.5\%} {}^{+2.4\%}_{-2.2\%} \pm 0.2$	$0.893^{+31.9\%}_{-22.4\%} {}^{+2.4\%}_{-2.2\%} \pm 0.009$
K = 1.06	K^{PS}	1.03 ± 0.01	1.06 ± 0.02	1.02 ± 0.02
	1	1		

p_T(tt) [GeV]

0

100

17

Is a 1% measurement of y_t possible? Ratios (and the FCC) can help...

Mangano, Plehn, Reimitz, Schell, Shao, arXiv: 1507.08169

- ttH and ttZ are quite similar processes, with rather large theoretical uncertainties (~10%).
 - Dominant production mode (gg) has identical diagrams Correlated QCD corrections, scale and α_s systematics

NLO QCD	$\sigma(t\bar{t}H)$ [pb]	$\sigma(t\bar{t}Z)$ [pb]	$\sigma(t\bar{t}H)/\sigma(t\bar{t}Z)$
13 TeV	$0.475^{+5.79\%+3.33\%}_{-9.04\%-3.08\%}$	$0.785^{+9.81\%+3.27\%}_{-11.2\%-3.12\%}$	$0.606^{+2.45\%+0.525\%}_{-3.66\%-0.319\%}$
100 TeV	+7.0607 + 9.1707		

Almost identical kinematics boundaries (m_Z~m_H)
 Correlated PDF and m_t systematics

1			$\sigma(t\bar{t}H)$
100TeV	$\frac{\sigma(t\bar{t}H)}{\sigma(t\bar{t}Z)}$		$\frac{\sigma(ttH)}{\sigma(t\bar{t}Z)}$
MSTW2008	$0.585^{+1.29\%+0.0526\%}_{-2.02\%-0.0758\%}$	default	$0.585^{+1.29\%}_{-2.02\%}$
CT10	$0.584^{+1.27\%+0.189\%}_{-1.99\%-0.260\%}$	$\mu_0 = m_t + m_{H,Z}/2$	$0.580^{+1.16\%}_{-1.80\%}$
NNPDF2.3	$0.584^{+1.29\%+0.0493\%}_{-2.01\%-0.0493\%}$	$m_t = y_t v = 174.1 \text{ GeV}$	$0.592^{+1.27\%}_{-2.00\%}$
	0.004 - 2.01% - 0.0493%	$m_t = y_t v = 172.5 \text{ GeV}$	$0.576^{+1.27\%}_{-1.99\%}$
7-09-2015		18 $m_H = 126.0 \text{ GeV}$	$0.575^{+1.25\%}_{-1.95\%}$

Is a 1% measurement of y_t possible? Ratios (and the FCC) can help...

Mangano, Plehn, Reimitz, Schell, Shao, arXiv: 1507.08169

- ttH and ttZ are quite similar processes, with rather large theoretical uncertainties (~10%).
 - Dominant production mode (gg) has identical diagrams Correlated QCD corrections, scale and α_s systematics

NLO QCD	$\sigma(t\bar{t}H)$ [pb]	$\sigma(t\bar{t}Z)$ [pb]	$\sigma(t\bar{t}H)/\sigma(t\bar{t}Z)$
13 TeV	$0.475^{+5.79\%+3.33\%}_{-9.04\%-3.08\%}$	$0.785_{-11.2\%-3.12\%}^{+9.81\%+3.27\%}$	$0.606^{+2.45\%+0.525\%}_{-3.66\%-0.319\%}$
100 TeV	$33.9^{+7.06\%+2.17\%}_{-8.29\%-2.18\%}$		

Almost identical kinematics boundaries (m_Z~m_H)
 Correlated PDF and m_r systematics

Marco Zaro, I

100T With 20ab ⁻¹ , the ratio N _H /N _Z					
MSTW CT: can	be measured			unc.) ^{2%} 5% 0%	
NNPDF2.3	$0.584^{+1.29\%+0.0493\%}_{-2.01\%-0.0493\%}$	$m_t = y_t v = 1$ $m_t = y_t v = 1$		$\begin{array}{c} 0.592 \substack{+1.27\% \\ -2.00\% \\ 0.576 \substack{+1.27\% \\ -1.99\% \end{array}}$	
17-09-2015		B $m_H = 126$.0 GeV	$0.575^{+1.25\%}_{-1.95\%}$	

Conclusions:

