EOP

Search for flavour-changing neutral current top quark decays $t \rightarrow \mathrm{Hq}$ in pp collisions at $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}$ with the ATLAS detector

Shota Tsiskaridze
On behalf of the ATLAS Collaboration

Institut de Física d'Altes Energies (IFAE)
Top 2015, Ischia, Italy, 15 September 2015

Outline

- Motivation
- Analysis Overview
- Discriminating Variable
- Systematic Uncertainties
- Results
- Summary

Motivation

- Much interest recently in flavour-violating Higgs interactions:
- 2.4σ excess in $\mathrm{H} \rightarrow \mu \mathrm{t}$ from CMS [Phys. Lett. B 749 (2015) 337].
- Flavor-violating interactions could also be present in the quark sector.
- $\mathrm{t} \rightarrow \mathrm{Hq}$ decays:
- Highly suppressed in the SM (loop and GIM suppression).

- Can receive large enhancements in BSM scenarios.

Process	SM	SUSY	MSSM	2HDM
$\mathrm{t} \rightarrow \mathrm{Hc}$	$3 \cdot 10^{-15}$	10^{-6}	10^{-5}	10^{-3}
$\mathrm{t} \rightarrow \mathrm{Hu}$	$2 \cdot 10^{-17}$	10^{-6}	$8 \cdot 10^{-5}$	10^{-4}

- Can exploit large $\bar{t} \bar{t}$ samples to search for $t \bar{t} \rightarrow \mathrm{WbHq}$ using Run 1 data. Three searches with the ATLAS detector:
- $\mathbf{H} \rightarrow y y$: tiny BR ($\sim 0.2 \%$); diphoton+lepton+jets, diphoton+jets final states. Very small background, excellent mass resolution
- H \rightarrow WW*, tr : sizable BR (WW*: 21.5\%, mt : 6.3\%); SS dileptons, trileptons Small background, essentially no mass resolution
- $\mathbf{H} \rightarrow \mathbf{b b}$: largest BR ($\sim 58 \%$); lepton+jets Large background, some mass resolution

Analysis Overview

- Focus on $\bar{t} \boldsymbol{t} \rightarrow \mathrm{WbHq} \rightarrow(\mathrm{Iv}) \mathrm{b}(\mathrm{bb}) q$ lepton+jets final state
- Event preselection:
- Single lepton trigger
- 1 lepton (e or μ), $\mathrm{p}_{\mathrm{T}}>25 \mathrm{GeV},|\eta|<2.5$
- ≥ 4 jets, $\mathrm{p}_{\mathrm{T}}>25 \mathrm{GeV},|n|<2.5$
- $\geq 2 \mathrm{~b}$-tags (multivariate tagger at $70 \% \mathrm{~b}$-tagging eff.)

- Main background: SM $\overline{\mathrm{tt}}(\rightarrow \mathrm{WbWb})+j e t s$.

- Categorize events according to jet and b-tag multiplicities: ($4,5, \geq 6$ jets) $\times(2,3, \geq 4$ b-tags)
- Signal-rich regions:
(4j, 3b) (WbHu and WbHc) and (4j, 4b) (WbHc)
- Signal-depleted regions:
rest of channels; play a key role in constraining background systematics via profile likelihood fit.
- Signal-to-background discrimination through a dedicated likelihood variable.

Discriminating Variable

- Build a likelihood discriminant exploiting invariant mass and b-tagging information as:

$$
D(\mathrm{x})=\frac{P^{\mathrm{sig}}(\mathrm{x})}{P^{\mathrm{sig}}(\mathrm{x})+P^{\mathrm{bkg}}(\mathrm{x})}
$$

- $P^{\text {sig }}(\mathrm{x})$ and $P^{\mathrm{bkg}}(\mathrm{x})$ represent the probability density functions of a given event under the signal hypothesis (Signal) and the background hypothesis ($\mathrm{t}+\mathrm{l}+\mathrm{light-jets} \mathrm{\&} \mathrm{t}+\mathrm{b} \overline{\mathrm{b}}, \mathrm{t}+\mathrm{c}+\mathrm{c}$) respectively.

