

Top quark reconstruction

Michael Spannowsky

University of Durham, IPPP

Overview reconstruction at Tevatron and early LHC

Most tops produced at threshold Address physics questions where $m_{t \bar{t}} \simeq 2 m_{t}$

Hadronic top reconstruction

- Often simple χ^{2}-fit with $m_{W}^{2}=m_{j_{1} j_{2}}^{2}$ and $m_{t}^{2}=m_{b, j_{1}, j_{2}}^{2}$
- Kinematic fitter (HitFitter, KinFitter, ...)
- Matrix Element Method $\quad P(\mathbf{x}, \alpha)=\frac{1}{\sigma} \int d \phi(\mathbf{y})\left|M_{\alpha}\right|^{2}(\mathbf{y}) W(\mathbf{x}, \mathbf{y})$

Leptonic top reconstruction

- Full reconstruction by estimating $p_{Z, \nu}$ using $\quad m_{W}^{2}=\left(p_{l}+p_{\nu}\right)^{2}=m_{l}^{2}+2\left(E_{l} E_{\nu}-\vec{p}_{l} \vec{p}_{\nu}\right)$
- Templating, exploiting e.g. $m_{l b} \sim 140 \mathrm{GeV}$
- Mini-isolation criteria for high-pT, see e.g. [Rehermann, Tweedie '10]

Motivation to reconstruct tops at LHC 13/14

Top and Higgs most interesting particles of SM
Window to elw. symmetry breaking
Due to large y_{t}, In SM, top largest contributor to destabilising the elw. scale \longrightarrow can turn λ negative

- Radiative elw. sym. breaking in e.g. [See talk by SUSY or composite Higgs models
M. Peskin]

An incomplete list of important searches and measurements:

- Higgs-top coupling
- top-partner searches (stop, vector-like quarksenerget Anomalous top couplings
- New participstinflassociation and effective operators with Pops
Sensitivity for New Physics kicks in at high energy scales

Generic kinematic in New Physics search

Different scenarios based on pT vs mass

Scenario 1
$m_{t \bar{t}} \simeq 2 m_{t}$

Scenario 2

$$
m_{t \bar{t}}>2 m_{t}
$$

Scenario 3
$m_{t \bar{t}} \gg 2 m_{t}$

Standard reconstruction (templating, MEM, ...) focuses on Scenario 1 Physics cases require Scenarios 2 and 3

The parton shower bridges the gap from the hard interaction scale down to the hadronization scale $O(1) \mathrm{GeV}$

partons from the hard interaction emit other partons (gluons and quarks)

These emissions are enhanced if they are collinear and/or soft with respect to the emitting parton

Probability enhanced in soft and collinear region due to $\sim 1 /\left(p_{1}+p_{2}\right)^{2}$

$$
\text { Collinear limit: } \quad d \sigma_{e e \rightarrow 3 j} \approx \sigma_{e e \rightarrow 2 j} \sum_{j \in\{q, \bar{q}\}} \frac{\alpha_{s}}{2 \pi} \frac{d \theta_{j g}^{2}}{\theta_{j g}^{2}} P(z)
$$

	$e^{+} e^{-} \rightarrow \bar{q} q g \quad$ factorizes (Eikonal Current)
Soft limit:	\downarrow dipole
large Nc	$\left\|\mathcal{M}_{q \bar{q} g}\right\|^{2}=\left\|\mathcal{M}_{q \bar{q}}\right\|^{2} g_{s}^{2} C_{F} \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k p_{2} \cdot k}$

One can be slightly more quantitative...

$$
\mathcal{P}=1-e^{-S_{t t g}}
$$

Dead region around top

PT top quark [GeV]

Radiation off bottom quark down to hadronization scale

$$
\mathcal{P}=1-e^{-S_{b b g}}
$$

pT bottom $=$ pT top $/ 3$

However, at the LHC many sources of radiation:
[Cacciari, Salam, Sapeta JHEP 1004]

- Pileup \rightarrow Can add up to 100 GeV of soft radiation per unit rapidity
- Underlying Event $\rightarrow\left\langle\delta m_{j}^{2}\right\rangle \simeq \Lambda_{\mathrm{UE}} p_{T, j}\left(\frac{R^{4}}{4}+\frac{R^{8}}{4608}+\mathcal{O}\left(R^{12}\right)\right)$ with $\Lambda_{\mathrm{UE}} \sim \mathcal{O}(10) \mathrm{GeV}$
- Initial state radiation (ISR)
[Dasgupta, Magnea, Salam JHEP 0802]
- Hard radiation from many resonances in event
\rightarrow Jet mass and internal structure will be affected by these sources