- ttH (and tH) are crucial processes to study the top/Higgs sector
 - Sensitive to top Yukawa (and its sign) and to Higgs CP properties
- Need for precise predictions both for total cross section and fully differential studies
 - NLO+PS available for signal and all main backgrounds
 - tTH @ NLO+NLL recently computed
 - NLO EW corrections available for ttH/Z/W
 - tH NLO+PS predictions available in the 4FS → better description at fully differential level
 - Non-QCD effects can be important for $t \overline{t} b \overline{b}$ simulation
- Spin correlations have to be included in simulations for Higgs CP studies and to enhance S/B discrimination
- The FCC can help for a precise determination of y_t
 - First studies have just appeared



Backup slides

Including spin correlations at NLO

Frixione, Leanen, Motylinski, Webber, arXiv:hep-ph/0702198

- Generate events (to be showered) for the production process M_P
- Before showering, produce a decayed event file starting from the undecayed events
- Exploit the fact that |M²_{P+D}|/|M²_P| is bounded from above
- The generation of unweighted decayed events is possible: generate many kinematics configurations until $|M_{P+D}|^2 / |M_P|^2 > \text{Rand}() \max(|M_{P+D}|^2 / |M_P|^2)$
- In NLO computations use only tree-level matrix elements (with n or n+1 particles)
- Loop effects on spin correlation assumed to be negligible
- Automated in MadSpin (MadGraph5_aMC@NLO) and Decayer (PowHel) ^{Artoisenet, Frederix, Mattelaer, Rietkerk, arXiv:1212.3460} Garzelli, Kardos, Trocsanyi, arXiv:1405.5859

Recent results for ttV and ttVV

Frixione, Hirschi, Pagani, Shao, MZ, arXiv: 1504.03446

 NLO Electroweak corrections recently computed for tTZ/W (and tTH)

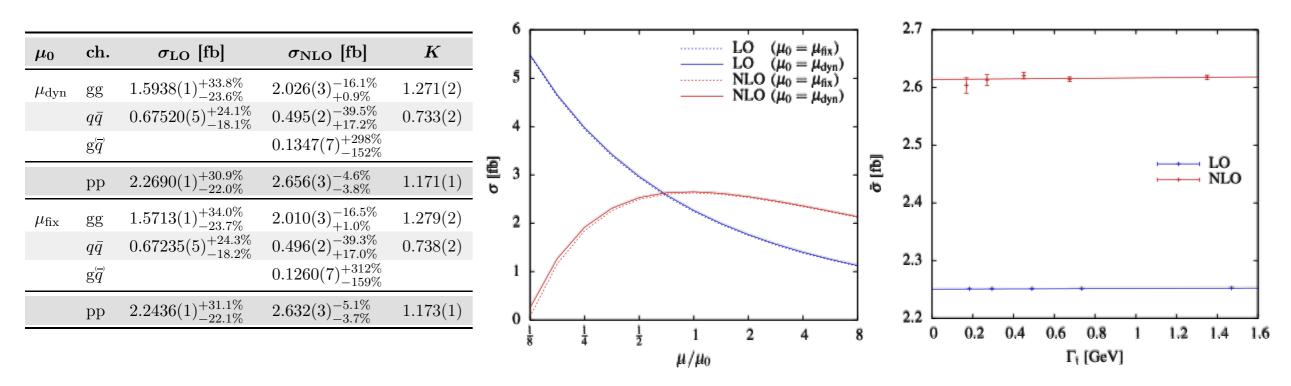
$t\bar{t}Z$: $\sigma(\mathrm{pb})$	$13 { m ~TeV}$		$t\bar{t}W^+$: $\sigma(\mathrm{pb})$	$13 { m TeV}$
LO QCD	$5.282 \cdot 10^{-1} \ (1.955 \cdot 10^{-2})$	-	LO QCD	$2.496 \cdot 10^{-1} \ (7.749 \cdot 10^{-3})$
NLO QCD	$2.426 \cdot 10^{-1} \ (7.856 \cdot 10^{-3})$		NLO QCD	$1.250 \cdot 10^{-1} \ (4.624 \cdot 10^{-3})$
LO EW	$-2.172 \cdot 10^{-4} \ (4.039 \cdot 10^{-4})$	_	LO EW	0
LO EW no γ	$-5.771 \cdot 10^{-3} \ (-6.179 \cdot 10^{-5})$		LO EW no γ	0
NLO EW	$-2.017 \cdot 10^{-2} \ (-2.172 \cdot 10^{-3})$	_	NLO EW	$-1.931 \cdot 10^{-2} (-1.490 \cdot 10^{-3})$
NLO EW no γ	$-2.158 \cdot 10^{-2} \ (-2.252 \cdot 10^{-3})$		NLO EW no γ	$-1.988 \cdot 10^{-2} (-1.546 \cdot 10^{-3})$
HBR	$5.056 \cdot 10^{-3} \ (4.162 \cdot 10^{-4})$	_	HBR	$9.677 \cdot 10^{-3} (5.743 \cdot 10^{-4})$
$tar{t}Z:\delta(\%)$	$13 { m ~TeV}$		$t\bar{t}W^+$: $\delta(\%)$	$13 { m TeV}$
NLO QCD	$45.9^{+13.2}_{-15.5} \pm 2.9 \ (40.2^{+11.1}_{-15.0} \pm 4.7)$		NLO QCD	$50.1^{+14.2}_{-13.5} \pm 2.4 \ (59.7^{+18.9}_{-17.7} \pm 3.1)$
LO EW	$0.0 \pm 0.7 \ (2.1 \pm 1.6)$	_	LO EW	0
LO EW no γ	$-1.1\pm0.0(-0.3\pm0.0)$		LO EW no γ	0
NLO EW	$-3.8 \pm 0.2 \ (-11.1 \pm 0.5)$	_	NLO EW	$-7.7 \pm 0.2 (-19.2 \pm 0.7)$
NLO EW no γ	$-4.1 \pm 0.1 \ (-11.5 \pm 0.3)$	_	NLO EW no γ	$-8.0\pm0.2~(-20.0\pm0.5)$
HBR	0.96~(2.13)	_	HBR	3.88(7.41)