$$
P^{\mathrm{sig}}(\mathbf{x})=\frac{\sum_{k=1}^{N_{p}} P_{\mathrm{btag}}^{\mathrm{sig}}\left(\mathbf{x}^{k}\right) P_{\mathrm{kin}}^{\mathrm{sig}}\left(\mathbf{x}^{k}\right)}{\sum_{k=1}^{N_{p}} P_{\mathrm{btag}}^{\mathrm{sig}}\left(\mathbf{x}^{k}\right)}
$$

$P_{\text {kin }}^{\text {sig }}(\mathbf{x})=P^{\text {sig }}\left(M_{\ell v b_{\ell}}\right) P^{\text {sig }}\left(X_{b_{1} b_{2} q_{h}}\right) P^{\text {sig }}\left(M_{b_{1} b_{2}}\right)$

$$
X_{b_{1} b_{2} q_{h}} \equiv M_{b_{1} b_{2} q_{h}} \ominus M_{b_{1} b_{2}}
$$

$P_{\text {btag }}^{\text {sig }}(\mathbf{x})=P_{b}\left(\mathrm{jet}_{1}\right) P_{b}\left(\mathrm{jet}_{2}\right) P_{b}\left(\mathrm{jet}_{3}\right) P_{q_{h}}\left(\mathrm{jet}_{4}\right)$

Systematic Uncertainties

Systematic uncertainty	Type	Components
Luminosity	N	1
Reconstructed Objects		
Electron	SN	5
Muon	SN	6
Jet reconstruction	SN	1
Jet vertex fraction	SN	1
Jet energy scale	SN	22
Jet energy resolution	SN	1
Missing transverse momentum	SN	2
b-tagging efficiency	SN	6
c-tagging efficiency	SN	4
Light-jet tagging efficiency	SN	12
High- $p_{\text {T }}$ tagging	SN	1
Background Model		
$t \bar{t}$ cross section	N	1
$t \bar{t}$ modelling: p_{T} reweighting	SN	9
$t \bar{t}$ modelling: parton shower	SN	3
$t \bar{t}+\mathrm{HF}$: normalisation	N	2
$t \bar{t}+c \bar{c}: p_{\mathrm{T}}$ reweighting	SN	2
$t \bar{t}+c \bar{c}$: generator	SN	4
$t \bar{t}+b \bar{b}$: NLO Shape	SN	8
$W+$ jets normalisation	N	3
$W \mathrm{p}_{T}$ reweighting	SN	1
$Z+$ jets normalisation	N	3
$Z \mathrm{p}_{T}$ reweighting	SN	1
Single top normalisation	N	3
Single top model	SN	1
Diboson normalisation	N	3
$t \bar{t} V$ cross section	N	1
$t \bar{t} V$ model	SN	1
$t \bar{t} H$ cross section	N	1
$t \bar{t} H$ model	SN	2
Multijet normalisation	N	4
Signal Model		
$t \bar{t}$ cross section	N	1
Higgs boson branching ratios	N	3
$t \bar{t}$ modelling: p_{T} reweighting	SN	9
$t \bar{t}$ modelling: p_{T} reweighting non-closure	N	1
$t \bar{t}$ modelling: parton shower	N	1

- Search uses a profile-likelihood fit to search for the signal while constraining the large background uncertainties.
- Use a sophisticated model for systematic uncertainties, including multiple components for several sources, to ensure consistent fit without artificial overconstraints.
- Examples:
- jet energy scale uncertainty: 22 components
- b-tagging uncertainty: 6 components
- c/light-jet tagging uncertainties: 4/22 components
- ttt modeling uncertainties: 29 components
- Leading systematic uncertainties after the fit include light-jet tagging, c-tagging, tt+HF modeling, and the choice of parton shower/hadronisation model in tt .