"Mano sinistra e destra del diavolo"

Groomers clean up jet from soft uncorrelated radiation
reduce active area of jet
reduce sensitivity to pileup/UE

Taggers aim to identify objects based on their properties

Radiation profile

Jet grooming procedures

2-pronged resonances

3-pronged resonances

General methods

Filtering [Butterworth, Davison, Rubin, Salam PRL 100 (2008)] Pruning [Ellis, Vermilion, Walsh PRD 80 (2009)]
Trimming [Krohn, Thaler, Wang JHEP 1002 (2010)]
[Butterworth, Davison, Rubin, Salam PRL 100 (2008)]
[Plehn, Salam, MS PRL 104 (2010), Kribs, Martin, Roy, MS PRD 81 (2010)]
y-splitter Top Tagger $\begin{gathered}{[\text { Butterworth, Cox, Forshaw PRD } 55 \text { (2002)] }} \\ \text { [Broijmans ATL-COM-PHYS-2008-001] }\end{gathered}$ energy flow [Thaler, Wang JHEP 0807]

Johns Hopkins Tagger [Kaplan, et al. PRL 101 (2008)]
HEP Top Tagger [Plehn, MS, Takeushi, Zerwas JHEP 1010]
tree-less approach [Jankowiak, Larkoski JHEP 1106]
Template method [Almeida et al. PRD 82 (2010)]
N-subjettiness $\left.\quad \begin{array}{c}{[K i m ~ P R D ~} \\ \text { [Thaler, Van Tilburg JHEP 1103] }\end{array}\right]$
Multi-variate (BDT, NN) [Gallicchio et al. JHEP 1104] [Almeida et al. JHEP 1507]
Shower deconstruction [Soper, MS PRD 84 (2011)] [Soper, MS PRD 87 (2013)]

Jet-shape tagger: N-subjettiness

Degree to which a jet has N subjets

[Kim PRD 83 (2011)] [Thaler, Van Tilburg JHEP 1103] [Thaler, Van Tilburg JHEP 1202]

τ_{1}, τ_{2} and τ_{3} no good discriminators:

N-subjettiness: Degree to which a jet has N subjets

However, ratio of taus is good discriminator:

- τ_{3} / τ_{2} is best discriminator for boosted tops
- In ratio effects from soft/uncorrelated radiation cancel

Mass-drop Tagger: HEPTopTagger

[Plehn, Salam, MS '09]
I. Find fat jets ($C / A, R=1.5, \mathrm{pT}>200 \mathrm{GeV}$)
II. Find hard substructure using mass drop criterion

Undo clustering, $m_{\text {daughter }_{1}}<0.8 m_{\text {mother }}$ to keep both daughters

How does the HEPTopTagger work?

I. Find fat jets ($C / A, R=1.5, p T>200 \mathrm{GeV}$)
II. Find hard substructure using mass drop criterion

Undo clustering, $m_{\text {daughter }_{1}}<0.8 m_{\text {mother }}$ to keep both daughters

How does the HEPTopTagger work?

I. Find fat jets ($C / A, R=1.5, p T>200 \mathrm{GeV}$)
II. Find hard substructure using mass drop criterion

Undo clustering, $m_{\text {daughter }_{1}}<0.8 m_{\text {mother }}$ to keep both daughters

How does the HEPTopTagger work?

I. Find fat jets (C/A, $R=1.5, \mathrm{pT}>200 \mathrm{GeV}$)
II. Find hard substructure using mass drop criterion

Undo clustering, $m_{\text {daughter }_{1}}<0.8 m_{\text {mother }}$ to keep both daughters
III. Apply jet grooming to get top decay candidates

How does the HEPTopTagger work?

I. Find fat jets (C/A, $\mathrm{R}=1.5, \mathrm{pT}>200 \mathrm{GeV}$)

II. Find hard substructure using mass drop criterion

Undo clustering, $m_{\text {daughter }_{1}}<0.8 m_{\text {mother }}$ to keep both daughters
III. Apply jet grooming to get top decay candidates

IV. Choose pairing based on kinematic correlation, e.g. top mass, W mass and invariant subjet masses

Top 2015

18

Michael Spannowsky

IV. check mass ratios

Cluster top candidate into 3 subjets j_{1}, j_{2}, j_{3}

No fix pairing for W mass reconstruction

Only invariants for reconstruction

Top quark momentum reconstruction

All taggers are trying to access the matrix element as directly as possible, so why not calculate the matrix element weight directly for given final state?