- ttZ: corrections are slightly larger than ttH, with similar overall behaviour
- tW receives sizeable EW corrections even in the un-boosted regime

bbe⁺µ⁻vvH

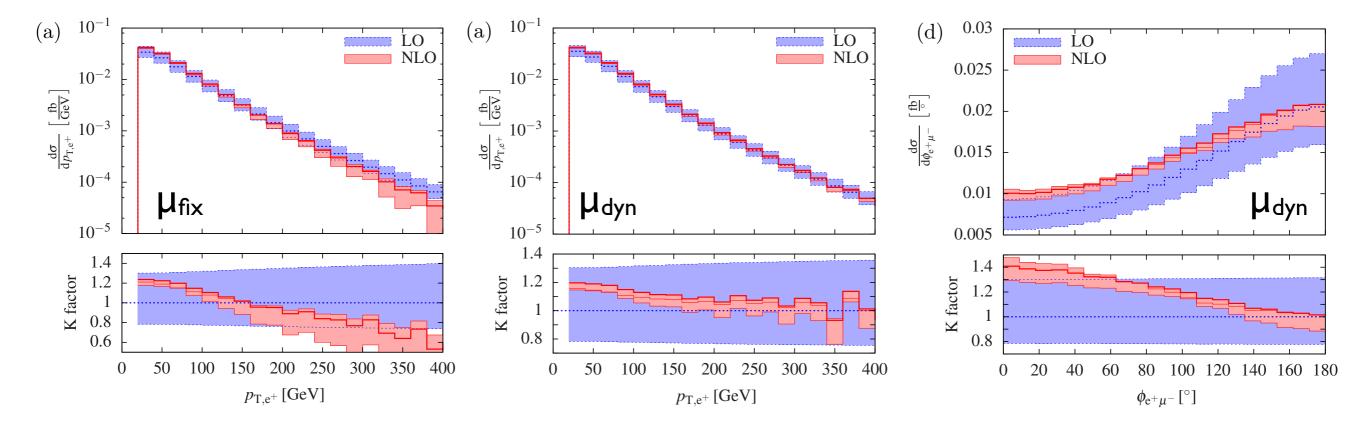
Denner, Feger, arXiv:1506.07448

- All simulations of ttH done either with stable tops or including decays in the NWA
- First computation that consistently includes off-shell and nonresonant effects (unified description of ttH, tWH, ...)
- All matrix elements computed with RECOLA (up to 7-points loops) in the complex-mass scheme