$\mathrm{H} \rightarrow \mathrm{bb}$ search: Results

- Final discriminant pre- and post-fit in most sensitive channels for WbHc search:

- Best-fit branching ratios:

$$
\begin{gathered}
\mathrm{BR}(\mathrm{t} \rightarrow \mathrm{Hc})=(0.17 \pm 0.21) \% \\
(\text { assuming } \mathrm{BR}(\mathrm{t} \rightarrow \mathrm{Hu})=0) \\
\mathrm{BR}(\mathrm{t} \rightarrow \mathrm{Hu})=(-0.07 \pm 0.33) \% \\
(\text { assuming } \mathrm{BR}(\mathrm{t} \rightarrow \mathrm{Hc})=0)
\end{gathered}
$$

- No significant $\mathrm{t} \rightarrow \mathrm{Hq}$ excess.
- Obs (exp) 95\% CL upper limits (one BR at a time):
$\mathrm{BR}(\mathrm{t} \rightarrow \mathrm{Hc})<0.56 \%$ (0.42\%)
BR(t $\rightarrow \mathrm{Hu})<0.61 \%$ (0.64\%)
- Different sensitivity to $\mathrm{t} \rightarrow \mathrm{Hc}$ and $\mathrm{t} \rightarrow \mathrm{Hu}$,
- Most sensitive single search for $t \rightarrow \mathrm{Hc}$ (as we will see on next slide).

Results: Branching Ratio Limits

Collab.	Higgs boson decay mode	95% CL upper limits on $\mathcal{B}(t \rightarrow H c)$		95\% CL upper limits on $\mathcal{B}(t \rightarrow H u)$		Ref.
		Observed	Expected	Observed	Expected	
CMS	$H \rightarrow \gamma \gamma(1)$	0.69%	0.81%	-	-	PRD 90 (2014) 112013
	$H \rightarrow \gamma \gamma(2)$	0.47%	0.71%	0.42%	0.65%	CMS-PAS-TOP-14-019
	$H \rightarrow W W^{*}, \tau^{+} \tau^{-}(3 \ell, 4 \ell)$	1.28%	1.17%	-	-	PRD 90 (2014) 112013
	$H \rightarrow W W^{*}, \tau^{+} \tau^{-}(\mathrm{SS} 2 \ell, 3 \ell)$	0.93%	0.89%	-	-	CMS-PAS-TOP-13-017
	Combination $\gamma \gamma(1), 3 \ell, 4 \ell$	0.56%	0.65%	-	-	PRD 90 (2014) 112013
ATLAS	$H \rightarrow \gamma \gamma$	0.79%	0.51%	0.79%	0.51%	JHEP 06 (2014) 008
	$H \rightarrow W W^{*}, \tau^{+} \tau^{-}($SS $2 \ell, 3 \ell)$	0.79%	0.54%	0.78%	0.57%	PLB $749(2015) 519$
	$H \rightarrow b \bar{b}$	0.56%	0.42%	0.61%	0.64%	
	Combination	$\mathbf{0 . 4 6 \%}$	$\mathbf{0 . 2 5 \%}$	$\mathbf{0 . 4 5 \%}$	$\mathbf{0 . 2 9 \%}$	

- All three ATLAS searches have comparable sensitivity.
- The ATLAS combination represents a significant improvement over previous results.

Results: 2D Limits

- First results scanning the $\mathrm{BR}(\mathrm{t} \rightarrow \mathrm{Hc})$ vs $\mathrm{BR}(\mathrm{t} \rightarrow \mathrm{Hu})$ plane for the combined search.
- Branching ratio limits translated to non-flavour-diagonal Yukawa couplings.

$$
\begin{gathered}
\left|\lambda_{t q H}\right|=1.92 \sqrt{\mathrm{BR}(t \rightarrow H q)} \\
\mathcal{L}_{\mathrm{FCNC}}=\lambda_{t c H} \bar{t} H c+\lambda_{t u H} \bar{t} H u+h . c .
\end{gathered}
$$

Results: Best-Fit Branching Ratios

- Best-fit branching ratios consistent with the SM prediction.
- Largest deviation for combined $B R(t \rightarrow H c)$ is 1.6 s.d.