Idea of Shower Deconstruction:
Calculate analytically the perturbative part, fit to data the non-perturbative (universal) part

Shower Deconstruction

$=$
Matrix Element method for (many) small objects

Summary of Method:

Perform resummation calculation to discriminate between signal and background
The probability weights in the evolution from the hard interaction scale to the hadronization scale are given by Sudakov factors and splitting functions.

Example: Top decay

Conceptional difference compared to Higgs from last year:

- Splitting functions for massive emitter and spectator
- Full matrix element for top decay
$\chi\left(\{p, t\}_{N}\right)=\frac{P\left(\{p, t\}_{N} \mid \mathrm{S}\right)}{P\left(\{p, t\}_{N} \mid \mathrm{B}\right)}=\frac{\sum_{\text {histories }} H_{I S R} \cdots \sum_{\text {histories }}|\mathcal{M}|^{2} H_{\text {top }} e^{-S_{t_{1}}} H_{t g}^{s}-e^{-S_{g}} \cdots}{\sum_{\text {histories }} H_{I S R} \cdots \sum_{\text {histories }} H_{g}^{b} e^{S_{g}} H_{g g g} \cdots}$

χ distribution for top vs QCD

Shower Deconstruction best single discriminative observable, but when different methods combined same information can be accessed

Reconstructing highly boosted tops

- LHC and beyond -

We want to search for very heavy resonances, [Larkoski, Maltoni, Selvaggi '15]
[MS, Stoll '15]
er, Flacke, Kats, Lee, Perez '15] [Larkoski, Maltoni, Selvaggi '15]
[MS, Stoll '15]
er, Flacke, Kats, Lee, Perez '15] [Larkoski, Maltoni, Selvaggi '15]
[MS, Stoll '15]
[Bressler, Flacke, Kats, Lee, Perez '15] e.g. Z^{\prime} with 5 TeV
[Katz, Son, Tweedie '10]
[Schaetzel MS '13]

$$
\text { Have to reconstruct tops with } p_{T, t} \geq 2 \mathrm{TeV}
$$

Such tops decays cannot be resolved by Hcal

Issue with granularity unavoidable $13 / 14$ or 100 TeV

Energy of jet: 60\% charged particles 25\% photons (mostly π^{0})

15\% neutral hadrons
$85 \% \pm 15 \%$ energy in Tracker and Ecal

When the calorimeter is just not enough: Tracks-only HPTTopTagger

Idea:

- Perform top tagging based on tracks only
- Do local recalibration \rightarrow stretch track. mom by $\alpha_{j}=\frac{E_{\text {jet }}}{E_{\text {tracks }}}$
- Run High-pT TopTagger
- W/Z/top tagger available at https://www.ippp.dur.ac.uk/~mspannow/webippp/HPTTaggers.html

Problem: [Bressler, Flacke, Kats, Lee, Perez '15]

- jet-energy rescaling does not protect from subjet fluctuations

$$
R_{\text {subjet }}=(3 / 4) m_{w} / p_{\mathrm{i}}, 40 \% \text { larger }
$$

- jet (not subjet) correction applied using α_{j} leaves reconstructed MW to fluctuate by $O(25) \%$
- Mass not so different from y-cut in BDRS reconstruction used in current ATLAS excess:

$$
y=\min \left(p_{T, j_{1}}, p_{T, j_{2}}\right) \frac{\Delta R_{\left(j_{1}, j_{2}\right)}}{m_{j_{1}+j_{2}}} \geq y_{f}
$$

[Schaetzel, MS PRD 89 (2014)]

[Goncalvez, Krauss, MS '15]

Top physics at core of upcoming LHC program

Many reconstruction approaches of top

The boosted regime is of particular importance jet substructure not optional ongoing research for several years now

Highly-boosted regime requires still more work Better understanding of input objects (topo-cluster) necessary

Anomalous top gluon couplings

(Scenario 2 or 3)

Combination of Tevatron, incl. LHC and boosted LHC gives good measurement
[Englert, Freytas, Spira, Zerwas]
Michael Spannowsky 14.09.2015

Event Deconstruction = Matrix. Method + Shower Deconstruction