cons required with

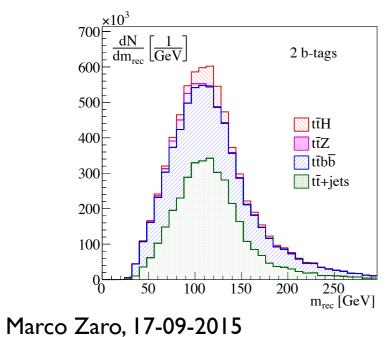
$|\eta_b| < 2.5$

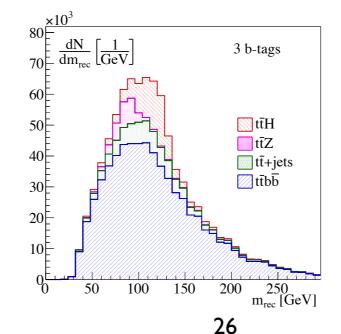
 $\begin{array}{l} p_{\mathrm{T},\mathrm{l}} > 20\,\mathrm{GeV}, \quad |\eta_{\mathrm{l}}| < 2.5\\ p_{\mathrm{T},\mathrm{miss}} > 20\,\mathrm{GeV}\\ \Delta R_{\mathrm{bb}} > 0.4\\ \hline \mathbf{Compare\ results\ with\ fixed\ or\ dynamical\ scales}\\ \mu_{\mathrm{R}} = \mu_{\mathrm{F}} = m_{\mathrm{t}} + \frac{1}{2}M_{\mathrm{H}} = 236\,\mathrm{GeV}\\ \mu_{\mathrm{R}} = \mu_{\mathrm{F}} = (m_{\mathrm{t},\mathrm{T}}m_{\mathrm{\bar{t}},\mathrm{T}}m_{\mathrm{H},\mathrm{T}})^{1/3} \end{array}$

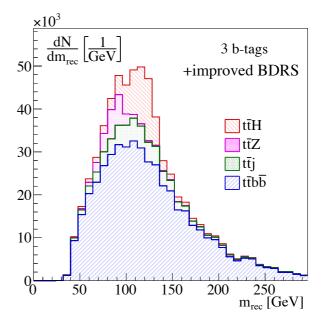


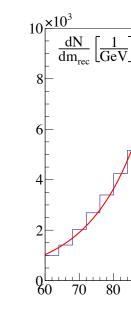
NLO QCD corrections to boot to bbe⁺µ⁻vvH: Results

- Small (<1%) effect of scale choice on total cross section
- Important reduction of scale uncertainties at NLO
- K-factor similar to tTH with same scale settings
- Finite width effects of the order of Γ_t/m_t

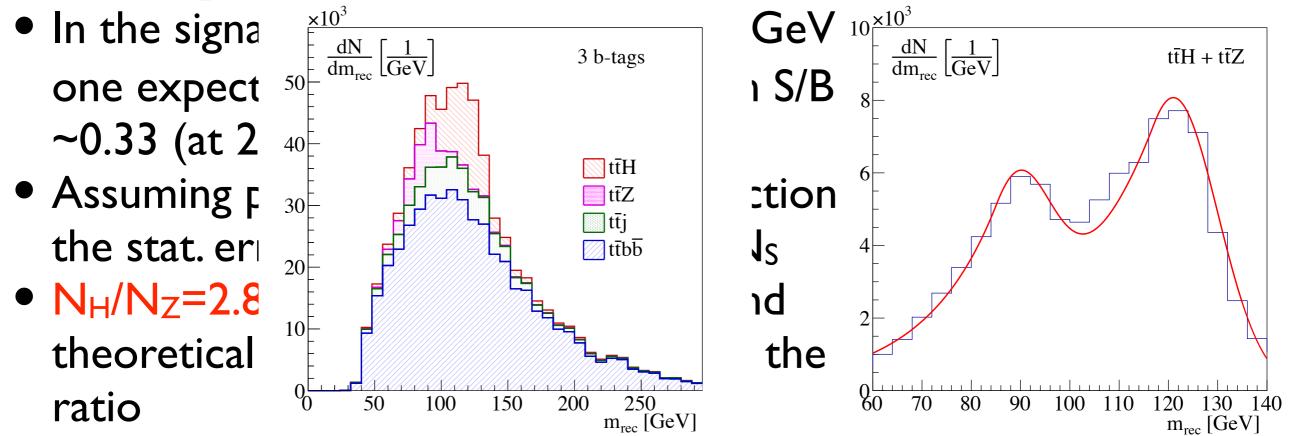

- The dynamic-scale choice yields a flatter K-factor for many observables
- Still, K-factors are far from flat for most observables (in particular those related to correlations between decay products of the two tops)






Background processes and selection cuts

- Leading backgrounds to be simulated are $t \overline{tbb}$, $t \overline{tZ}$, $t \overline{t}$ +jets
- Simulated semileptonic top decay, Higgs and Z decay to $b\overline{b}$
- Require:
 - One isolated lepton, $|y_{\ell}| < 2.5$, $p_T(\ell) > 15 \text{GeV}$
 - Two fat jets (C/A, R=1.8, p_T>200GeV)
 - One HepTopTagged jet
 - One BDRS Higgs Tagged jet, with 2 b-tags inside
 - An extra b-tag in the "rest" of the event (to suppress $t\bar{t}$ +jets)



Signal extraction

• Subtract the background by interpolating the two sidebands regions $m_{bb} \in [0,60]$ GeV U [160.300] GeV