Summary

- The first search for $\overline{t t} \rightarrow \mathrm{WbHq}$ with $\mathrm{H} \rightarrow \mathrm{bb}$, exploiting the lepton-plus-jets final state at high b-tag multiplicity, has been presented.
- A novel discriminant is built to separate signal from background, whose uncertainties are constrained via a profile likelihood fit to 9 analysis channels.
- This analysis constitutes the single most sensitive search for $\mathrm{t} \rightarrow \mathrm{Hc}$ decays to date.
- The combination of the three ATLAS searches exploiting the $\mathrm{H} \rightarrow \mathrm{bb}, \mathrm{H} \rightarrow W W^{*}$, $\tau \tau$ and $\mathrm{H} \rightarrow \gamma \nu$ decay modes yields the most sensitive direct bounds on tqH interactions to date.
- This becomes the ATLAS Run 1 legacy result on this topic and a stepping stone for further improved searches during Run 2.

Thank you for
your attention!
Thank you for
your attention! Tin -

,

$=$

 ,

 (1)
,
-

a

your attention

a
。
,

a \qquad -

Backup Slides

$\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}}$ search: Shape Comparison (1)

$\mathrm{H} \rightarrow \mathrm{bb}$ search: Shape Comparison (2)

Other FCNC Analysis Results

- $H \rightarrow \gamma Y$. tiny BR ($\sim 0.2 \%$); diphoton+lepton+jets, diphoton+jets final states. Very small background, excellent mass resolution.
- Best-fit branching ratios:

$$
\begin{aligned}
& \mathrm{BR}(\mathrm{t} \rightarrow \mathrm{Hc})=[0.22 \pm 0.26(\text { stat. }) \pm 0.10(\text { syst. })] \% \quad \text { (assuming } \mathrm{BR}(\mathrm{t} \rightarrow \mathrm{Hu})=0) \\
& \mathrm{BR}(\mathrm{t} \rightarrow \mathrm{Hu})=[0.23 \pm 0.27(\text { stat. }) \pm 0.10(\text { syst. })] \% \text { (assuming } \mathrm{BR}(\mathrm{t} \rightarrow \mathrm{Hc})=0)
\end{aligned}
$$

- Obs (exp) 95\% CL upper limits (one BR at a time):

BR($\mathrm{t} \rightarrow \mathrm{Hc}$) < 0.79\% (0.51\%)
$\mathrm{BR}(\mathrm{t} \rightarrow \mathrm{Hu})<0.79 \%$ (0.51\%)

- $H \rightarrow W W^{*}, \tau \tau$: sizable BR (WW*: 21.5\%, $\tau \tau$: 6.3%); SS dileptons, trileptons Small background, essentially no mass resolution.
- Best-fit branching ratios:

$$
\begin{aligned}
& \mathrm{BR}(\mathrm{t} \rightarrow \mathrm{Hc})=[0.27 \pm 0.18 \text { (stat.) } \pm 0.21 \text { (syst.) })] \%(\text { assuming } \mathrm{BR}(\mathrm{t} \rightarrow \mathrm{Hu})=0) \\
& \mathrm{BR}(\mathrm{t} \rightarrow \mathrm{Hu})=[0.23 \pm 0.18 \text { (stat.) } \pm 0.21(\text { syst. })] \% \text { (assuming } \mathrm{BR}(\mathrm{t} \rightarrow \mathrm{Hc})=0)
\end{aligned}
$$

- Obs (exp) 95% CL upper limits (one BR at a time):

$$
\begin{aligned}
& \mathrm{BR}(\mathrm{t} \rightarrow \mathrm{Hc})<0.79 \%(0.54 \%) \\
& \mathrm{BR}(\mathrm{t} \rightarrow \mathrm{Hu})<0.78 \%(0.57 \%)
\end{aligned}
$$

$\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}}$ search: Pre/Post Fit Plots (1)

H \rightarrow bb search: Pre/Post Fit Plots (2)

$\mathrm{H} \rightarrow \mathrm{bb}$ search: Pre/Post Fit Plots (3)

Combined Results: Best-Fit BR

Combined Search: 1D Limits

- $C L_{s}$ vs BR scan for the combined search.

- Obs (exp) 95\% CL upper limits (one BR at a time):

$$
\begin{aligned}
& \mathrm{BR}(\mathrm{t} \rightarrow \mathrm{Hc})<0.46 \% \text { (0.25\%) } \\
& \mathrm{BR}(\mathrm{t} \rightarrow \mathrm{Hu})<0.45 \% \text { (0.29\%) }
\end{aligned}
$$

